
Decentralised Coordination of Continuously Valued
Control Parameters using the Max-Sum Algorithm

R. Stranders, A. Farinelli, A. Rogers and N. R. Jennings
School of Electronics and Computer Science

Southampton, SO17 1BJ, UK.
{rs06r,af2,acr,nrj}@ecs.soton.ac.uk

ABSTRACT
In this paper we address the problem of decentralised coordination
for agents that must make coordinated decisions over continuously
valued control parameters (as is required in many real world appli-
cations). In particular, we tackle the social welfare maximisation
problem, and derive a novel continuous version of the max-sum
algorithm. In order to do so, we represent the utility function of
the agents by multivariate piecewise linear functions, which in turn
are encoded as simplexes. We then derive analytical solutions for
the fundamental operations required to implement the max-sum al-
gorithm (specifically, addition and marginal maximisation of gen-
eral n-ary piecewise linear functions). We empirically evaluate our
approach on a simulated network of wireless, energy constrained
sensors that must coordinate their sense/sleep cycles in order to
maximise the system-wide probability of event detection. We com-
pare the conventional discrete max-sum algorithm with our novel
continuous version, and show that the continuous approach obtains
more accurate solutions (up to a 10% increase) with a lower com-
munication overhead (up to half of the total message size).

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—Dis-
tributed Artificial Intelligence

General Terms
Algorithms, Experimentation, Theory

Keywords
DCOP, Coordination, Computational Geometry

1. INTRODUCTION
Networks of sensing devices that acquire, integrate and wirelessly
communicate information are gaining increasing attention within
the research community and have found applications within areas
such as multi-sensor target tracking, unmanned autonomous vehi-
cles for rescue robotics and wide-area surveillance. In many of
these applications, a key challenge to successful deployment is to
enable the physically distributed devices to coordinate their indi-
vidual sensing actions in order to act together toward system-wide

Cite as: Decentralised Coordination of Continuously Valued Control Pa-
rameters using the Max-Sum Algorithm, R. Stranders, A. Farinelli, A.
Rogers and N. R. Jennings, Proc. of 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Decker, Sichman,
Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp.
XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

goals. Examples of such coordination include controlling the orien-
tation of multiple fixed sensors to better localise, identify and track
a target [3], continuously controlling the trajectory (and hence the
position) of multiple mobile sensors to explore an uncertain and dy-
namic environment [5], and in the wide-area surveillance scenario
that we consider in detail here, coordinating the sense/sleep cycle
of energy constrained sensors in order to maximise the system-wide
probability of detecting an event [7]. Such coordination is partic-
ularly challenging in these domains since the devices often have
constrained computational resources (often due to the requirement
of minimising the power used by the device) and they can typically
only communicate with a small number of nearby devices (due to
the use of lower power wireless communication).

To address these challenges, multiagent system approaches have
been widely used, and in doing so, the coordination problem faced
by the devices is often cast as a distributed constraint optimisa-
tion problem (DCOP), since this allows a wide range of existing
DCOP algorithms to be immediately applied. Such algorithms can
be broadly divided in two main classes: complete algorithms that
generate optimal solutions such as ADOPT [13], OptAPO [12], and
DPOP [15]; and approximate algorithms such as the Distributed
Stochastic Algorithm (DSA) [3] or Maximum Gain Message [11].
Now, while complete algorithms provide guarantees on the solu-
tion quality, they also exhibit an exponentially increasing coordina-
tion overhead (either through the size and/or number of messages
exchanged, or in the computation required by each device) as the
number of devices in the network increases. Conversely, approx-
imate algorithms require very little local computation or commu-
nication, but often converge to poor quality solutions because the
devices do not propagate information across the whole network.
Rather, local information is only used by neighbouring devices.
For example, in DSA each agent communicates its preferred ac-
tion (e.g., the one that will maximise its own utility) based on the
current preferred actions of its neighbours only.

While such approaches show promise, they all assume that each
device has a small number of discrete actions to choose between.
However, in many applications, and in all of the examples de-
scribed earlier, each device must actually make a choice regarding
one or more continuous valued control parameters (i.e. its orienta-
tion, its heading and velocity, or the time at which it activates its
sensors). While these continuous control parameters may be dis-
cretised in order to apply existing DCOP algorithms, such discreti-
sation results in sub-optimal solutions even when complete DCOP
algorithms are used. Furthermore, increasing the discretisation in
order to improve the solution quality rapidly increases the compu-
tation and communication overhead of the coordination.

