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Abstract— Visual coverage of large scale environments is
a challenging problem that has many practical applications
such as large scale 3D reconstruction, search and rescue and
active video surveillance. In this paper, we consider a setting
where mobile robots must acquire visual information using
standard cameras, while minimizing associated movement costs.
The main source of complexity for such scenario is the lack
of a priori knowledge of 3D structures for the surrounding
environment. To address this problem, we propose a novel
descriptor for visual coverage that aims at measuring the
orientation dependent visual information of an area, based
on a regular discretization of the 3D environment in voxels.
Next, we use the proposed visual descriptor to define an
autonomous cooperative exploration approach, which controls
the robot movements so to maximize information accuracy
and minimizing movement costs. We empirically evaluate our
approach in a simulation scenario based on real data for large
scale 3D environments, and on widely used robotic tools (such as
ROS and Stage). Experimental results show that the proposed
method significantly outperforms a baseline random approach
and an uncoordinated one, thus being a valid proposal for visual
coverage in large scale outdoor scenarios.

I. INTRODUCTION

Visual sensing of large-scale environments has recently at-
tracted increasing research and industrial interests. In particu-
lar, image based large scale 3D reconstruction systems have
demonstrated strong potentials in obtaining accurate maps
for cultural heritage and entertainment purposes [1], [2], [3].
However these systems are normally not parsimonious in the
sense that they require thousands/millions/billions of images
in order to obtain a satisfactory reconstruction. Moreover,
in classical applications, these images are collected from
image-based social networks thus accounting only for the
most popular tourist attractions in the world.

Now, mobile robotic platforms constitute a promising tech-
nology for large scale visual sensing. In fact, mobile robots
have been often engaged in applications that involve sensing
operations for large scale, dangerous or hostile environments
(e.g., search and rescue, surveillance, etc.). However, to date,
much of this work focuses either on building an accurate
map of the environment by using sensors that provide dense
measurements (such as laser range finder) [4] or on searching
for important elements in partially unknown or unstructured
environments.

In this paper, we take a different perspective and focus
explicitly on the visual coverage problem of outdoor envi-
ronments. Our aim is to provide accurate 3D coverage by
using a team of mobile robots equipped only with cameras.
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Fig. 1. The image shows a view of Trafalgare Square 3D recon-
struction with a robot moving using our strategy that maximise
the coverage. The blue dots represent the 3D input data, dark
green line shows few moves of the robot path while the black
lines represent the projecting ray form the camera to the observed
3D points (shown with red squares). This information is used to
define our visual coverage descriptor proposed in this work and the
strategies for maximizing the coverage. Notice that in this example
the optimization of the proposed utility function makes the robot
following the walls of the National Gallery Museum building thus
providing a reasonable coverage of the area.

We focus on cameras because they are very well suited for
large scale environments, as their field of view typically span
several meters, moreover, cameras are relatively cheap and by
far the most ubiquitous sensors nowadays. Specifically, our
mobile platforms build a local 3D map of the environment at
each time instance by running a structure from motion [5],
[6] procedure on the acquired images. Our goal is then to
choose target points for the robots so to maximize the amount
of information acquired about the 3D structure of the scene.
Figure 1 provides an overview of our application scenario,
where a single robot navigates in a large 3D environment
and acquire visual observations to maximise the overall
coverage1.

In more detail, this paper makes the following contribu-
tions to the state of the art: i) we propose a novel coverage
descriptor for 3D environments that encodes crucial statistics
such as the number of 3D points observed at a given
orientation, the transparency of the voxel and the number
of times the voxel has been observed from a given direction.
These three key elements convey rich information to decide
what would be the best position to observe the voxel in the
next move; ii) we propose a cooperative strategy to drive a
team of robots in the environments so to maximize visual
information encoded with the descriptor presented above;
iii) we empirically evaluate our approach by building a

1The 3D data used in this paper are available online at http://grail.
cs.washington.edu/projects/bal/ and http://www.diegm.
uniud.it/fsusiello/demo/samantha/



custom simulation environment that provides to the robot the
observed features in a 3D reconstruction of large scale envi-
ronment, our results prove the effectiveness and applicability
of our method.

II. RELATED WORK

Visual coverage based on cameras has been addressed from
several different perspectives in various fields such as sensors
network, computer vision and robotic itself. The recent
comprehensive review of Mavrinac and Chen [7] reveals that,
even if the camera coverage problem is an active field, many
problems are still unsolved. This is because the coverage
problem in 3D is ill-posed. In the most general operational
scenarios there is no a priori information about the 3D
structure of the scene and possible occluders.

