Interazione Tra Agenti

Raggiungimento dell' Accordo

Sommario

- ♦ Come raggiungere un accordo [Wooldridge Cap. 7]
- \diamond Aste (Auctions)
- ♦ Negoziamento
- ♦ Argomentazione

Raggiungere un accordo

♦ Agenti self-interested

♦ Goal: raggiungere accordi mutuatmente produttivi, mezzi usati:

- Aste
- Negoziazione
- Argomentazione
- ♦ Protocollo Meccanismo per gestire il raggiungimento dell'accordo
- ♦ Strategia deve funzionare in pratica

Progettazione del protocollo

- ♦ Caratterizzato da:
 - Normali proprietá protocolli (Liveness, deadlock free)
 - Garantire successo
 - si raggiunge sempre un accordo
 - Massimizzare il "bene comune"
 - massimizza la sommatoria dei beni ottenuti dai singoli agenti
 - Garantire Pareto efficenza
 - Non esiste una soluzione migliore per qualche agente non peggiore per nessuno

Progettazione del protocollo II

- Razionalitá individuale
 - Gli agenti hanno interesse nel seguire il protocollo
- Stabilitá
 - L'accordo raggiunto é stabile
- Semplicitá
 - Calcolare la strategia ottima é computazionalmente ragionevole
- Distribuito
 - Nessun punto singolo di fallimento

Aste

- ♦ Molto popolari
 - Semplici da automatizzare
 - Potenti strumenti per allocare risorse
 - Interessanti problemi teorici

5

Aste: Componenti fondamentali

♦ Moderatore (Auctioneer) Goal: Massimizzare il prezzo dei beni Mezzo: Sceglere il meccanismo di Asta

♦ Offerente (Bidder) Goal: Minimizzare il prezzo del bene ottenuto Mezzo: Sceglire la strategia migliore

♦ Goal del sistema: allocare beni agli agenti

Aste: Caratteristiche principali

- ♦ Protocollo e strategie dipendono da diversi fattori:
 - Valore dei Beni:
 - Pubblico (Es. Una chitarra)
 - Privato (Es. La Chitarra di Rino Gaetano)
 - Misto (Es. La Chitarra di B.B. King)
 - Variazioni del protocollo
 - Prezzo da pagare (First-Price, Second-Price)
 - Conoscenza offerte (Open Cry, Sealed Bid)
 - Sequenziamento offerte (One-Shot, Ascendente, Discendente)

English Auction

- First-Price, Open-Cry, Ascendente
- Strategia dominante: Offrire piccole quantitá maggioranti l'ultima offerta fino al valore corrente del bene.
- Interessante se incertezza sul valore effettivo del bene
- Winners' curse pagare piú del dovuto

 \diamond Dutch Auction

- First-price, open-cry, Discendente
- Nessuna strategia dominante

Sealed-Bid

- ♦ First-Price
 - One-shot
 - Offerenti dovrebbero offrire meno del valore ipotizzato
 - Nessuna soluzione generale per decidere quanto meno
- ♦ Vickrey (Second-Price)
 - Strategia dominante: Scommettere esattamente il valore desiderato
 - Se si scommette di piú si paga di piú
 - Se si vince non si paga il prezzo scommesso
 - Possibili comportamenti antisociali

Valore atteso per il moderatore

♦ Assumendo Valore privato per gli offerenti allora la strategia dipende dall'attitudine al rischio dgli offerenti

- Neutrali al rischio: Protocollo indipendente
- Favorevoli al rischio: Dutch o Sealed-Bid first-price
- Contrari al rischio: Vickrey o English
- ♦ Problemi inerenti
 - Collusioni degli offerenti
 - Onestá del Moderatore

Negoziazione

♦ Aste utili per allocare beni ad agenti

Negoziazione: Tecniche piú generali per raggiungere accordi

- Insieme di proposte
- Protocollo: insieme di proposte legali data la storia della negoziazione
- Insieme di strategie
- Regola che determina il raggiungimento dell'accordo

