
Introduction to Algorithms for Biologists

A one–week course given at the
South African National Bioinformatics Institute (SANBI)

Cape Town, 2–8 July, 2002

Zsuzsanna Lipták
Institute for Theoretical Computer Science, ETH Zurich

zsuzsa@inf.ethz.ch

Contents

1 Introduction 1

2 What is an Algorithm? 2

3 Exact Matching 4
3.1 Strings . 4
3.2 The Exact Matching Problem 6
3.3 A naive algorithm for exact matching 6
3.4 The Knuth–Morris–Pratt algorithm 8
3.5 Preprocessing of the Knuth–Morris–Pratt algorithm 12
3.6 Preprocessing . 13
3.7 Problems . 13

4 Algorithm Analysis 14
4.1 Big–O–notation . 15
4.2 Important O–classes . 17
4.3 Analysis of the exact string matching algorithms 17
4.4 Problems . 18

5 Basic Combinatorics 19
5.1 Exponentiation and logarithms 19
5.2 Sum of the first n consecutive integers 20
5.3 n factorial . 20
5.4 Binomial coefficients . 22

1

5.5 Further useful formulas . 23
5.6 Problems . 23

6 Individual Projects 24

7 Conclusion 25

1 Introduction

This course was given in July 2002 to bioinformatics masters students with
a background in biology. It assumes no prior mathematical or computer
science knowledge and tries to concentrate on aspects that are important to
biologists starting work in bioinformatics.

The students’ programming experience consisted mainly of one intensive
Perl course. They did have a lot of experience in using standard bioinfor-
matics tools such as BLAST. The course was given during one week, with
3–hour lectures in mornings, and a 1–2 hour lecture in the afternoons. The
rest of the day was spent solving problems. In addition to the contents of
this document, we included a brief introduction to graph theory. The course
was completed by one “recap day” during which the concepts encountered
were reinforced and remaining questions answered. In addition, each stu-
dent was given a project to present. The students were assessed in a 3–hour
written exam.

Each of the following sections is followed by a list of problems. More
challenging problems are marked with a star. The students were required
to solve all non–star problems. The student projects are listed at the end of
this document. Literature used in preparation for this course can be found
in the references section. In particular, I borrowed many of the problems
from these references, and acknowledge the reference where the problem is
stated.

I thank the students Zayed Albertyn, Grant Carelse, Elana Ernstoff,
Estienne Swart, Victoria Nembaware, as well as Tzu–Ming Chern and Liza
Groenewald for their enthusiastic participation in the course. Further thanks
go to Cathal Seoighe for many useful discussions during my preparation, to
Win Hide for his support, and to Uli Wagner and Ingo Schurr who read a
draft version of these notes and made many helpful comments.

2

2 What is an Algorithm?

Algorithms. The word algorithm derives from the name of the Arab math-
ematician Al–Khwarizmi who lived in Baghdad from the end of the 8th until
the middle of the 9th century. He wrote an influential book on algebra that
is considered the first collection of algorithms: It contains “recipes” of how
to solve algebraic problems encountered in real life (e.g. in lawsuits, inher-
itance, land measurements). And this is exactly what an algorithm is: A
finite set of instructions on how to solve a given type of problems. The
description can be written in any language, e.g. English, Swahili, C++,
Perl.

Examples. A recipe for chicken tikka. A description of how to change
your tyres. An explanation of how to solve quadratic equations in one vari-
able (i.e., of the type x2+px = q). A Perl script1 that will convert a text–file
into an html–file. A C++ program that will generate all prime numbers2 in
ascending order.

Inputs and Outputs. Most algorithms have inputs and outputs, but
this is not necessary. In the above examples, the recipe’s input are the
ingredients, its output is the chicken tikka. The second algorithm can be
viewed as having no input or output. Alternatively, one could say that the
algorithm’s input is a car with a flat tyre, and its output is one with four
good tyres. The third’s input is an equation, e.g. x2−6 = 10, and its output
are the (possibly several) numbers satisfying the equation, here 4 and −4.
The Perl script’s input is the text–file, its output the html–file. The C++
program has no input; its output is an (infinite) list of numbers.

Finiteness. The word finite is important in the definition of an algo-
rithm: The description has to be finite, i.e., the number of characters used
for the description has to be a positive integer. This does not mean, how-
ever, that each execution of the algorithm will stop after finitely many steps.
For example, the C++ program mentioned above has infinite output: If not
stopped, it will run forever, since there are infinitely many prime numbers to
be generated. However, the program itself will be finite, namely something
along the lines of

1a program written in the programming language Perl
2A positive integer p is called a prime number if it has exactly two divisors: 1 and

itself. The first seven prime numbers are 2, 3, 5, 7, 11, 13, 17.

3

Example 2.1.
Specification: Generate all prime numbers in ascending order.
Step 1: Look at the first positive integer. (This is 1.)
Step 2: Test whether it is a prime. If so, output it.
Step 3: Increase the number you are looking at by 1.
Step 4: Go back to step 2.

Of course it wouldn’t look like this because it would be written in C++
and not in every–day English. But the C++ program would have the same
type of instructions, just written in a different syntax. In addition, we would
have to specify in detail how the prime number testing is to be done.

Example 2.2. The widely used database search algorithm BLAST is an-
other example of an algorithm. It is given a (biological) sequence as input,
does a search against a sequence database, outputting a list of sequences
that are judged to be similar to the input sequence. BLAST uses many
different ideas and heuristics; a simplified version of its underlying idea is
as follows:

Specification: Find sequences similar to query sequence in a database.
Input: A sequence (called the query).
Step 1: Break the query up into small pieces and find exact

matches of these in the database. Each of the matches
will be called a hit.