Now, the coverage problem has strong relations with the
classical Art Gallery problem (AGP) [8] – especially for the
case of multiple agents/guards and with known scene geome-
try. In such scenario, a set of agents/guards has to be placed
at the vertexes of a known map in order to maximise the
coverage of the area. This creates a combinatorial problems
for which exact solutions have been actively investigated for
some specific [9] and more general configurations [10].

In a more practical scenario, in recent years, there has
been a growing interest towards autonomous robotic systems
that can explore their surrounding environments to per-
form various sensing and surveying tasks, with applications
ranging from surveillance and security, to environmental
surveying. In particular, a large body of such work focuses
on exploration strategies for robot and multi-robot systems,
using dense sensors that can provide accurate information on
the environments, such as 2D or 3D laser range finders [11],
or more recently the Kinect system [12]. The idea of frontier
based exploration, originally proposed by Yamauchi [13], is a
widely used approach to address autonomous exploration and
information gathering problems. For example, Burgard and
colleagues [4] propose a multi-robot exploration approach
where robots cooperatively choose next sensing positions
by considering both the utility (in terms of information) of
frontier points as well as the cost that robot would incur to
reach such position. Our approach is similar to this work
because we also define a utility function to drive the robots,
however, we do not use a frontier-based method. This is
because, in our setting, directional information are crucial
to assess the level of coverage of a given voxel. Hence, in
our case, frontier voxels can not be easily extracted from the
map (e.g., we can not directly consider a voxel as observed
when it falls inside the range of the sensor).

In this perspective, the work by Stachniss and Burgard
[14] proposes an autonomous approach for exploration that
considers coverage maps: an extension of occupancy maps
that maintain occupancy probability for each map cell. Based
on such representation they proposed a decision-theoretic
method for autonomous exploration based on the concept
of information gain. Instead, we consider a different concept
of coverage, as we are interested in visual coverage which

measure the number of 3D visual features observed by the
robots rather than a probabilistic measure of occupancy.

Surmann and colleagues in [11] propose an approach
to determine the next best view of a mobile platform for
digitalization of 3D indoor environments using a 3D laser
scanner. Finally, Dornhege and Kleiner in [12] propose a
frontier-like exploration strategy for a 3D environment based
on the Kinect system, focusing on unstructured scenarios
(typical of rescue applications). With respect to such previous
approach, here we focus on visual coverage, hence explicitly
restricting our attention to cameras. In such regard this work
provide a similar application as in [15], however the descrip-
tor and simulation scenario proposed here is fundamentally
different since it encodes a strong directional information as
a spherical histogram of the viewing directions. This also
gives a new strategy for coverage since the planned moves
take into account the orientation for which the 3D structure
is visible.

III. A NOVEL VISUAL COVERAGE DESCRIPTOR

We start by introducing our main contribution with a visual
coverage descriptor that can encode a directional measure of
coverage for each voxel of the 3D map. The basic idea for
the descriptor is that a certain 3D volume is covered if it is
possible to view through it, hence the measure of coverage
is related to how much of the voxel volume is “penetrated”
by the bundle of rays projected from the camera center.
In particular, the descriptor should encode both a classical
information of occupancy as in laser range systems and also
orientations from which the camera observes a transparent
voxel. A voxel volume of a given area might have several
3D reconstructed points only from specific orientations since
the number of 2D features extracted at such orientations
is higher. On the other hand, voxels without points might
be considered empty only after checking all the viewing
directions or if there is a large amount of penetrating rays at
every viewing direction (i.e. a voxel is transparent because
the camera can see through the voxel from every direction).

Given this, our aim is to propose a descriptor which
encodes explicitly the viewing direction. To do so we first
define a visibility model given a generic 3D point, the camera
position and orientation. In general, a 3D point is considered
visible if the point is subject to specific constraints that
simulates the imaging conditions of a real system. If any 3D
point in the map satisfies these constraints, it is considered
as observed in our model.