Thus, against this background, there is a clear need for a dis-
tributed constraint optimisation algorithm that can be applied within
these applications to make coordinated decisions regarding contin-

uous valued control parameters. It is this requirement that we ad-
dress in this paper, and to this end, we present a novel distributed
constraint optimisation algorithm for continuous control parame-
ters that can be applied to any setting where the interaction between
the devices can be described by piecewise linear utility functions.
We choose this particular class of utility function because it can be
manipulated using standard techniques from computational geom-
etry, resulting in a computationally efficient algorithm, but at the
same time it is a general class of function that can be used to ap-
proximate any arbitrary continuous function. We then demonstrate
and empirically evaluate this algorithm by applying it to the prob-
lem of coordinating the sense/sleep cycle of energy constrained
sensors deployed within a network for wide-area surveillance.

In more detail, the starting point for our work is a broad class
of algorithms usually referred to under the framework of the gen-
eralised distributive law (GDL) [1]. Such algorithms have been
widely used in the field of information theory and probabilistic in-
ference to decompose complex computations on single processors
[10], and more recently both complete and approximate algorithms
from this framework have been applied to the coordination of net-
worked sensing devices within the domain of discrete control pa-
rameters [14, 2]. In particular, one of the approximate algorithms,
based upon the max-sum algorithm, has been shown to generate so-
lutions closer to the optimum than previous approximate stochastic
DCOP algorithms [2]. It does so with an acceptable computation
and communication overhead when benchmarked against represen-
tative complete algorithms (specifically DPOP), and it has been
shown to be robust to message loss. Due to the fact that this algo-
rithm exhibits these properties, it has been deployed and validated
on low-power embedded devices. Nevertheless, despite the attrac-
tive properties of this algorithm, and the fact that the GDL frame-
work is very general, it has never before been used in the context of
distributed optimisation, to solve problems involving variables with
continuous domains. It is this specific challenge that we address in
this paper. To do so, however, requires that the fundamental op-
erations of the max-sum algorithm be redefined for the continuous
space in which they now operate.

Thus, in more in detail, we make the following contributions:
1. We derive an efficient representation that uses simplexes to

describe the utility interactions of continuous valued control
parameters (or variables). We then derive exact algorithmic
solutions for the fundamental operations required to apply
the max-sum algorithm in the domain of continuous con-
trol parameters and piecewise linear utility functions; specif-
ically, addition and marginal maximisation of general n-ary
piecewise linear functions.

2. We demonstrate the applicability of this algorithm by apply-
ing it to the problem of coordinating the sense/sleep cycles of
energy constrained sensors such that the system-wide proba-
bility of detecting an event is maximised.

3. We empirically evaluate the performance of our continuous
max-sum algorithm in this setting by comparing it against the
conventional discrete version in which the continuous valued
control parameter is artificially discretised. We show that
the continuous max-sum algorithm is able to provide a more
accurate solution (up to 10% increase in solution quality),
while allowing a more compact representation of the util-
ity functions. This, in turn, results in a lower coordination
overhead in terms of message size (the continuous max-sum
algorithm shows a reduction of up to half the total message
size).

The remainder of this paper is structured as follows: in Section 2
we formally describe the social welfare maximisation problem that

we face. In Section 3 we detail the max-sum algorithm, while in
Section 4 we present our representation of the utility as piecewise
linear functions, and the way we perform the operations needed by
the max-sum algorithm. In Section 5 we describe our test-bed and
present our experimental results, before concluding in Section 6.

2. PROBLEM DESCRIPTION
We now formally describe the decentralised coordination problem
that we address in this paper. In Section 5 we instantiate this gen-
eral problem to the specific case of a sensor network composed
of energy constrained sensors performing a wide-area surveillance
task. We consider a set of M agents, each of which has a sin-
gle1 continuously valued control parameter xm whose domain is
a closed and bounded interval in R. Each agent interacts directly
with a set of other agents, such that the utility of an agent,Um(xm),
is dependent on the value of its own control parameter and that of
those other agents with which it interacts (defined by the vector
xm). For example, in the specific wide area surveillance problem
that we will detail in Section 5, the control parameter of each agent
represents the time at which it decides to activate its sensor, the in-
teractions arise through its sensor’s sensing field overlapping with
those of other nearby agents, and the utility describes the prob-
ability that any agent will detect an event. As stated previously,
we focus on utility functions that can be represented as piecewise
linear functions. Therefore, Um(xm) is a multivariate piecewise
linear function for every m.

