Salce's Lemma II

IVO HERZOG
The Ohio State University

PATHS 2024 May 13 - 17, 2024 Cetraro, ITALY

Outline

- 1 The Mono-Epi Exact Structure on Arrows
- 2 Extension of Ideals
- **3** Cophantom Morphisms
- 4 Adjustment of Splittings

Exact Categories

Definition: Exact Category

An exact category $(A; \mathcal{E})$ consists of an additive category A together with a distinguished class \mathcal{E} of kernel-cokernel pairs, denoted

$$A \longrightarrow B \longrightarrow C$$
,

closed under isomorphism and satisfying:

- every identity morphism is an inflation and a deflation;
- 2 inflations, resp., deflations, are closed under composition; and
- ${\bf 3}$ ${\bf \mathcal{E}}$ is closed under pullbacks and pushouts.

Every additive category $\mathcal A$ may be equipped with the trivial exact structure $(\mathcal A;\mathcal E_0)$ whose conflations are the trivial (split) kernel-cokernel pairs.

The Exact Category of Arrows

If $(A; \mathcal{E})$ is an exact category, then the category Arr(A) of arrows may be endowed with an exact structure $Arr(\mathcal{E})$ so that the conflations are of the form

$$0 \longrightarrow B \longrightarrow C \longrightarrow A \longrightarrow 0$$

$$\downarrow g \qquad \qquad \downarrow h \qquad \qquad \downarrow f$$

$$0 \longrightarrow Y \longrightarrow Z \longrightarrow X \longrightarrow 0$$

Every such conflation of arrows admits a pushout-pullback factorization

$$0 \longrightarrow B \longrightarrow C \longrightarrow A \longrightarrow 0$$

$$\downarrow g \qquad \downarrow h_1 \qquad \parallel$$

$$0 \longrightarrow Y \longrightarrow W \longrightarrow A \longrightarrow 0$$

$$\downarrow h_2 \qquad \downarrow f$$

$$0 \longrightarrow Y \longrightarrow Z \longrightarrow X \longrightarrow 0$$

The Exact Category of Arrows

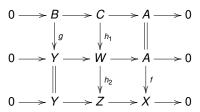
If $(A; \mathcal{E})$ is an exact category, then the category Arr(A) of arrows may be endowed with an exact structure $Arr(\mathcal{E})$ so that the conflations are of the form

$$0 \longrightarrow B \longrightarrow C \longrightarrow A \longrightarrow 0$$

$$\downarrow^{g} \qquad \downarrow^{h} \qquad \downarrow^{f}$$

$$0 \longrightarrow Y \longrightarrow Z \longrightarrow X \longrightarrow 0$$

Every such conflation of arrows admits a pushout-pullback factorization:



Mono-Epi Conflations

Definition

A conflation of arrows is mono-epi (ME) if it admits a factorization

$$0 \longrightarrow B \longrightarrow C \longrightarrow A \longrightarrow 0$$

$$\parallel \qquad \downarrow_{h^1} \qquad \downarrow_f$$

$$0 \longrightarrow B \longrightarrow V \longrightarrow X \longrightarrow 0$$

$$\downarrow^g \qquad \downarrow_{f^2} \qquad \parallel$$

$$0 \longrightarrow Y \longrightarrow Z \longrightarrow X \longrightarrow 0$$

This is denoted by $h = h^2 h^1 = g \star f$.

Theorem (H, Fu)

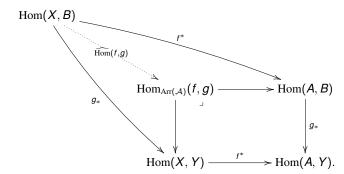
The functor 1: $(A; \mathcal{E}) \to (Arr(A); Arr(\mathcal{E})), A \mapsto 1_A$, is exact and

$$(A; \mathcal{E}) \rightarrow (\mathsf{Arr}(A); \mathsf{ME}) \subseteq (\mathsf{Arr}(A); \mathsf{Arr}(\mathcal{E}))$$

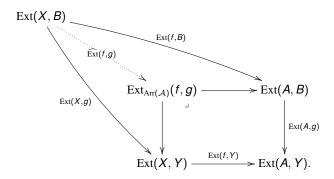
is the smallest exact substructure containing $(A; \mathcal{E})$.

Leibniz Hom (Riehl and Verity)

A morphism $f \to g$ of arrows in Arr(A) is a pair (m_1, m_2) of horizontal maps



Leibniz Ext



Outline

- 1 The Mono-Epi Exact Structure on Arrows
- 2 Extension of Ideals
- **3** Cophantom Morphisms
- 4 Adjustment of Splittings

Products of Special Precovering Ideals

The Ideal Christensen's Lemma (Fu, H)

It $(\mathcal{I}_1, \mathcal{J}_1)$ and $(\mathcal{I}_2, \mathcal{J}_2)$ are complete ideal cotorsion pairs, then so is

$$(\mathcal{I}_1\mathcal{I}_2,\mathcal{J}_2\diamond\mathcal{J}_1),$$

where $(\mathcal{I}_1\mathcal{I}_2)^{\perp} = \mathcal{J}_2 \diamond \mathcal{J}_1$, the ideal of arrows $j_2 \star j_1$ with $j_1 \in \mathcal{J}_1$ and $j_2 \in \mathcal{J}_2$.