A. The camera visibility model

To formally describe the concept of coverage with visual
sensors we adopt the General Camera Model [16], [17]
which defines the imaging model as a set of rays travelling
in a straight line. This is a convenient formalisation2 for
modelling coverage using ray bundles. We also define a
robot position that coincides with the camera optical center
t. Given all the possible rays departing from the camera

2For full details about the camera model check [17], [15] and the graphical
description in Figure 2



center, we need now to define a set of criteria to compute
the visibility of a 3D point x ∈ P given the camera position
t and camera orientation defined as the pair of angle ϑ, ϕ.
For visual sensors, there are three predominant criteria to
impose: field of view, resolution and focus [7].
Field of View [7]. We model the field of view constraint by
considering visible only those 3D points which lie within a
pyramid having the bottom base corresponding to the image
frame and being oriented accordingly to the camera. In order
to do so, we first define the angles given the relative position
r = x− t of the camera center t and the 3D point position
x as:

pitch(r) = atan2(ry, rx), yaw(r) = atan2
(
rz,
√
r2
x + r2

y

)
where r =

[
rx ry rz

]>
.

Now given a camera tilt ϑ and orientation ϕ, we define
the set of the 3D points that are visible such that:

P fov
t,ϑ,ϕ =

{
x ∈ P : 0 ≤ ang∆(ϑ,pitch(x− t)) ≤ fov

2
∧

0 ≤ ang∆(ϕ, yaw(x− t)) ≤ fov

2

}
, (1)

where fov is the field of view of the camera and
ang∆(ω1, ω2) is the angular distance between angles ω1 and
ω2.
Resolution [7]. In most systems, resolution is modelled as a
distance constraint that limits the visibility of faraway points
[18], [19]. The points Pres

ϕ ⊂ P that have enough resolution
to be detected can be defined as:

Pres
t = {x ∈ P : ‖x− t‖ < δmax}, (2)

where the maximum range δmax can be fixed for a specific
camera model and ‖ · ‖ is the euclidean norm. An analysis
of image feature detectors recall with respect to resolution
can be found in [20] and it can be used as a guideline for
setting the parameter δmax.
Focus [7]. Likewise, the scene has to be imaged at the
proper focus in order to avoid misdetection of the 2D image
features. In practice this constraint mostly holds for elements
in the scene that are too close to the camera. This can be
implemented as a minimum range constraint [21] such that:

P foc
t = {x ∈ P : ‖x− t‖ > δmin}. (3)

Angle of incidence. Here we extend the previous model
by considering a further aspect, which we call angle of
incidence: a 3D point can be reconstructed only if the
associated 2D image feature is observable. This further
constraint does not only accounts for obvious effects, e.g.
an image feature cannot be seen from behind, but also for
more subtle 2D image matching reasons. In particular, as
empirically observed in [22], 2D image features can be
detected and matched only if observed under a limited range
of orientations.

For this reason, we first define a normal np associated
to each 3D point, and then compute the angle of incidence

between the point viewing direction and the normal, to obtain
a measure of the camera orientation with respect to the point.
If this angle is higher than ε the point is not visible because
at such camera orientation the image patch support is too
warped to be detected. Notice that, with respect to [7] and
[15], this is a novel constraint in modelling coverage of
points. The formal definition of the constraint is as follows:

Paoi
t =

{
x ∈ P : acos

(
np · (x− t)

|np| · |x− t|

)
< ε

}
. (4)

These four constraints as defined in Eq. (1), (2), (3), (4)
give the visibility of a 3D point given a certain camera
position and orientation such that:

Pvis
t,ϑ,ϕ = P fov

t,ϑ,ϕ

⋂
Pres
t

⋂
P foc
t

⋂
Paoi
t . (5)

Given all the presented criteria, if x ∈ Pvis
t,ϑ,ϕ, we say that

point x is observed.
It is possible to apply the same concept of observability

with the center of a voxel vk to determine whether voxel k
is visible (observable) or not. Thus, we determine, at each
camera position and orientation, the set Vvis ⊆ V of visible
voxels, where V is the set of all voxels center:

Vvis
t,ϑ,ϕ = V fov

t,ϑ,ϕ

⋂
Vres
t

⋂
V foc
t . (6)

Similarly, if vk ∈ Vvis
t,ϑ,ϕ we say that voxel k is observed.

Notice that while the robot is moving, a voxel can be
observed more than once and this effect will be modelled
explicitly in the visual coverage descriptor.

For brevity, from now on, we will denote with h the
combination of robots coordinates, orientation and tilt:

h = (t, ϑ, ϕ). (7)

B. Defining the directional coverage descriptor

Our approach considers the information related to the di-
rection from which a voxel is observed. Since we want
to store a finite amount of data, we discretize the space
of possible 3D directions by dividing the ranges of both
vertical component (pitch) and horizontal component (yaw)
in a number of intervals3. These intervals are indexed in two
dimensions, one for the vertical angle (pitch) and one for the
horizontal angle (yaw) of the ray coming through the voxel.

