Algorithms for Computational Biology

Zsuzsanna Liptak

Masters in Molecular and Medical Biotechnology
a.a. 2015/16, fall term

Computational efficiency |

Computational Efficiency

As we will see later in more detail, the efficiency of algorithms is measured
w.r.t.

e running time: how long does it take?
e storage space: how much memory in the computer does it occupy?

We will make these concepts more concrete later on, but for now want to
give some intuition, using an example.

3/20

Example: Computation of nth Fibonacci number

Leonardo Fibonacci (1170 - 1240)
a.k.a. Leonardo of Pisa

Fibonacci numbers: model for growth of populations (simplified model)

e Start with 1 pair of rabbits in the field

This unrealistic assumption simplifies the mathematics; however, it turns out that
adding a certain age at which rabbits die does not significantly change the behaviour of
the sequence, so it makes sense to simplify.

4/20

$
FIVE CHEESY TORTILA VAT GEEKS SHoULONC Y BE ALLOWED
. ‘ ANYWHERE NEAR CERTAIN F00DS.
) wnaTs waong wimy ) TSE'RE ony 12
BoNACH0S S LEFT..Now WHAT?

B et
SO e O |

HA
o
& L

2/20

Example: Computation of nth Fibonacci number

Leonardo Fibonacci (1170 - 1240)

a.k.a. Leonardo of Pisa

Fibonacci numbers: model for growth of populations (simplified model)

IThis unrealistic assumption simplifies the mathematics; however, it turns out that
adding a certain age at which rabbits die does not significantly change the behaviour of
the sequence, so it makes sense to simplify.

4/20

Example: Computation of nth Fibonacci number

Leonardo Fibonacci (1170 - 1240)
a.k.a. Leonardo of Pisa

Fibonacci numbers: model for growth of populations (simplified model)

e Start with 1 pair of rabbits in the field
e each pair becomes mature at age of 1 month and mates

!This unrealistic assumption simplifies the mathematics; however, it turns out that
adding a certain age at which rabbits die does not significantly change the behaviour of

the sequence, so it makes sense to simplify.
4/20



Example: Computation of nth Fibonacci number

Leonardo Fibonacci (1170 - 1240)
a.k.a. Leonardo of Pisa

Fibonacci numbers: model for growth of populations (simplified model)
e Start with 1 pair of rabbits in the field

e each pair becomes mature at age of 1 month and mates
o after gestation period of 1 month, a female gives birth to 1 new pair

LThis unrealistic assumption simplifies the mathematics; however, it turns out that
adding a certain age at which rabbits die does not significantly change the behaviour of
the sequence, so it makes sense to simplify.

4/20

Example: Computation of nth Fibonacci number

Leonardo Fibonacci (1170 - 1240)
a.k.a. Leonardo of Pisa

Fibonacci numbers: model for growth of populations (simplified model)
e Start with 1 pair of rabbits in the field
e each pair becomes mature at age of 1 month and mates
e after gestation period of 1 month, a female gives birth to 1 new pair
e rabbits never die!
Definition
F(n) = number of pairs of rabbits in field at the beginning of the nth
month.

This unrealistic assumption simplifies the mathematics; however, it turns out that
adding a certain age at which rabbits die does not significantly change the behaviour of
the sequence, so it makes sense to simplify.

4/20

The nth Fibonacci number

F(n) = number of pairs of rabbits in field
at beginning of the nth month.

e month 1: there is 1 pair of rabbits in the field F(1)=1
e month 2:

Example: Computation of nth Fibonacci number

Leonardo Fibonacci (1170 - 1240)
a.k.a. Leonardo of Pisa

Fibonacci numbers: model for growth of populations (simplified model)
e Start with 1 pair of rabbits in the field

e each pair becomes mature at age of 1 month and mates

o after gestation period of 1 month, a female gives birth to 1 new pair

o rabbits never die!