Example

 $(\Phi^2, \langle R\text{-PInj} \star R\text{-PInj} \star R\text{-Inj} \rangle)$ is a complete ideal cotorsion pair.

Finite Powers of the Phantom Ideal

Recall $\Phi \supseteq \Phi^2 \supseteq \Phi^3 \supseteq \cdots \supseteq \langle R\text{-Flat} \rangle$. Then $(\Phi^n)^{\perp}$ is the object ideal generated by modules M with a filtration

$$0 = M_0 \subseteq M_1 \subseteq M_2 \subseteq \cdots M_n \subseteq M_{n+1},$$

where M_{n+1}/M_n is injective and the other factor M_{i+1}/M_i pure injective.

Definition

A ring R is semiprimary if R/J(R) is semisimple and $(J(R))^n = 0$ for some n > 0. In that case, $\langle R\text{-Flat} \rangle = \langle R\text{-Proj} \rangle$.

Theorem (Fu, H)

If *R* is a semiprimary ring with $(J(R))^n = 0$, then $\Phi^n = \langle R\text{-Proj} \rangle$.

The Benson-Gnacadja Conjecture

Corollary

If kG is a finite group ring over a field k, then $\underline{\Phi}^{\ell} = 0$ in kG- $\underline{\text{Mod}}$, where ℓ is the Loewy length of kG.

Proof (with Benson):

It suffices to show that a phantom $\varphi \colon A \to B$ vanishes on $\operatorname{soc}(A)$. We may assume that B has no projective-injective summands. Let $S \subseteq A$ be a simple submodule and consider the restriction

$$S \longrightarrow A$$
 f
 V
 $P \longrightarrow B$.

If $f \neq 0$, we can take P = E(S), contradicting the assumption on B

The Benson-Gnacadja Conjecture

Corollary

If kG is a finite group ring over a field k, then $\underline{\Phi}^{\ell} = 0$ in kG- $\underline{\text{Mod}}$, where ℓ is the Loewy length of kG.

Proof (with Benson):

It suffices to show that a phantom $\varphi \colon A \to B$ vanishes on soc(A). We may assume that B has no projective-injective summands. Let $S \subseteq A$ be a simple submodule and consider the restriction

$$S \longrightarrow A$$

$$\downarrow^f \qquad \downarrow^\varphi$$

$$P \longrightarrow B.$$

If $f \neq 0$, we can take P = E(S), contradicting the assumption on B.

Outline

- 1 The Mono-Epi Exact Structure on Arrows
- 2 Extension of Ideals
- 3 Cophantom Morphisms
- 4 Adjustment of Splittings

Ideal Cotorsion Pair Generated by Pure Projectives

The cotorsion pair generated by pure projective modules is complete, given by (FP-Proj, FP-Inj), where FP-Inj = R-PProj $^{\perp}$.

Theorem (Enochs, Šťovíček)

$$FP-Proj = Filt_{\omega}(PProj).$$

Let $\Psi = \langle R\text{-}mod \rangle^{\perp} = \langle R\text{-}PProj \rangle^{\perp}$ be the ideal of FP-ghost or cophantom morphisms. The ideal cotorsion pair ($\langle R\text{-}Proj \star R\text{-}PProj \rangle, \Psi$) generated by the pure projective modules is complete.

The Cophantom Filtration

$$\Psi \supseteq \Psi^{(2)} \supseteq \cdots \supseteq \Psi^{(n)} \supseteq \cdots \supseteq \Psi^{(\alpha)} \supseteq \Psi^{(\alpha+1)} \supseteq \cdots \supseteq \langle \text{FP-Proj} \rangle,$$

where $\Psi^{\alpha+1} = \Psi \Psi^{(\alpha)}$.

Convergence Theorem (Estrada, Fu, H, Odabaşi)

$$\Psi^{(\omega)} = \langle \text{FP-Proj} \rangle.$$

Ghosts

Definition: Ghost Ideal

If
$$S \subseteq R\text{-Mod}$$
, $R \in S$, let $\mathfrak{g} = \mathfrak{g}(S) := \langle S \rangle^{\perp}$.

The ideal cotorsion pair $(^{\perp}\mathfrak{g},\mathfrak{g})$ is complete.

Definition: Inductive Powers of an Ideal

Let $\mathcal J$ be an ideal and α be an ordinal. The ideal $\mathcal J^{(\alpha)}$ is generated by α -compositions of morphisms in $\mathcal J$, that is, structural morphism $a^0_{\alpha+1}$ from a continuous $(\alpha+1)$ -system $\mathbf A\in(\alpha+1,\mathcal A)$ with successive structural morphisms $a^\gamma_{\gamma+1}$ in $\mathcal J$.