To decide which interval contains the coverage informa-
tion of voxel k about a particular observation direction, the
only information needed is the relative position rk = vk− t
of the voxel center vk with respect to the camera center t.
Given rk we can define two helper functions to compute the
indices of the correct interval:

bvi(rk) =

⌊
pitch(rk)

σ

⌋
bhi(rk) =

⌊
yaw(rk)

σ

⌋
, (8)

where σ is the angular sampling rate. A graphical represen-
tation of the division in intervals and the selection of an
interval is shown in Figure 2.



Fig. 2. The image on the left shows a voxel vk viewed from the top with
a ray departing from the camera position t and connecting a point p. The
discrete angle intervals are given by a sampling step of σ = 22.5◦ = π

8
.

This plot also shows how the bhi(r) index is determined from the viewing
direction represented by r giving an angle α = yaw(r). The image on the
right shows a line that is fully penetrating the voxel and for this reason we
both select the interval from “the front” bhi(r) and the respective interval
from “the back” bhi(r) of the voxel.

a) b) c)

Fig. 3. The figure on top shows a simulated scenario with a
voxel (orange cube) and a set of green points contained inside
the voxel. The camera centers are represented by red points and
black lines departs from such centers and connects the visible 3D
points given our visibility model. The three bottom figures show a
visualisation of our visual coverage descriptor, for such voxel, as
three spherical histograms. The bars of the histogram refer to each
viewing angle covered given this specific configurations of voxel
position, 3D points location and camera displacements. Histogram
a) presents the maximum number of points observed at each angular
interval (Fk,vi,hi ). Histogram b) shows the number of penetrating
rays at each angle interval (Tk,vi,hi ). Finally histogram c) gives the
information of the number of times the voxel has been seen from a
particular angular interval (Ok,vi,hi ). Notice that the we have less
values in Tk,vi,hi because it refers only to complete penetrations of
the voxel.

C. The coverage descriptor features

Our descriptor is associated at each voxel k and it contains
different information about the coverage of the voxel for
each angular interval (vi , hi) (see Figure 3 for a graphical
representation of the descriptor):

3For ease of notation, we assume that both divisions consist in a number
of intervals which is divisible by 2

• the maximum number of 3D points Fk,vi,hi that have
been observed inside voxel k from the set of directions
included in the angular interval (vi , hi).

• the number of times Tk,vi,hi voxel k has been com-
pletely penetrated by lines with directions included in
the angular interval (vi , hi) where a penetration is a line
connecting the camera center with a 3D point outside
the voxel (we will address this concept in Section IV).

• the number of times Ok,vi,hi voxel k has been observed
from any direction in the angular interval (vi , hi).

In particular here we stress the directionality information
stored in the coverage descriptor. This information is crucial
to motion strategies that account for the direction where the
voxel has not been observed. This is particularly important
when we use cameras as the main sensor modality, because
the 3D reconstruction of points inside a voxel is highly
dependent on 2D image features and such features might be
observable only if the camera is oriented with certain angles
(as discussed in section III-A). Moreover, since a camera
has a longer range than a standard laser sensor, the bundle
of rays intersecting voxels are a strong cue to understand if
the intersected voxels are free of obstacles. This is a problem
for vision sensors because the information extracted after a
3D reconstruction module is far sparser then a standard laser
system. In particular this is true with environments having
homogeneous textures since they might not be reconstructed
because it is not possible to extract a reasonable number
of 2D image descriptions (e.g. a wall with homogeneous
texture). In contrast, if we know that a high number of rays
are passing trough a set of voxels, it is probable that we can
see through and no obstacles are present.

Regarding the computational costs, computing F consists
in counting the points for each visible voxel which requires
O(max(|Pvis

t,ϑ,ϕ|, |Vvis
t,ϑ,ϕ|)). The computation of Tk,vi,hi re-

quires for each visible point p ∈ Pvis
t,ϑ,ϕ, to perform ray-

tracing by computing the line from camera center to 3D point
and then to compute voxel penetration. The overall update
requires O(|Pvis

t,ϑ,ϕ|) steps. The cost of performing ray tracing
can be highly optimized using GPU implementations of such
operation. Finally, the computation of Ok,vi,hi to increase
the observation counter for each visible voxel can be done
in O(|Vvis

t,ϑ,ϕ|).