Step 2: Try and extend each hit such that you get a good
alignment with the query.

Output: The list of the 10 best scoring sequences from Step 2.

The first step is called exact matching, while the second step is inexact
or approximate matching. In actual fact, BLAST doesn’t really look for
exact matches but for near exact matches using hashing, but the idea is
similar. We will look at the problem of exact matching in detail and use it
to introduce algorithms analysis.

3 Exact Matching

3.1 Strings

Definition 3.1 (Strings). Given a finite set Σ, a string over Σ is an ordered
succession of elements from Σ, i.e., of the form s = s(1)s(2) . . . s(n), where
for i = 1, . . . , n, s(i) ∈ Σ, and n can be any positive integer, called the length

4

of s and denoted by |s|.3 We refer to Σ as the alphabet and to its elements
as characters or letters4. s(i) is the i’th character of the string s.

Example 3.1. Σ = {A,C,G,T}, s = AACTAG. Then, |s| = 6, and s(1) =
A, s(2) = A, s(3) = G, s(4) = A, s(5) = A, s(6) = G.

Example 3.2. The three major types of biological sequences, DNA–strings,
RNA–strings, and (primary structure of) proteins, are strings over the al-
phabets {A,C,G,T}, {A,C,G,U}, and the 20–letter alphabet of the 20
amino acid residues, respectively.

Definition 3.2 (Substrings). Given two strings t and s, where |s| = n.
Then t is a substring of s if there are two positions i, j, 1 ≤ i ≤ j ≤ n,
such that t = s(i, j), where s(i, j) denotes the string stretching from the
i’th position of s to its j’th position. Thus, if |t| = m, then we require that
t(1) = s(i), t(2) = s(i + 1), . . . , t(m) = s(j). Substrings of s beginning at
the first position of s are called prefixes of s, and substrings that end at its
last position are called suffixes of s. Finally, proper substrings, prefixes, and
suffixes of s are those that are not equal to s itself.

Definition 3.3 (Subsequences). Given two strings t and s, where |t| = m,
then t is a subsequence of s if there are positions 1 ≤ i1 < i2 < . . . < im ≤ n
such that t(1) = s(i1), t(2) = s(i2), . . . , t(m) = s(im).

Example 3.3. Let s = AACTAG. Then CTA is a substring of s, where
the two positions required by the definition are i = 3, j = 5. CAG is a
subsequence of s, where i1 = 3, i2 = 5, i3 = 6. However, it is not a substring
of s, since no two positions can be found such that it will match without
leaving any letters of s out. AA is a substring of s, with i = 1 and j = 2. As
a subsequence, AA has three occurrences in s: i1 = 1, i2 = 2; i1 = 1, i2 = 5;
and i1 = 2, i2 = 5. AACT is a prefix of s, AG is a suffix of s. The
full list of prefixes of s is: A,AA,AAC,AACT,AACTA,AACTAG, suffixes:
G,AG,TAG,CTAG,ACTAG,AACTAG. All of these are proper substrings
of s, except for AACTAG.

Note that the terms substring, prefix, suffix, and subsequence are relative
to another string. Something can either be a string or not, depending on
whether it fits the definition of string. However, it cannot be a substring as
such. A string can only be a substring of another string.

3Most definitions of strings also allow the empty string, usually denoted ε, which has
length 0. We do not need the empty string and therefore exclude it in our definition.

4“s(i) ∈ Σ” is pronounced like this: “s(i) is an element of Σ”, or “s(i) is in Σ.

5

If t is a substring of s, then it is also a subsequence of s, but not vice
versa. I.e., there can be subsequences of s that are not substrings, see
Example 3.3.

Terminology. The term string originates from mathematics/computer
science, while biologists usually refer to the same objects by the term se-
quence. The latter has a different meaning in mathematics. However, we will
follow the bioinformatics tradition and use these two terms interchangeably.
Thus, from now on, string = sequence. We do, however make a distinction
between substrings and subsequences. The term word is also often used: in
mathematical tradition, it means the same as string, while in biological lit-
erature, it is usually used in the loose meaning “short string”. Other terms
used are k–mers and k–tuples; they both mean “strings of length k”.

3.2 The Exact Matching Problem

The Exact Matching Problem: Given two strings s and p,
where |s| = n, |p| = m, and m ≤ n, determine whether p is a
substring of s. If the answer is yes, output the position(s) where
p occurs in s. We will refer to p and the pattern as s as the text.

Example 3.4. s = xabxyabxyabxz, p = abxyabxz. Then p is a substring
of s, occurring in positions i = 6 to j = 13.

3.3 A naive algorithm for exact matching

Consider the following algorithm: First, try to match the pattern with the
first m positions of s. Then shift the pattern by one and try to match it
with positions 2 to m+ 1 of s, and so on, see Figure 1 for an example. We
will call this algorithm naive, because it is the first one that comes to mind.

In this example, the naive algorithm makes 1 + 8 + 1 + 1 + 1 + 8 = 18
comparisons. In the worst case, however, it could try and match up to the
end of the pattern in each iteration. E.g. for s = aaaaaaaaaaaaa and p =
aaaaaaab. Thus, in terms of n and m, the naive algorithm could make up
to m(n−m+ 1) comparisons.

Here is a pseudo–code for the naive exact matching algorithm5:

5A note on pseudo–code conventions: I am using a loosely Pascal–based syntax. :=
stands for an assignment, = for a comparison, and // at the beginning of comments.