The Ideal Eklof Lemma (Estrada, Fu, H, Odabaşi)

For every ordinal α , the ideal $\mathfrak{g}^{(\alpha)}$ is special preenveloping with

$$^{\perp}(\mathfrak{g}^{(lpha)}) = \langle R ext{-Proj} \star \operatorname{Filt}_{lpha}(\operatorname{Add}(\mathcal{S}))
angle$$

The Dual Xu Theorem

Theorem (EFHO)

If R-PProj is closed under extension, then R-PProj = FP-Proj.

Proof:

By the Ideal Christensen Lemma, $\Psi^2 = \Psi$, so the filtration looks like

$$\Psi = \Psi^2 = \cdots = \Psi^n = \cdots \supseteq \Psi^{(\omega)} = \langle \text{FP-Inj} \rangle,$$

by the Enochs-Šťovíček bound and the Ideal Eklof Lemma. To get that $\Psi=\Psi^{(\omega)},$ apply the property of Ψ that if $A\in(\omega+1,R\text{-Mod})$ is continuous, then

$$\Psi(\underset{\rightharpoonup}{\lim} A, Y) \cong \Psi(A, c(Y)).$$

Outline

- 1 The Mono-Epi Exact Structure on Arrows
- 2 Extension of Ideals
- **3** Cophantom Morphisms
- 4 Adjustment of Splittings

The Trivial Exact Structure

The distinguished kernel-cokernel pairs in the trivial exact structure $(A; \mathcal{E}_0)$ are the split ones. A splitting is a self homotopy,

$$X_{1} \xrightarrow{i} X_{0} \xrightarrow{p} X_{-1}$$

$$\parallel r \parallel s \parallel$$

$$X_{1} \xrightarrow{i} X_{0} \xrightarrow{p} X_{-1},$$

where $ri = 1_{X_1}$, $ps = 1_{X_1}$, and $1_{X_0} = ir + sp$.

The Connecting Map

Consider a morphism of trivial conflations

$$X_{1} \xrightarrow{i_{X}} X_{0} \xrightarrow{\rho_{X}} X_{-1}$$

$$\downarrow f_{1} \qquad \qquad \downarrow f_{0} \qquad \qquad \downarrow f_{-1}$$

$$Y_{1} \xrightarrow{i_{Y}} Y_{0} \xrightarrow{\rho_{Y}} Y_{-1},$$

equipped with respective splittings (r_X, s_X) and (r_Y, s_Y) . There is a unique $\Delta = \Delta(f)$,

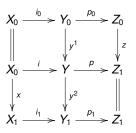
$$X_{1} \xrightarrow{i_{X}} X_{0} \xrightarrow{p_{X}} X_{-1}$$

$$Y_{1} \xrightarrow{i_{Y}} Y_{0} \xrightarrow{p_{Y}} Y_{-1},$$

such that
$$D_2(\Delta) = (-\Delta p_X, i_Y \Delta) = (r_Y f_0 - f_1 r_X, s_Y f_{-1} - f_0 s_X).$$

Covariant Adjustment

Consider a morphism of trivial conflations with an ME factorization



equipped with respective splittings $(r_0.s_0)$, (r,s), and (r_1,s_1) . We have

■
$$\Delta_0$$
: $Z_0 \to X_0$ satisfying $-\Delta_0 p_0 = ry' - r_0$ and $i\Delta_0 = sz - y's_0$; and

$$lacksquare$$
 $\Delta_1: Z_1 \to X_1$ satisfying $-\Delta_1 p = r_1 y^2 - xr$ and $i_1 \Delta_1 = s_1 - y^2 s$.

If Ext(Coker z, x) = 0, then $x\Delta_0 = \Delta z$, and

$$(r_0, s_0)$$
 and $(r_1 + (\Delta_1 + \Delta)p_1), s_1 - i_1(\Delta_1 + \Delta))$

yield a splitting for $x \to y \to z$.

The Limit Induction Step

Inductive Step at a Limit Ordinal

Let $\lambda = \omega \alpha$ be a limit ordinal and

$$\Sigma: A \longrightarrow B \longrightarrow C$$

and conflation if $(\lambda+1)$ -systems, $\Sigma \in (\lambda+1,\mathcal{E})$. If A and C are continuous, and $\Sigma|_{\lambda}$ is trivial, then Σ is trivial and continuous.

REFERENCES:

- 1 Benson, D., Gnacadja, G., Phantom maps and purity in modular representation theory III, J of Algebra 208 (2002), 747-754.
- 2 Enochs, E.E., Shortening Filtrations, Science China Math **55**(4), (2012), 687-693.
- 3 Estrada, S.D., Fu, X.H., Herzog, I., Odabaşi, S., Powers of Ghost Ideals, forthcoming.
- 4 Fu, X.H., Herzog, I., Powers of the Phantom Ideal, Proc of the LMS 112(3) (2016), 714-752.
- 5 Riehl, E., Verity, D., Elements of ∞-Category Theory.
- 6 Šíovíček, J., Deconstructibility and the Hill Lemma in Grothendieck categories, Forum Math. 25(1) (2013), 193-219.