IV. COVERAGE APPROACH

We now use the features of the visual coverage descriptor
to define our approach for driving the robots. Similar to
previous work in exploration [4] our approach encodes the
value of future moves of the robot by defining a utility
function. We then perform a greedy maximization of such
utility function to choose the next move for the robot. The
worth of a move in terms of coverage depends on the specific
applications, however, here we assume that it is useless to
observe a 3D point from the same position (including orien-
tation) more than once. This is a reasonable assumption if the
environmental conditions do not significantly change when
two different observations are made (e.g. light condition) and



allows us to decouple the coverage process from the 3D point
extraction method used to generate the input data.

A. Single robot mechanism

Our utility function is based on the current state of the
descriptors and the current location t of the robots. Such
utility function, is designed to have higher values for parts
of the map for which we have less 3D information. Since
the location and orientation varies in a continuum range,
in order to maximize the utility function we should have
a closed form solution for the utility. However, given the
complexity of the 3D structure for our reference applications,
we discretize the possible locations that robot can take and
compute an estimation of the utility function only for such
feasible locations.

The utility function is then formed by three elements: a
gain component, representing an estimation of the coverage
gain given a possible next location, and two cost components,
representing the cost that the robot incurs when translating
and rotating. In more detail, calling h = (t, ϑ, ϕ) the current
position and h′ = (t′, ϑ′, ϕ′) the position for which the
utility has to be computed, we have that the utility function
is defined as follows:

u(h,h′) = A · g(t′, ϑ′, ϕ′)−B · |t− t′|−
C · (ang∆(ϑ, ϑ′) + ang∆(ϕ,ϕ′)), (9)

where A, B and C are weighting parameters to be tuned
depending on the platform, and g(·) is the gain function.
Such gain function considers two main elements: the number
of points observed in each voxel (that we want to maximize)
and a measure of coverage for a voxel which encodes how
many observations we obtained for a voxel (regardless of the
number of points that we observed inside such voxel).

Since our main goal is to cover voxels with a presence of
3D points, it is important to focus on portions of the map that
contain structured 3D information (e.g., as given by walls,
building facades etc.). In more detail, we want to capture
the concept of spatial locality of points in neighbouring
voxels. Since 3D points are typically located on structures
that occupy several voxels, it is reasonable to assume that
the number of 3D points that can be observed from a given
angular direction for neighbouring voxels is correlated. To
model this, we use a Gaussian function N based on the
distance d =

[
dx dy dz

]>
between voxel centers to

define an expectation of the number of points Eb(k,t)

observable in a voxel k from a direction in (vi , hi) where
(k, vi , hi) = b(k, t) such that:

b(k, t) =
(
k,bvi(t− vk),bhi(t− vk)

)
, (10)

where bvi and bhi have been defined in equation (8).
Then for a voxel k we compute Eb(k,t) as follows:

Eb(k,t) =

∑
k̄

(
N(

d︷ ︸︸ ︷
vk − vk̄) · Fk̄,vi,hi

)
K

, (11)

where k̄ 6= k is the index of a neighbouring voxel, K is the
number of neighbouring voxels, Fk̄,vi,hi is the number of
points observed in voxel k̄ from a direction in (vi , hi), and
d = vk − vk̄ is the distance between the voxel centers.

Next, we define a measure of coverage, that accounts for
the number of observations O. In general, we wish to move
to a location if such location offers useful information on 3D
points contained in a voxel, hence, the more observations
a voxel may contain, the better. Now, to minimize robot
movements, it is crucial to model the concept of transparent
voxels, i.e. voxels that do not contain objects and hence will
not provide interesting information. In particular, we want
to model the fact that if a voxel is transparent, observing it
from a specific viewing direction makes it unnecessary to
observe it again from the specular direction.

However, in general the robot is not able to precisely detect
whether a voxel is transparent (i.e. empty) or whether it
contains an object that has no visual features (e.g. a building
with a monochromatic facade). Furthermore, in presence of
occlusions, no information about the voxel can be obtained.
To address these issues we consider penetrations measured
as the number of points behind the voxel that have been seen
through it, and we consider a high number of penetrations
to be a hint of transparency. Notice that, when deciding
whether a voxel is transparent we must consider directional
information as a voxel can be transparent from some viewing
directions and not transparent from others.

Considering all this, to model our concept of directional
coverage we use both the number of observation O and
penetrations T stored in the coverage descriptor. Specifically,
when a voxel k is observed from location t, our method
takes into account the number of penetrations Tb(k,t) from
the observation direction and also from the specular direction
Tb(k,t) where b(k, t) is given by

b(k, t) =
(
k,bvi(t− vk),bhi(t− vk)

)
, (12)

where bvi and bhi select the indices for the opposite intervals
as graphically shown in Figure 2.