LThis unrealistic assumption simplifies the mathematics; however, it turns out that
adding a certain age at which rabbits die does not significantly change the behaviour of

the sequence, so it makes sense to simplify.
4/20

The nth Fibonacci number

F(n) = number of pairs of rabbits in field
at beginning of the nth month.

e month 1:

The nth Fibonacci number

F(n) = number of pairs of rabbits in field
at beginning of the nth month.

e month 1: there is 1 pair of rabbits in the field F(1)=1
e month 2: there is still 1 pair of rabbits in the field F(2)=1

e month 3:



The nth Fibonacci number The nth Fibonacci number

F(n) = number of pairs of rabbits in field F(n) = number of pairs of rabbits in field

at beginning of the nth month. at beginning of the nth month.

month 1: there is 1 pair of rabbits in the field F(1)=1 e month 1: there is 1 pair of rabbits in the field F(1)=1
month 2: there is still 1 pair of rabbits in the field F(2)=1 e month 2: there is still 1 pair of rabbits in the field F(2)=1
month 3: there is the old pair and 1 new pair FB)=1+1=2 e month 3: there is the old pair and 1 new pair F3)=1+1=2

month 4: e month 4: the 2 pairs from previous month, plus
the old pair has had another new pair F(4)=2+1=3
e month 5:
5/20 5 /20
The nth Fibonacci number The nth Fibonacci number

F(n) = number of pairs of rabbits in field F(n) = number of pairs of rabbits in field

at beginning of the nth month. at beginning of the nth month.

month 1: there is 1 pair of rabbits in the field F(1)=1 e month 1: there is 1 pair of rabbits in the field F(1)=1
month 2: there is still 1 pair of rabbits in the field F(2)=1 e month 2: there is still 1 pair of rabbits in the field F(2)=1
month 3: there is the old pair and 1 new pair FB)=1+1=2 e month 3: there is the old pair and 1 new pair FB3)=1+1=2

month 4: the 2 pairs from previous month, plus month 4: the 2 pairs from previous month, plus

the old pair has had another new pair F(4)=2+1=3 the old pair has had another new pair F(4)=2+1=3
month 5: the 3 from previous month, plus month 5: the 3 from previous month, plus

the 2 from month 3 have each had a new pair F(5)=3+2=5 the 2 from month 3 have each had a new pair F(5)=3+2=5

Recursion for Fibonacci numbers
F(1)=F(2)=1
forn>2: F(n)=F(n—1)+ F(n—2).

5/20 5 /20
The nth Fibonacci number The nth Fibonacci number
MNumber
) of pairs
8y
8 1 The first few terms of the Fibonacci sequence are:
1
88 88 2 n[1 23456 7 8 91011 12 13 14
F(n‘l 1 2 3 5 8 13 21 34 55 89 144 233 377

g8 40U
asaa&i@ass

=

source: Fibonacci numbers and nature
(http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html)



The nth Fibonacci number

The first few terms of the Fibonacci sequence are:

a1 2 3 456 7 8 9 10 11 12 13 14

F(n)[1T 1T 2 3 5 8 13 21 34 55 89 144 233 377
n| 15 16 17 18 19 20 21 22 23
F(n)| 610 987 1597 2584 4181 6765 10946 17711 28657
7/20

Fibonacci numbers in nature

8 spirals left

13 spirals right

source: Plant Spiral Exhibit

(http://cs.smith.edu/ phyllo/Assets/Images/Expolmages/ExpoTour/index.htm)

Growth of Fibonacci numbers

Theorem
For n>6: F(n) > (1.5)" 1.

9/20

11/ 20

Theorem

Fibonacci numbers in nature

21 spirals left

34 spirals right

source: Plant Spiral Exhibit
(ttp://cs.smith.edu/ phyllo/Assets/Images/Expolmages/ExpoTour/index.htm)

On these pages it is explained how these plants develop. Very interesting!

8/20

Fibonacci numbers in nature

21 spirals left

13 spirals right

source: Fibonacci numbers and nature
(http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html)

very nice page! recommended!

10 / 20

Growth of Fibonacci numbers

For n>6: F(n) > (1.5)""%.

G/

11 /20



Growth of Fibonacci numbers

Theorem
For n>6: F(n) > (1.5)" L.

nf1 2 3 4 5 6 7
F(n)|1 1 2 3 5 8 13
(3/2)"1]1 15 225 3375 ~5.06 ~7.59 ~11.39
n 8 9 10 11 12 13 14
F(n) 21 34 55 89 144 233 377
(3/2)" 1] ~17.09 ~25.63 ... ... ... ... ~194.62

~: rounded to two decimals

1/20

Growth of Fibonacci numbers

Theorem
For n>6: F(n) > (1.5)" L.

Proof:

Note that from n = 3 on, F(n) strictly increases, so for n > 4, we have
F(n—1) > F(n—2). Therefore, F(n—1) > 3F(n), since
F(n)=F(n—1)+ F(n—2).