Negoziazione: Caratteristiche principali

- Singolo Attributo/Multipli Attributi
- Valori che ciascun attributo puó avere
- Agenti conivolti nella negoziazione
 - Uno ad uno
 - Uno a molti (Aste)
 - Molti a molti
- Domini orientati ai task o al valore

Domini orientati ai Task

♦ La negoziazione avviene su task atomici (Task Oriented Domain)

- \diamond formalizzazione TOD: $\langle T, Ag, c \rangle$
 - T Task
 - Ag Agenti
 - $c: \wp(T) \to \Re$ Costo dei task

 $c(\cdot)$:

- Monotona: $T_1, T_2 \in \wp(T) \land T_1 \subseteq T_2 \Rightarrow c(T_1) \leq c(T_2)$
- $c(\{\}) = 0$

Domini orientati ai Task II

 \diamondsuit Scontro (Encounter) tra agenti: $\langle T_1,...,T_n\rangle$ dove: $T_i\subseteq T$ $i\in Ag$

$$\diamond$$
 Patto (Deal) $\delta = \langle D_1, ..., D_n \rangle$

- \diamond Patto Conflittuale = Scontro iniziale Θ
- $\diamondsuit \quad Cost_i(\delta) = c(D_i)$
- $\diamondsuit \quad Utility_i = c(T_i) cost_i(\delta)$

Patti Dominanti per TOD

 $\diamondsuit \quad \delta_1 \succ \delta_2 \Leftrightarrow$

 $\forall i \in Ag : Utility_i(\delta_1) \ge Utility_i(\delta_2) \\ \exists i \in Ag : Utility_i(\delta_1) > Utility_i(\delta_2)$

 $\diamondsuit \quad \delta_1 \succeq \delta_2 \Leftrightarrow$

 $\forall i \in Ag : Utility_i(\delta_1) \ge Utility_i(\delta_2)$

 $\diamond \delta$ é pareto ottimo \Leftrightarrow

$$\exists \delta' : \delta' \succ \delta$$

 $\diamond \delta$ é razionale individualmente \Leftrightarrow

 $\delta \succ \Theta$

Monotonic Concession Protocol

◊ Insieme delle proposte possibili: insieme di patti che sono razionali individualmente e pareto ottimi

- ♦ Focalizzando su due agenti
 - Procede in Round successivi
 - Primo Round Entrambi gli agenti propongono un patto
 - Accordo raggiunto se:

 $Utility_1(\delta_2) \ge Utility_1(\delta_1) \lor Utility_2(\delta_1) \ge Utility_2(\delta_2)$

• Nel round successivo

 $Utility_2(\delta'_1) \ge Utility_2(\delta_1) \land Utility_1(\delta'_2) \ge Utility_1(\delta_2)$

• se l'insieme di negoziazione é vuoto si ritorna al Θ

Strategia Zeuthen

- Quale dovrebbe essere la prima proposta ?
- Chi deve concedere e quanto ?
- Ogni agente all'inizio chiede il massimo per se

$$DesRischio_{i} = \begin{cases} 1 & \text{if } Utility_{i}(\delta_{i}^{t}) = 0\\ \frac{utility_{i}(\delta_{i}^{t}) - utility_{i}(\delta_{j}^{t})}{utility_{i}(\delta_{i}^{t})} & \end{cases}$$

- Concede chi ha DesRischio minore
- Concede il minimo indispensabile a cambiare l'equilibrio

Caratteristiche della Strategia Zeuthen

- Nessuna garanzia di successo
- Social Welfare no garantito
- Pareto Ottimale
- Razionale individualmente
- Distribuito
- Stabile (Nash Equilibrium)

Worth Oriented Domain

 $\langle E, Ag, J, c \rangle$

- E: stati ambiente
- Ag: Insieme Agenti
- J: Insieme di piani comuni
- c : $J \times Ag \rightarrow \Re c(j,i)$ costo per Agente i di eseguire il piano J
- Scontro: $\langle e, W \rangle$
 - e stato iniziale
 - $W: E \times Ag \rightarrow \Re w(e,i)$ valore per i dello stato e
- Se |Ag| = 1 e $\langle e_0, w \rangle$ allora $j_{opt}^1 = argmax_{j:e_o \to e} w(1, e) c(1, j)$
- in WOD agenti negoziano su molti fattori