Then, if the sum of these two terms is higher than a given
threshold τ (which is necessary to filter out noise), the voxel
is considered transparent and the coverage cov(k, t) from the
observation direction is defined as the sum of the number
of observations from “the front” and from “the back”. In
the opposite case, the coverage is defined as the number of
observations from “the front” only. In such way, cov(k, t)
can be formalised as:

cov(k, t) =

{
Ob(k,t) +Oob(k,t) if Tb(k,t) + Tob(k,t) > τ

Ob(k,t) otherwise
.

(13)
Now, recall that in our framework once a 3D point was

observed a further observation will not provide useful infor-
mation. Hence, we need to model the degree of knowledge
that the robot acquired about a voxel. In particular, we



measure the lack of observations for a voxel as follows:

U(k, t) =

{
1 if cov(k, t) = 0

0 otherwise
. (14)

We can now define the gain function by combining the
estimation on the number of 3D points for a voxel k (i.e.
Eb(k,t)) with the information on whether such voxel was
ever observed (i.e. U(k, t)). Specifically, the gain function is
formulated as follows:

g(t, ϑ, ϕ) =
∑

k∈Vvis
t,ϑ,ϕ

((
c+ β · ρµocc ,p(Eb(k,t))

)
·U(k, t)

)
,

(15)
where c is a constant (we set this to 1 in the experiments),
ρµocc ,p(·) is a ramp function, µocc is the average number
of points observed for each voxel and direction from the
beginning of the entire process (computed selecting only
strictly positive values), p is a parameter to tune according to
the scenario (we set this to 0.1 in our experiments). The ramp
function performs a soft thresholding to consider equally
interesting voxels with very high number of points. In fact,
for high values of observations, the number of points is only
a consequence of the type of surface and not of the presence
or absence of objects inside a voxel. Similar considerations
hold for low observations that essentially indicate noise.

Notice that, the gain function is designed to have a
null value if the system has already collected information
regarding voxel k from an orientation in interval (ϑ, ϕ).
Otherwise, it assumes a value in [c, β + c], the value being
higher if the voxel is considered interesting. Finally, the
constant c in the utility function provides a positive value
for voxels which are not observed and surrounded by empty
or unobserved voxels. This gives the robot an incentive to
move also in the initial steps of the coverage process.

B. Multi-Robot Visual Coverage

We extend our approach to multi-robot coverage by using a
centralised greedy method to distribute a set of robots R.

In particular, a central controller stores a visual coverage
descriptor for each voxel in the map, and updates such
structures with the information communicated by the robot.
Specifically, each robot communicates its position and the
observed 3D points to the central controller and since robots
have homogeneous sensors the controller can directly update
the descriptors for the visible voxels. Moreover, whenever
a robot reaches a target point it sends the acquired visual
information and queries for the next point to reach.

Now, to maximise the efficiency of the coverage process
we must spread the robots across the map so to avoid visiting
positions which have redundant information (i.e., observing
the same 3D points more than once). To do so we discount
the amount of redundant information from the utility of a
future move of a robot i given the next positions of all other
robots, by not considering the utility yielded by voxels that
will be observed by the other robots.

As our experimental Section will show, this coordination
approach significantly improves the performance of our
system with respect to not coordinated robots. This is more
evident in the first initial moves of the robots where the
increase of the coverage is steepest.

V. EXPERIMENTS

Each robot is equipped with a camera and navigates with
the associated battery costs for rotation and translation. In
such case, the robots are completely autonomous and work
in both coordinated and uncoordinated modalities.

A. Simulation Setup details

We test our system using the 3D reconstruction of three
different large scale environments obtained from real world
images: Piazza Bra (Verona, Italy), Trafalgar Square (Lon-
don, United Kingdom) and Piazza San Marco (Venice, Italy).
Since such 3D reconstructions are not aligned to a particular
reference system, we fix a floor plane by detecting the first
two dominant eigenvectors obtained from a Principal Com-
ponent Analysis (PCA) applied on the 3D point clouds. This
procedure works particularly well for man-made structures
where most of the reconstructed 3D points have clearly
a relevant set of points at the basement. The third PCA
axis represents the elevation of the 3D reconstruction. This
registration is then followed by a filtering of sparse (outlying)
3D points that is tuned to remove isolated points. This stage
is performed by creating a 3D grid by sampling uniformly
the three axes. Next, we consider the number of 3D points
inside each voxel and filter out all the points that do not reach
a particular quantity in a grid voxel. Notice that this stage
also creates the voxel grid used for computing and updating
the visibility coverage descriptors. After this removal stage
we re-align the reference system to eliminate the influence
of gross outliers in the first PCA computation.