6

Figure 1: The naive algorithm. In each iteration, it tries to align pattern
p at a certain position of s. The appropriate positions are compared until
a mismatch is found, then the pattern is shifted by one. A vertical line (|)
denotes a match, a star (∗) a mismatch.

1 2 3 4 5 6 7 8 9 10 11 12 13

x a b x y a b x y a b x z

∗
a b x y a b x z

| | | | | | | ∗
a b x y a b x z

∗
a b x y a b x z

∗
a b x y a b x z

∗
a b x y a b x z

| | | | | | | |
a b x y a b x z

algorithm Naive Exact Match

input: two strings p and s

m := |p|; n := |s|; // length of input strings
if n < m exit // reject stupid inputs
end if;
for j = 1 to n−m+ 1 do // go through s
i := 1; // current position in p
while (i ≤ m and p(i) = s(j + i− 1)) do // while positions match,
i := i+ 1 // compare next posi-

end while; // tions of p and s
if i = m+ 1 then // did we match all of p?
print “Found match at position” j

end if;
end for;

7

Figure 2: Improvement 1: Shift pattern by more than one position.

x a b x y a b x y a b x z

1 2 3 4 5 6 7 8 9 10 11 12 13

∗
a b x y a b x z

| | | | | | | ∗
a b x y a b x z

| | | | | | | |
a b x y a b x z

3.4 The Knuth–Morris–Pratt algorithm

Let’s look once more at Figure 1. Consider the situation after the second it-
eration. The naive algorithm goes on to try to match p starting at position 3
of s, even though by looking at the pattern, one can see that the next chance
to match p is at position 6, since no a occurs in s before that. A more intel-
ligent algorithm could use this information and skip the three comparisons
p(1)− s(3), p(1)− s(4), and p(1)− s(5) in between: See Figure 3.4.

Furthermore, the three comparisons p(1)− s(6), p(2)− s(7), and p(3)−
s(8) at the beginning of the last iteration are not necessary, since in the
second iteration, it has already been established that those positions of s
match positions 5, 6, and 7 of p. But p(1, 3) is identical to p(5, 7), and
therefore, s(6, 8) must also match p(1, 3).

In order to be able to use this kind of information, we have to take a
closer look at the pattern before we start the exact matching algorithm with
given s. A step like this, that goes before the main algorithm, working only
on one of the several inputs, is called preprocessing. In this case, we want
to preprocess the pattern. We need to gather information on p beforehand
that will allow us to introduce the two improvements while running an exact
matching algorithm on p and s.

Let us therefore forget s for a while, and just look at p. We define the
prefix–function π that takes as arguments positions of p and returns the
value by which we will have to shift the pattern if our last match was at this
position. Formally:

8

Figure 3: Improvement 2: Do not repeat comparisons where a match has
already been established in the previous iteration.

x a b x y a b x y a b x z

1 2 3 4 5 6 7 8 9 10 11 12 13

∗
a b x y a b x z

| | | | | | | ∗
a b x y a b x z

| | | | |
a b x y a b x z

π(i) = length of the longest prefix of p

that is identical to a proper suffix of p(1, i)

If there is no such prefix, we set π(i) = 0. In other words, given position
i, we want to know how long the longest prefix of p is that matches a proper
substring of s ending in position i. For example, the last match we found
in the second iteration was in position 7 of p, and we want to shift it by 3
positions. This is because the substring of p abx is the longest prefix of p
that also occurs ending in position 7 of p. Let us compute π for all positions
of p:

Figure 4: The prefix–function: π–values for pattern p

i 1 2 3 4 5 6 7 8

p(i) a b x y a b x z

π(i) 0 0 0 0 1 2 3 0

We will look more closely at the preprocessing step that computes π in
the next section. Given π, we can now formalize the Knuth–Morris–Pratt
(KMP) algorithm that employs both Improvement 1 and Improvement 2 of
the naive algorithm. The algorithm first tries to match the pattern p at the
first position of s. Then, if it finds a mismatch, it looks at the position in
p of the last match, i.e., one position back. Let’s call this position i. The

9

Figure 5: The shift in the Knuth–Morris–Pratt algorithm: The first mis-
match is printed in bold; i is the position in p of the last match. The
next comparison will be made between the mismatched position j in s and
position π(i) + 1.

j
x a b x y a b x y a b x z

1 2 3 4 5 6 7 8 9 10 11 12 13

. . .

| | | | | | | ∗
a b x y a b x z
1 2 3 4 5 6 7 8

π(i) i i+ 1

| | | | |
a b x y a b x z

π(i) + 1

algorithm then looks up the π–value of that position, π(i), and shifts the
pattern by i− π(i) or, if i− π(i) = 0, then by 1; rather than always shifting
it by 1 (Improvement 1). The next comparison it makes will be the last
mismatched position of s with the position in p just after the end of the
matching longest prefix, i.e., position π(i) + 1 (Improvement 2). After each
iteration, it continues in the same way. If it has not found a mismatch in
an iteration, i.e., if the whole pattern matches there, then instead of the
current position of s it will compare the next one in s after the appropriate
shift of p: See Figure 3.4.

We can now present a pseudo–code for the complete algorithm:

10

algorithm Knuth-Morris-Pratt

input: two strings p and s
preprocessing: compute prefix–function π for p

m := |p|; n := |s|; // length of input strings
if n < m then exit // reject stupid inputs
end if;
i := 0; j := 1; // pos. variables: i for p, j for s
while j < n−m+ i+ 1 do

while (i < m and p(i+ 1) = s(j)) do
i := i+ 1; j := j + 1;

end while; // Now i and j − 1 are pos.s
// of last match found.

if i = m then // did we match all of p?
print “Found match at position” j − i

end if;
if i = 0 then j := j + 1
else i := π(i) // shift p for next
end if; // iteration

end while;

Note: The pattern is never really “shifted”, i.e., no copying within the
computer takes place. The shifts are just for the visualization of the algo-
rithm.