We prove the theorem by induction:

Base: For n =6, we have F(6) = 8 > 7.59375 = (1.5)°.

Step: Now we want to show that F(n+1) > (1.5)". By the I.H. (induction
hypothesis), we have that F(n) > (1.5)"". Since F(n — 1) > 0.5F(n), it follows
that F(n+1) = F(n) + F(n—1) > 1.5- F(n) > (1.5) - (1.5)"~* = (1.5)".

12/20

Growth of Fibonacci numbers

Theorem
For n>6: F(n) > (1.5)"7L.

Question:
Why is this interesting?

Answer:
Because it means that the Fibonacci numbers increase exponentially.

e 1.5""1 has exponential growth (in n)
e base: 1.5 (greater than 1)
e exponent: n—1

We will come back to this later.

13 /20

Growth of Fibonacci numbers

Theorem
For n>6: F(n) > (1.5)"L.

12 /20

Growth of Fibonacci numbers

Theorem
For n>6: F(n) > (1.5)"L.

Question:
Why is this interesting?

13 /20

Computation of nth Fibonacci number

Def: F(1) = F(2) =1, and
n>2 F(n)=F(n—1)+ F(n—2).

Algorithm 1 (let’s call it fibl) works exactly along the recursive definition:

Algorithm fibl(n)

1. ifn=1lorn=2
2 then return 1

3. else

4 return fibl(n — 1) + fibl(n — 2)

14 /20



Computation of nth Fibonacci number

Analysis

(sketch) Looking at the computation tree, we can see that the tree for
computing F(n) has F(n) many leaves (show by induction), where we
have a lookup for F(2) or F(1). A binary rooted tree has one fewer
internal nodes than leaves (see second part of course, or show by
induction), so this tree has F(n) — 1 internal nodes, each of which entails
an addition. So for computing F(n), we need F(n) lookups and F(n) — 1
additions, altogether 2F(n) — 1 operations (additions, lookups etc.).

The algorithm has exponential running time, since it makes 2F(n) — 1, i.e.
at least 2 (1.5)" ! — 1 steps (operations).

15 /20

Computation of nth Fibonacci number

Algorithm 3 (let’s call it fib3) computes F(n) iteratively, like Algorithm 2,
but using only 3 units of storage space.

Algorithm fib3(n)

1. inta,b,c;

2. a+1; b+ 1, c+1;
3. fork=3...n

4. do c < a+ b;

5. a<+ b, b+
6. return c;

Analysis

(sketch) Time: same as Algo 2. Uses 3 units of storage (called a, b, and
¢).—The algorithm has linear running time and constant storage space.

17 /20

Summary

o We saw 3 different algorithms for the same problem (computing the
nth Fibonacci number).
e They differ greatly in their efficiency:
e Algo fibl has exponential running time.
e Algo fib2 has linear running time and linear storage space.
e Algo fib3 has linear running time and constant storage space.
e We saw on an example computation (during class) that exponential
running time is not practicable.

19 /20

Computation of nth Fibonacci number

Algorithm 2 (let's call it fib2) computes every F(k), for k =1...n,
iteratively (one after another), until we get to F(n).

Algorithm fib2(n)
1. array of int F[1...n];

2. Fll« 1 F2l < 1;

3. fork=3...n

4 do F[K] « F[k — 1] + F[k — 2];
5. return F[n];

Analysis
(sketch) One addition for every k = 1,...,n. Uses an array of integers of
length n.—The algorithm has linear running time and linear storage space.

16 / 20
Comparison of running times

nfl 2 3 45 6 7 10 20 30 40

F(n)f1 1 2 3 5 8 13 55 6765 832040 102334155

fibl{1 1 3 5 9 15 25 109 13529 1664079 204668309

fib2]1 2 3 4 5 6 7 10 20 30 40

fib3]1 2 3 4 5 6 7 10 20 30 40

The number of steps each algorithm makes to compute F(n).

18 /20

Summary (2)

Take-home message

There may be more than one way of computing something.

It is very important to use efficient algorithms.

Efficiency is measured in terms of running time and storage space.

Computation time is important for obvious reasons: the faster the
algorithm, the more problems we can solve in the same amount of
time.

In computational biology, inputs are often very large, therefore storage
space is at least as important as running time: if you run out of
storage space, you cannot complete the computation.

20 /20