Moreover, as required by our visibility model, the 3D
points are augmented with a visibility normal to simulate the
orientation from which the image feature point is observable.
This is done interactively with a semi-automatic labelling
processes using human operators. First, the operator selects,
a group of 3D points on the map by preferring points
belonging to a consistent architectural element (e.g. a bulding
facade, a frontal arch). In order to define the normal direction
we then perform a local PCA on the set of points an we
select the third most dominant eigenvector assuming that
the locally selected points are mostly planar. The process
continues until most of the points have been selected. The
few unselected points are then considered as fully visible
from every direction. An example of the viewing normals
for the Piazza Bra 3D reconstruction scenario are shown in
Figure 4. Finally, we compute the 2D map for the navigation
module by projecting the 3D points onto the (x, y) plane.
We also project the previous voxel grid and check if a 2D
map square is occupied by counting the number of points
inside. Regarding the navigation setup, we simulate a mobile
robotic platform that is able to localize itself and navigate
autonomously in a 2D map. To this end, we use ROS (Robot



Fig. 4. The figure shows a detail of the 3D reconstruction of Piazza Bra
and the associated normals at each 3D point.

Operating System) to control our simulated platforms, and
we simulate the 2D environment by using Stage 2D, a ROS
module that simulates virtual 2D worlds. We use Videre
erratic platforms as models for our robots.

B. Empirical methodology

In what follows, we provide details about the parameters
used in the experiments for the three scenarios. Notice that all
these 3D reconstructed maps vary in size and complexity thus
creating a favourable test bed for evaluating the algorithms.

In more detail, we used a uniform length of 4 meters per
voxel side and a sampling rate of of 45◦ for orientations. For
the visibility model (see Section III-A), we set the camera
field of view to 90◦, the focus constraint to a minimum
distance of 1 meter and a maximum distance of 30 meters.
As for the angle of incidence constraint (Eq. (4)), we set
ε = 70◦. Regarding the descriptor, we set the minimum
number of penetrations to consider a voxel transparent (Eq.
(13)) to 5. As for the coefficient of the utility function (Eq.
9) we tuned the values for A, B and C for our Videre model
through a tuning phase performed with a single robot only
on the Piazza Bra scenario, and used such value for all the
experiments.

We then run experiments with 1, 2, 3 and 5 robots,
spawning them close to each other. Finally, the value for
the parameter β in the gain function (Eq. (15)) is fixed to
2000.

We evaluate our approach by fixing a maximum travel
distance (i.e., how many meters the robot/camera can move
in total) which accounts for battery limitations. We fix
different maximum travel distances (measured in meters) to
account for the different sizes of the three maps: Piazza Bra
is 28773 m2, Piazza San Marco is 31515 m2 and Trafalgar
Square is 66708 m2. Specifically, we use a maximum travel
cost of 400 meters for Piazza Bra, 600 meters for Piazza
San Marco and 800 meters for Trafalgar Square. We then
compute a metric which measures the ratio of 3D points that
have been observed over the total number. Formally, if we
call H the set of all the positions used by all the robots,
we consider a point p visible if p ∈

⋃
(t,ϑ,ϕ)∈H Pvis

t,ϑ,ϕ.
Hence, the more 3D points were observed the higher the
performance of the coverage approach.

We then benchmark our approach against a baseline ran-
dom method that performs a walk in the environment by
randomly choosing the next target at a fixed distance. We
also propose a comparison with a semi-random approach
which again performs a random walk but always performs all
the possible rotations for each location. Moreover, for multi-
robot scenarios, we provide results for both the coordinated
coverage strategy and an uncoordinated approach where
robots do not share any information.

C. Experimental Results

Figure 5 shows a comparison for the coordinated, uncoor-
dinated, semi-random and random approaches for increasing
number of robots. These results show that the coordinated
approach has the best performance with respect to unco-
ordinated and random strategies with a significance gap in
performance.

Fig. 5. Results for the coordinated, uncoordinated semi-random and random
strategies.

Our approach Semi-random Random

Fig. 6. The figure shows examples of runs of our approach against the
baselines in the three different environments from top to down: Trafalgar
Square, Piazza San Marco and Piazza Bra (best viewed in color).