How many comparisons does the Knuth–Morris–Pratt algorithm make?
We could go about the analysis the same way we did for the naive algorithm:
KMP goes through at most n − m + 1 iterations, and in each iteration it
makes at most m comparisons, yielding altogether at most m(n − m + 1)
comparisons. However, this analysis vastly overestimates the actual number
of comparisons of KMP.

Instead, let us split the comparisons into matches and mismatches. What
happens when a position of s is compared? If a match is found, then the
algorithm moves onto the next position of s. If a mismatch is found, the
algorithm shifts the pattern and compares the same position of s to a new
position of p. Note that the algorithm always advances with respect to the
current position of s it is working on: Once it has passed a position j of s,
every position k of s that is compared later on will be larger than j. So one
position of s may be compared several times, but once it is finished with, it

11

will never be looked at again. The total number of comparisons is

no. of comparisons = no. of matches + no. of mismatches.

The first number is at most n, since s has only n characters that can be
compared. The second number is equal to the number of iterations of the
algorithm, i.e., the number of times the pattern is shifted. This can happen
at most n−m+ 1 times, thus we have

no. of comparisons ≤ n+ (n−m+ 1) ≤ 2n.

Storage space is only required for storing the prefix–function π, which
has m entries. Thus, KMP requires m units of storage space, additionally
to the space needed for storing the input.

3.5 Preprocessing of the Knuth–Morris–Pratt algorithm

How do we compute the prefix–function π? We can do it in the following
way: First, generate a list of all proper prefixes of p. Next, for each i =
1, . . . ,m, compute every proper suffix of p(1, i) and check whether it is in
the prefix list. Choose the longest found in the prefix list and set π(i) equal
to its length. If none is found, set π(i) = 0.

This is a very inefficient procedure. Depending on the details of the
computation, both running time and storage space used will vary. However,
we will at least have to look up each substring of s ending in i in our prefix
list. Even if we count this lookup as one step (one comparison), it will result
in

m∑
i=1

no. of proper substrings of s ending in pos. i =

m∑
i=1

(i− 1)

=
m−1∑
i=1

i
see Section 5.2

=
m(m− 1)

2
=

m2

2
− m

2

steps. The storage space used will be at least the space for listing all
proper prefixes of p, and since there is one prefix of length 1, one of length
2, and so on until length m − 1, this will yield a storage space of at least∑m−1

i=1 i = m(m−1)
2 = m2

2 −
m
2 . Thus the running time and the storage space

are both proportional to m2 − m, while there are ways of computing the
prefix–function π in both time and space proportional to m (see e.g. [1]
or [4]).

We will take a closer look at measuring running time and storage space
of algorithms in Section 4.

12

3.6 Preprocessing

Many algorithms use some kind of preprocessing before they tackle the “big
job.” It is often useful to spend some time on preprocessing beforehand,
because typically, the preprocessing will only have to be done once, while
the information gathered there can be reused every time the main algorithm
is run. For this reason, running time and storage space of the preprocessing
step is measured separately from running time and storage space of the main
algorithm. Often, one is quite willing to put up with a fairly slow algorithm
for the preprocessing, if it allows for a very efficient main algorithm in return.

It may even be the case that an algorithm that has a preprocessing step
is more efficient than one that doesn’t, even if one adds up the running
time and storage space used both in the preprocessing step and the main
algorithm. This is the case for the Knuth–Morris–Pratt algorithm: If an
“intelligent” preprocessing is used, then the preprocessing and the main
algorithm taken together are still faster than the naive algorithm, and use
only little more storage space.

In the exact matching problem, one can either preprocess the pattern or
the string, depending on the use the algorithm will be put to. For exam-
ple, if one wants to compare a particular pattern many times, then it can
make sense to preprocess the pattern. On the other hand, database search
algorithms, where the goal is to find an exact match in a large database of
strings, will usually preprocess the database, i.e., the text in our terminology.

3.7 Problems

1. Answer at least two of the following. First try out small examples and
then try to generalize your findings to a formula in n.

(a) What is the maximum number of non–empty substrings a string
s of length n can have?

(b) (*) What is the maximum number of non–empty subsequences a
string s of length n can have?

(c) What is the number of prefixes of a string s of length n? And
the number of proper prefixes?

(d) What is the number of suffixes of a string s of length n? And the
number of proper prefixes?

(e) Given an alphabet of size c (i.e., there are c different characters),
how many different strings of length n are there?

13

2. List all comparisons the naive algorithm makes for p = 0001 and s =
000010001010001 (source: [1]).

3. (*) What is the worst–case time of the naive algorithm for finding the
first occurrence of p (as opposed to finding all occurrences)?

4. Compute π for p = ababbabbababbababbabb (source: [1]).

5. (a) Work out how many comparisons the KMP–algorithm makes for
Example 3.4.

(b) How many comparisons could it make on inputs of the same size,
i.e. |p| = 9 and |s| = 13?

(c) Try to find a bad pair of p and s that would force the algorithm
to make many comparisons.