Argomentazione

♦ negoziazione

- Le posizioni degli agenti non possono essere spiegate
- Le posizioni degli agenti non possono essere cambiate

 \diamond Argomentazione \Rightarrow processo con cui un agente cerca di convincere un altro agente della sua posizione

Modi di argomentare (Gilbert 1992)

- Logico (Sofri non ha commesso il fatto)
- Emozionale (Sofri ha sofferto tanto)
- Viscerale (Sciopero della sete)
- Kiscerale (Dio vuole Sofri libero)
- ♦ Sistema di argomentazione basato su logica (Fox et Al.)

Argomento: serie di inferenze che portano ad una conclusione

Argomentazione basata su logica

 \diamondsuit Forma base delle argomentazioni dato un database Δ : $\langle \phi, \Gamma \rangle$

- Δ : insieme di formule logiche anche inconsistenti
- ϕ : formula logica (conclusione)
- Γ: insieme di formule tali che (spiegazione)

 $- \Gamma \subseteq \Delta$ $- \Gamma \vdash \phi$

 $\diamond \mathcal{A}(\Delta)$: unione di tutte le argomentazioni di un database

Relazioni tra argomentazioni

♦ Due importanti classi di argomentazioni

- Non banale $\langle \phi, \Gamma \rangle$: Γ consistente
- Tautologica $\langle \phi, \Gamma \rangle : \Gamma = \{ \}$
- $\diamond \langle \phi_1, \Gamma_1 \rangle$ annulla $\langle \phi_2, \Gamma_2 \rangle$ se
 - $\langle \phi_1, \Gamma_1 \rangle$ ribatte $\langle \phi_2, \Gamma_2 \rangle$ se ϕ_1 attacca ϕ_2
 - $\langle \phi_1, \Gamma_1 \rangle$ undercuts $\langle \phi_2, \Gamma_2 \rangle$ se $\exists \psi \in \Gamma_2 : \phi_1$ attacca ψ
 - ϕ attacca ψ se $\phi \equiv \neg \psi$

Ordinamento sulle argomentazioni

- A_1 argomenti di Δ
- A_2 argomenti di Δ non banali
- A_3 argomenti di Δ per i quali $\neg \exists$ argomenti ribbattenti
- A_4 argomenti di Δ per i quali $\neg \exists$ argomenti che fanno undercut
- A_5 argomenti di Δ tautologici
- $A_1(\Delta) \preceq A_2(\Delta) \ldots \preceq A_5(\Delta)$

Dialoghi e Sistemi di dialogo

♦ Dialogo: serie di argomenti successivi che rispettano vari criteri

 \diamond Mossa *m*: ciascun passo del dialogo $\langle Player, Arg \rangle$ dove $Player \in \{0, 1\} \in Arg \in \mathcal{A}(\Delta)$

 \diamond una sequenza $\langle m_0, \ldots, m_k \rangle$ é un dialogo se:

- $Player_0 = 0$
- $Player_u = 0$ se u é pari $Player_u = 1$ altrimenti
- se $Player_u = Player_v \land u \neq v$ allora $Arg_u \neq Arg_v$
- Arg_u annulla Arg_{u-1}

Esempio di dialogo

 \diamond Database: $\{p, t, s, p \rightarrow q, q \rightarrow r, t \rightarrow \neg (p \rightarrow q), s \rightarrow \neg t\}$

•
$$m_0 = \langle r, \{p, p \to q, q \to r\} \rangle$$

• $m_1 = \langle \neg (p \to q), \{t, t \to (p \to q)\} \rangle$
• $m_2 = \langle \neg t, \{s, s \to \neg t\} \rangle$

♦ Dialogo termina se non esistono piú argomenti validi

♦ Ultimo agente a muovere vince il dialogo (Gioco fra due agenti)

Sistema implementato per arg. logica

- ♦ Persuader System (Labor, Union, Mediator)
 - Modello dei Belief di ciascun agente per pianificare le possibili contromisure
 - Modello delle preferenze sui goal
 - Argomenti presentati in base ad una scala di forza