In more detail, Figure 6 shows some examples of the final
coverage results on the three scenarios. Notice that for these
examples, the optimized path clearly follow the predominant



(a) Cooperative (b) Uncooperative (c) Semi-random (d) Random

Fig. 7. The figure shows the behaviour of the cooperative, uncooperative, random and semi-random strategies in an experiment with three robots moving
in Trafalgar Square. Robot paths are encoded with colours (best viewed in color).

3D structure close to the respective initial points where the
robots start their navigation. The first row of Figure 6 shows
results for Trafalgare Square, the largest map in our dataset.
Given that the map has relevant empty spaces, random and
semi-random approaches struggle to provide even a minimal
coverage of the area. Differently, our proposed strategy locks
into the main 3D structure and it goes towards observing
voxels with a continuous structure and orientations such as
the one given by the National Gallery Museum walls and
facade. The second row shows the results for the Piazza San
Marco experiment (we only display few moves for clarity).
Notice that, our approach is the only on to observe both
sides of the tower, thus achieving a better coverage in the
area. Finally, in the third row we present results for the
smallest scenario, Piazza Bra. Since this is a more compact
area both random and semi-random approaches increase their
performance. However, our approach drives the robot along
the profile of the buildings while the random approaches are
moving in a limited, local area.

Finally, we also present a qualitative example for a co-
ordinated and uncoordinated approach trial using a fleet
of three robots for the Trafalgar Square scenario. Figure
7 shows that our coordinated approach spreads the robots
towards relevant elements of the 3D structure and it avoids
overlapping between field of views of the robots.

VI. CONCLUSIONS

In this paper we propose a novel descriptor for visual
coverage in large scale outdoor environments. Based on
such descriptor we propose a cooperative strategy to drive a
team of robots in the environments so to maximize visual
information. We empirically evaluate our approach in a
simulation environment that uses real data from large-scale
outdoor scenarios (i.e., Piazza Bra, Trafalgar Square and
Piazza San Marco) and widely used robotic tools (such as
ROS and Stage) for 2D navigation. The empirical results
show that our approach is indeed able to provide effective
strategies for visual coverage in outdoor environments.
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[11] H. Surmann, A. Nüchter, and J. Hertzberg, “An autonomous mobile
robot with a 3d laser range finder for 3d exploration and digitalization
of indoor environments,” Robotics and Autonomous Systems, vol. 45,
no. 34, pp. 181 – 198, 2003.

[12] C. Dornhege and A. Kleiner, “A frontier-void-based approach for
autonomous exploration in 3d,” in SSRR, 2011.

[13] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in Computational Intelligence in Robotics and Automation, 1997.
CIRA’97, 1997.

[14] C. Stachniss and W. Burgard, “Exploring unknown environments with
mobile robots using coverage maps,” in Proc. of the Int. Conference
on Artificial Intelligence (IJCAI), 2003.

[15] A. Del Bue, M. Tamassia, F. Signorini, V.Murino, and A. Farinelli,
“Visual coverage using autonomous mobile robots for search and
rescue applications,” in SSRR, Linkoping, Sweden, 2013.

[16] P. Sturm, “Multi-view geometry for general camera models,” in
Computer Vision and Pattern Recognition, 2005, (CVPR 2005)., vol. 1.
IEEE, 2005, pp. 206–212.

[17] G. Schweighofer and A. Pinz, “Fast and globally convergent structure
and motion estimation for general camera models,” in BMVC, 2006.

[18] A. Mittal and L. S. Davis, “A general method for sensor planning in
multi-sensor systems: Extension to random occlusion,” Int. Journal of
Computer Vision, vol. 76, no. 1, pp. 31–52, 2008.

[19] Y. Yao, C.-H. Chen, B. Abidi, D. Page, A. Koschan, and M. Abidi,
“Sensor planning for automated and persistent object tracking with
multiple cameras,” in Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1–8.

[20] D. Q. Huynh, A. Saini, and W. Liu, “Evaluation of three local
descriptors on low resolution images for robot navigation,” in Image
and Vision Computing New Zealand, 2009. IVCNZ’09. 24th Int.
Conference. IEEE, 2009, pp. 113–118.

[21] J. Park, P. C. Bhat, and A. C. Kak, “A look-up table based approach
for solving the camera selection problem in large camera networks,”
in Proc. of the Int. Workshop on Distributed Smart Cameras (DCS06),
2006.

[22] H. Aanæs, A. L. Dahl, and K. S. Pedersen, “Interesting interest points:
A comparative study of interest point performance on a unique data
set,” IJCV, 2012.