4 Algorithm Analysis

The efficiency of an algorithm is measured in two different values: its running
time, and its storage space requirements (short: time and space). In addi-
tion, if the algorithm has a preprocessing step, like the KMP exact matching
algorithm, then one can split the analysis into the time and space required
for the preprocessing, and the time and space required for the main algo-
rithm. Storage space is usually measured in addition to the storage space
required for storing the input. Both time and space are measured relative to
the input size. The reason is that one expects an algorithm to take longer
and use up more space when it is working on a large input than on a small
one. E.g., it is not surprising if the same algorithm takes more time and
uses more space when it is matching a pattern p of length 1000 against a
text s of length 1000000, than when p has length 5 and s length 20. The
crucial question is how much more.

There are two principal ways to analyze time and space requirements
of an algorithm: worst–case analysis and average–case analysis. In worst–
case analysis, one wants to find an upper bound on the requirements of the
algorithm: If the algorithm has worst–case running time, say, m(n−m+1),
then we know that it will never make more steps than m(n−m+1), whatever
the input. Thus, this yields a guarantee that we will never have to wait longer
than m(n−m+ 1) steps. In average–case analysis, one is interested in how
long the algorithm takes on average. Algorithms may have bad worst–case
time, but still run pretty fast most of the time. However, one may be unlucky
and have an input that the algorithm will spend much more time on that

14

its average–case running time. Average–case analysis requires assumptions
about the probability distribution of the inputs (do all inputs occur with the
same probability or do these differ?), and is thus much more complicated
than worst–case analysis.

We will discuss worst–case analysis only.

4.1 Big–O–notation

Consider three algorithms A, with running time n, B, with running time n2,
and C, with running time 2n. If we have an input of size 10, then A will
do 10 steps, B will need 100 steps, and C 210 = 1024 steps. Now we want
to run it on an input twice the size of the first one, i.e., of size 20. A will
need 20 steps, B will need 400, and C will run in time 220 = 1048576. The
running time of A has doubled, that of B has quadrupled, and that of C has
squared (i.e., 220 = (210)2)!

Now let’s look at algorithms A′, running in 3n steps, B′, that needs
2n2 steps, and C′, with running time 1

42n. The running times on an input
of size 10 will be 30, and 200, and 256, respectively. On an input of size
20, the algorithms will run in 60, 800, and 262144 steps, respectively. I.e.,
doubling the size of the input has doubled the running time of algorithm
A′, quadrupled that of B′, and more than squared that of C′. In fact, the
running time of C′ on input size 20 is 4 times the square of that on input
size 10.

The so–called O–notation has been introduced to be able to make state-
ments about the order of growth of functions, or their asymptotic behaviour
(i.e., what happens when n becomes very large). The idea is first, to get rid
of constant factors such as the 3 in 3n2, and second, to be able to concen-
trate on those terms that dominate the growth behaviour of a function. For
example, given an algorithm with running time 5n2 + 15n + 4, then, when
n grows large, both terms 15n and 4 become negligible in comparison with
the term 15n2 (try n = 100000).

Definition 4.1 (O-classes). Given a function f : N → R, then O(f(n)) is
the class (set) of all functions g(n) with the following property:

There exist c > 0 and n0 ∈ N such that for all n ≥ n0 : g(n) ≤ c · f(n).

Example 4.1. 10n+ 5 ∈ O(n2).
Proof: Choose c = 1 and n0 = 11. We have to show that for all n ≥ n0,
10n+ 5 ≤ 1 · n2.

10n+ 5
since n ≥ 5
≤ 11n

since n ≥ 11
≤ n2.

15

Actually, one can be very generous with both the constant c and the
bound n0. In the last example, we could also have used c = 1 and n0 = 15:

10n+ 5
since n ≥ 1
≤ 10n+ 5n = 15n

since n ≥ 15
≤ n2.

Lemma 4.2. 6 For any function f and any positive number C: If g(n) =
C · f(n), then g(n) ∈ O(f(n)).

Proof. Choose c = C and n0 = 1. Then, g(n) = C · f(n) ≤ c · f(n), as
required.

Lemma 4.3. If for all n, g(n) ≤ f(n), then g(n) ∈ O(f(n)).

Proof. Choose c = 1 and n0 = 1.

Note that the converse is not true: e.g., 2n2 ∈ O(n2) (choose c = 2 and
n0 = 1, or use Lemma 4.2). However, 2n2 is larger than n2 for all values of
n.

Example 4.2. 5n2 ∈ O(2n).
Proof: We have to find c and n0 such that for all n ≥ n0:

5n2 ≤ c · 2n.

If we choose c = 5, then we still need to show n2 ≤ 2n. But this is true
for all n ≥ 4, so choosing c = 5 and n0 = 4 will do.

It is a little more tricky to show that a function is not in a particular
O–class:

Example 4.3. n2 /∈ O(n).
Proof: Assume otherwise. Then there exist c > 0 and n0 ∈ N such that for
all n ≥ n0: n2 ≤ c · n. Now choose n1 := max(n0 + 1, dce + 1). (For a
positive real number x, dxe is defined as the smallest integer greater than
or equal to x.) Then n1 > c by definition. However, since n1 ≥ n0, it must
hold that n21 ≤ c ·n1. This implies c ≥ n1, yielding a contradiction to c < n1.

Example 4.4. 5n2 + 3n − 5 ∈ O(n2). Proof: Choose c = 8 and n0 = 1.
Then

5n2 + 3n− 5 ≤ 5n2 + 3n ≤ 5n2 + 3n2 = 8n2.

In fact, the following lemma holds. I will skip the proof; it is simple but
technical.

6A lemma is a technical theorem that is typically used to prove “big” theorems.

16

Lemma 4.4. If g(n) ∈ O(f(n)), then f(n) + g(n) ∈ O(f(n)).

Note that a function such as f(n) = 5 is also a function of n. It is a
constant function, because it does not change with n. For example, if an
algorithm uses 5 units of storage space, independent of the input size, then
we say that it uses constant space, or O(1) space.

4.2 Important O–classes

Here is a list of the most important functions, ordered by increasing O–
classes. Each function fi is in the O–class of the next function fi+1, but
fi+1(n) /∈ O(fi(n)).

1 log logn logn
√
n n n logn n2 n3 2n n! nn

cons- loga- linear quad- cubic expo-
tant rith- ratic nen-

mic tial
polynomial (of the form nc for some constant c)

(all except n logn are polynomials)
F E A S I B L E not feasible

In actual fact, an algorithm that has running time, say, n1000, would
not be considered useful, even though it counts as polynomial–time from a
theoretical point of view. In real life, one doesn’t really want algorithms
whose running time is not, say, in O(n4). Another point to note is that even
though any function of the form c ·f(n) is in O(f(n)), if c is very large, then
an algorithm with running time c · f(n) may not be practical. For example,
an algorithm with running time 100000n2 is quadratic in theory, but will in
practice often not be considered quadratic. The reason is that for values of
n smaller than 100000, this algorithm has, in fact, at least cubic running
time: if n ≤ 100000, then 100000n2 ≤ n3. Just be careful when you are
“dropping the constants” that they are not too large!

4.3 Analysis of the exact string matching algorithms

In Section 3, we looked in detail at two algorithms for the Exact String
Matching Problem. Our inputs were two strings of length n and m. We
found that the naive algorithm takes at most m(n−m+ 1) steps and uses
no storage space (additional to the that needed for storing the two strings).
The Knuth–Morris–Pratt algorithm needed at most 2n steps, and used m
units of storage space, for storing the prefix–function π.

Note that we now have two input sizes that we want to be able to relate
to the time and space requirements of our algorithm: n, the size of the text,

17

and m, the size of the pattern. We can resolve this in one of two ways:
Either, we include both in our O–classes, or we note that since m ≤ n, we
can substitute n wherever we have m, since this will at most increase the
function.

We are now able to state the efficiency of our algorithms in terms of O–
classes: The naive algorithm has running time O(n ·m), and uses constant
storage space. The KMP–algorithm has running time O(n) and uses O(m)
additional storage space. As mentioned in that section, the preprocessing
step of KMP can be done very efficiently, namely in time O(m) and space
O(m). Thus, preprocessing and main algorithm of KMP put together have
O(n+m) running time and O(m) storage space, which is much faster than
naive algorithm and uses only little more space.

In terms only of n, this works out to: The naive algorithm has running
time O(n2) and constant storage space. The KMP–algorithm has running
time and storage space O(n). Thus, the one is a quadratic–time algorithm,
and the other a linear–time algorithm.

4.4 Problems

1. Which of the following statements is correct? (multiple checks possi-
ble)
2 n2 ∈ O(n3) 2 n3 ∈ O(n2) 2 2n ∈ O(nk) 2 n2 + n ∈ O(n2)

2. Let k = 2x, what is x then? (multiple checks possible)
2 x = log2(k) 2 x = 2k 2 x = ln(k)/ ln(2)

3. (*) The function f(n) is defined recursively as f(1) = 1 and f(n) =
n + f(n/2) for n = 2k, k ∈ N. Which of the following statements is
correct? (multiple checks possible)

2 f(8) = 16 2 f(n) =
∑k

i=0 2i 2 f(n) = 2n− 1 2 f(n) = 2n − 1

4. Let f(n) =
∑n

i=1 i. Then f(n) grows
2 linearly 2 quadratically 2 exponentially in n.

5. What is the smallest value of n such that an algorithm whose running
time is 100n2 runs faster than an algorithm whose running time is 2n

on the same machine? (source: [1])

6. Order the following functions in “O–increasing” order, i.e., produce a
list f1, f2, . . . , fn such that, for all i = 1, . . . , n− 1: fi ∈ O(fi+1).

(a) 2logn, n2, n!, 2n, n3+n+15,
√
n, log n, n42 , 5, log logn, n log n

18

(b) (*) Now insert the following functions into your list of part (a)
(multiple answers possible): 5n, nn, 4n, lnn, n3, 37n, 37, 2n+1, 22n

5 Basic Combinatorics

In this section, we look at important numbers that come up frequently in
algorithm analysis.

5.1 Exponentiation and logarithms

What is the number of different strings of length n? Obviously, this depends
on the number of letters in the alphabet. Let |Σ| = c. Then, there are cn

different strings of length n over Σ: You have c choices for the first letter,
c choices for the second, c choices for the third, and so on. Thus, when
working with a binary alphabet (an alphabet of size 2), e.g. Σ = {0, 1},
then there are 2n strings of length n.

If k = 2n, then n = log2 k.

In computer science, one normally just writes log x, meaning log2 x. The
natural logarithm, the logarithm to the base e, is denoted lnx. Note that
two logarithms of the same number x to different bases differ only by a
multiplicative constant, namely

loga x =
ln b

ln a
· logb x.

Proof. Let’s set y := ln b
ln a · logb x. We want to show that loga x = y. This is

the case if and only if ay = x. Let us write a = eln a.

ay = (eln a)y = eln a·y = eln a ln b
ln a

logb x = eln b·logb x = (eln b)logb x = blogb x = x.

The number 2n occurs frequently in combinatorics, since it is the total
number of subsets of a given set S with n elements. Thus, the set {a, b, c} has
23 = 8 different subsets7: ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, and {a, b, c}.
Likewise, the number of different subsequences of a string s with length
|s| = n is 2n − 1: A subsequence t of s with length |t| = m is defined by
the positions i1 < i2 < . . . < im. This is equivalent to saying that for

7∅ denotes the empty set

19

each position i of s, we either choose that position to be a character of t or
don’t, yielding 2 choices for each position. Since we are excluding the empty
string, we have to deduct 1 from this number. Note the growth behaviour
of function f(n) = 2n: Increasing n by 1 will double the value of f(n), since
2n+1 = 2 · 2n.

5.2 Sum of the first n consecutive integers

Let s be a string of length n. How many different non–empty substrings
can s have? Let’s classify the substrings according to their lengths: s has
one substring of length n, namely itself. It has at most two substrings of
length n − 1, namely s(1, n − 1) and s(2, n). “At most” because these two
could also be identical, as in s = aaa. Likewise, it has at most 3 different
substrings of length n − 2, etc., down to at most n different substrings of
length 1. Thus, this adds up to 1 + 2 + . . . + n =

∑n
k=1 k. We have a nice

formula for this sum:

n∑
k=1

k =
n(n+ 1)

2

The proof is due to Johann Carl Friedrich Gauss (German mathemati-
cian, 1777–1855) who came up with this formula as a child. For the proof
write down all numbers from 1 to n twice, once in increasing and once in
decreasing order:

1 2 3 n− 1 n
n n− 1 n− 2 2 1

n+ 1 n+ 1 n+ 1 n+ 1 n+ 1

Adding up each column will result in the sum n+ 1. There are n pairs,
so we get a total of n(n+ 1). This is twice the sum we are looking for, since

we now added each number twice, so the original sum evaluates to n(n+1)
2 .

5.3 n factorial

In how many different ways can one arrange the letters of the word SCRAMBLE?
Let’s say we first decide which letter to put in the first position: We have
8 choices. For each of these choices we have 7 letters to choose from for
the second position, etc., until we still have 2 choices, for the second to
last position, and only one letter left for the last. Altogether, this gives us

20

8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 8! = 40320 possibilities. In general, n! (pronounce:
n factorial) is defined as

n! := n(n− 1)(n− 2) · · · 3 · 2 · 1

By definition, we set 0! := 1. Note that n! grows very fast with increasing
n: 2! = 2, 3! = 6, 4! = 24, 5! = 120, 6! = 720, 7! = 5040, 8! = 40320. Indeed,
it is easy to see that n! grows at least exponentially in n:

Lemma 5.1. For all n ≥ 4, 2n ≤ n! ≤ nn.

Proof. We prove the two inequalities separately. First, look at the second
and third terms. Since we have the same number of (positive) factors on
both sides, and each one on the left is smaller than or equal to its counterpart
on the right, we can deduce that the product on the left is smaller than or
equal to the product on the right:8

n! = n(n− 1)(n− 2) · · · 2 · 1︸ ︷︷ ︸
n factors

≤ n · n · · ·n︸ ︷︷ ︸
n factors

= nn

Now to the second inequality in Lemma 5.1: Again, we have n factors
on each side, and we want to show that:

2 · 2 · · · 2 ≤ n(n− 1)(n− 2) · · · 2 · 1.

Since n ≥ 4, each of the factors on the right is greater than or equal to
its counterpart on the left, except for the last one, which is 2 on the left and
1 on the right. However, n

2 ≥ 2, since n ≥ 4, and thus

2 · 2 · · · 2︸ ︷︷ ︸
(n−1) times

≤ n

2
(n− 1)(n− 2) · · · 2 multiply both sides by 2

⇒ 2 · 2 · · · 2︸ ︷︷ ︸
n times

≤ n(n− 1)(n− 2) · · · 2 · 1

⇒ 2n ≤ n!

and we are done.

8In general terms: For positive numbers a1, a2, . . . , an, b1, b2, . . . , bn: If for all i =
1, . . . , n, ai ≤ bi, then a1 · a2 · · · an ≤ b1 · b2 · · · bn.

21

5.4 Binomial coefficients

Given a group of n people, if each two are going to shake hands, how many
handshakes will there be altogether? For 2 people, it is 2 handshakes, for 4,
there will be 6, and for 10 people, 45 handshakes. The question is this: How
many different pairs of people are there in a group of n? Say, we choose the
first one: we have n choices. Now we have still to choose the second person
he or she is going to shake hands with: n − 1 choices. This would give us
n(n − 1) pairs. However, now we have counted each handshake twice: if
person A and B are shaking hands, then we have counted (A,B) and (B,A)
separately. Thus, we have to divide the number n(n − 1) by 2: There will

be
(
n
2

)
:= n(n−1)

2 handshakes. In general,(
n

k

)
:=

n!

k!(n− k)!

is the number of k–sets in an n–sets, i.e., given a set S with n elements,(
n
k

)
is the number of different subsets of S that have exactly k elements.9

For example,
(
49
6

)
is the number of different combinations you can put on

a lotto slip, so your chances of winning are 1

(496)
, which is about one in 2

million!
We can now give a second proof for the fact that a string s of length n can

have at most n(n+1)
2 substrings. First note that we can find all substrings of s

by looking at all pairs of positions (i, j) where 1 ≤ i ≤ j ≤ n: the beginning
and end of the substring. E.g., if s = babbbc, then the pair (1, 2) will yield
ba, the pair (2, 6), abbbc, etc. Again, two different pairs of positions will
not necessarily yield different substring, as can be seen by (3, 4) and (4, 5)
both yielding bb, so we are merely getting an upper bound on the number
of substrings. How many of these pairs (i, j) are there? Distinguish two
cases: i = j, these are the substrings of length 1, and i < j, those with
length greater than 1. Clearly, there are n different pairs of the first type,
namely (1, 1), (2, 2), . . . , (n, n). For the second type, we have to choose two
different positions between 1 and n, i.e., we have to choose two elements
from a set of n elements. Thus, there are

(
n
2

)
= n(n−1)

2 pairs of the second
type. Altogether, we get

no. of substrings of s = n+
n(n− 1)

2
=

2n+ n(n− 1)

2
=

(n+ 1)n

2
.

9
(
n
k

)
is pronounced “n choose k.”

22

5.5 Further useful formulas

Here follow a few formulas involving the numbers introduced. The proofs
can be found in any introductory book on combinatorics.

1. Pascal–triangle equality:
(
n
k

)
+
(

n
k−1
)

=
(
n+1
k

)
.

2. Symmetry of binomial coefficients:
(
n
k

)
=
(

n
n−k
)
.

(Hint: Look at the definition.)

3. Binomial theorem: For a, b ∈ R: (a+ b)n =
∑n

k=0

(
n
k

)
akbn−k.

4. Sum of binomial coefficients:
∑n

k=0

(
n
k

)
= 2n.

(Hint: Use the binomial theorem with a = b = 1.)

5. Sum of consecutive powers of 2:
∑n

i=0 2i = 2n+1 − 1.

5.6 Problems

1. Say, the dean specifies that each student should take exactly 4 of the 7
courses offered. The lecturers report the following numbers of students
who subscribed to their course: 51, 30, 30, 20, 25, 12, and 18. What does
this tell us? (source: [2]).

2. (*) There are 151 seats in a country’s parliament, and 3 parties A, B,
and C. How many different distributions of seats are possible that ex-
clude an absolute majority10 of any party. (source: [2]) (Note: We
count the seat distribution (40, 60, 51), meaning that party A has
40 seats, party B 60, and party C 51, as different from the case
(60, 40, 51).)

3. How many different words can be built by using all the letters of the
word ALGORITHM exactly once? Compute the actual value.

4. (*) How many different words can be built by using all the letters of
the word ABRACADABRA exactly once? (source: [2]) You do not need
to compute the actual value. How does this compare to the number
of words that can be built using all letters exactly once of the word
COPYRIGHTED?

10absolute majority: more than half of the seats, in this case 75.

23

6 Individual Projects

The aim of having each student present an algorithm is twofold: Firstly,
the presenter learns to analyze an algorithm independently. Secondly, all
students learn about important concepts in a short time. It is therefore
important to insist that the students prepare handouts. Each presenta-
tion should include an example. The presentations should take at most 30
minutes each. Note: All these sorting algorithms and the binary search al-
gorithm are described in any algorithms book or any introductory computer
science book. In addition, there are lots of descriptions on the web, includ-
ing many nice animations that can be very helpful in understanding how
the algorithms work.

1. Explain and analyze the Bubble Sort algorithm. When analyzing the
running time, first count the number of comparisons and swaps sepa-
rately, and then add them up.

2. Explain and analyze the Selection Sort algorithm. When analyzing
the running time, first count the number of comparisons and swaps
separately and then add them up.

3. Explain and analyze the Insertion Sort algorithm. When analyzing
the running time, first count the number of comparisons and swaps
separately and then add them up.

4. Explain and analyze Binary Search. When analyzing running time,
count the number of comparisons.

5. Explain in detail and analyze the simple (inefficient) preprocessing of
the Knuth–Morris–Pratt algorithm.

6. (*) Explain and analyze the intelligent preprocessing of the KMP–
algorithm. Note: Use [1] for preparing this presentation. The prepro-
cessing is also explained in [4], but a slightly different prefix–function is
used. Do not browse the web to find other preprocessing algorithms,
because there are many different ones out there, all called Knuth–
Morris–Pratt, and it will only confuse the other students.

24

7 Conclusion

An algorithm is a recipe for solving a certain type of problem. Given an
algorithm, after having checked its correctness (does it do what it should?)
and whether it terminates (does it always stop?), one needs to analyze its
efficiency (how efficiently does it do the job?). Efficiency is measured in
running time and storage space requirements, measured relative to the input
size. If the algorithm has a preprocessing phase, then time and space of
the preprocessing and time and space of the main algorithm are measured
separately. Worst–case analysis delivers an upper bound on these values:
The algorithm is guaranteed to take at most this number of steps and this
much storage space, on any input of a given size.

This upper bound is given in form of a function of n, if n is the input size.
One is mainly interested in the growth behaviour of these functions, thus we
express them using O–classes. The most important classes are, in increas-
ing order: constant (O(1)), logarithmic (O(log n)), linear (O(n)), n log n
(O(n log n)), quadratic (O(n2)), cubic (O(n3)), and exponential (O(2n)).
Classes of the form O(nc) are called polynomial classes, and algorithms
with running time O(nc) are called polynomial–time algorithms. In real
life, only those polynomial–time algorithms are considered efficient whose
running time and storage space is O(nc) with c small, say, not greater than
4.

References

[1] Thomas H. Cormen, Charles E. Leiserston, Ronald L. Rivest, Introduc-
tion to Algorithms. MIT Press and McGraw–Hill, 1990.

[2] Martin Aigner, Diskrete Mathematik. Vieweg, 1996.

[3] João Setubal and João Meidanis, Introduction to Computational Molec-
ular Biology. PWS Boston, 1997.

[4] Dan Gusfield, Algorithms on Strings, Trees, and Sequences. Cambridge
University Press, 1997.

25