Within this setting, we wish to find the value of each agent’s
control parameter, x∗, such that the sum of the individual agents’
utilities (commonly referred to as social welfare within the multi-
agent systems literature2) is maximised:

x∗ = arg max
x

MX
i=1

Ui(xi) (1)

Furthermore, in order to enforce a truly decentralised solution,
we assume that each agent only has knowledge of, and can directly
communicate with, the few neighbouring agents that influence its
own utility directly. In this way, the complexity of the calculation
that the agents perform depends on the number of neighbours that it
has (and not the total size of the network), and thus, we can achieve
solutions that scale well.

3. THE MAX-SUM ALGORITHM FOR DE-
CENTRALISED COORDINATION

In order to apply the max-sum algorithm, we represent the op-
timisation problem described in Equation 1 as a bipartite factor
graph. For example, Figure 1(a) shows three interacting agents,
A1, A2 and A3, and the resulting factor graph consisting of vari-
able and function nodes representing each agent’s control parame-
ter and utility is shown in Figure 1(b). In order to avoid unneces-
sary repeated computation, we further decompose the factor graph
to separate functions that represent the interactions between agents,
and also any preferences over control parameter values that individ-
ual agents may have (shown in Figure 1(c)). The decomposition en-
sures that the sum of the functions is equal to the sum of the original
agent utilities, such that U1(x1, x2) +U2(x1, x2) +U3(x2, x3) =
F1(x1) + F2(x2) + F3(x3) + F4(x1, x2) + F5(x2, x3).3

1Note that our representation allows multiple control parameters
per agent, with possibly different domains, but for ease of exposi-
tion we present just the single case here.
2The same problem is also referred to as the optimal control prob-
lem in control theory [14].
3The functions Fi are also piecewise linear.

In order to have a truly decentralised computation, it is necessary
to assign the function that represents interactions between agents
to one of the agents that is involved in the interaction. For exam-
ple, Figure 1(c) shows a possible assignment of functions to agents
where the agent that has the highest identifier is responsible for
the shared function. The assignment can be done arbitrarily, since
any assignment ensures that the sum of the agent’s utilities is equal
to the sum of the functions, although allocations that balance the
computational load between the agents would clearly be desirable.

The max-sum algorithm then operates directly on the factor graph
representation described above. When this graph is cycle free, the
algorithm is guaranteed to converge to the global optimal solution
such that it finds the combination of states that maximises the sum
of the agents’ utilities [10]. When applied to cyclic graphs, there
is no guarantee of convergence, but extensive empirical evidence
demonstrates that this family of algorithms generate good approx-
imate solutions [9, 4]. Within this setting, the max-sum algorithm
specifies the messages that should be passed from variable to func-
tion nodes, and from function nodes to variable nodes. These mes-
sages are defined as:

• From variable to function:

qi→j(xi) = αij +
X

k∈Mi\j

rk→i(xi) (2)

whereMi is a vector of function indexes, indicating which
function nodes are connected to variable node i, and αij is a
normalising constant to prevent the messages from increas-
ing endlessly in the cyclic graphs.

• From function to variable:

rj→i(xi) = max
xj\i

24Fj(xj) +
X

k∈Nj\i

qk→j(xk)

35 (3)

where Nj is a vector of variable indexes, indicating which
variable nodes are connected to function node j and xj\i ≡
{xk : k ∈ Nj \ i}.

The messages flowing into and out of the variable nodes within the
factor graph are functions of a single variable that represent the
total utility of the network for each possible value of that variable.
At any time during the propagation of these messages, agent i is
able to determine which state it should adopt such that the sum
over all the agents’ utilities is maximised. This is done by locally
calculating the function, zi(xi), from the messages flowing into
agent i’s variable node:

zi(xi) =
X

j∈Mi

rj→i(xi) (4)

and hence finding arg maxxi zi(xi).
The messages described above may be randomly initialised, and

then updated whenever an agent receives an updated message from
a neighbouring sensor; there is no need for a strict ordering or syn-
chronisation of the messages. In addition, the calculation of the
marginal function shown in Equation 4 can be performed at any
time (using the most recent messages received), and thus, sensors
have a continuously updated estimate of their optimum state.

The final state of the algorithm depends on the structure of the
agents’ utility functions, and, in general, three behaviours can be
observed:

1. The preferred states of all agents converge to fixed states that
represent either the optimal solution, or a solution close to

the optimal, and the messages also converge (i.e. the updated
message is equal to the previous message sent on that edge),
and thus, the propagation of messages ceases.

2. The agents’ preferred states converge as above, but the mes-
sages continue to change slightly at each update, and thus
continue to be propagated around the network.

3. Neither the agents’ preferred states, nor the messages con-
verge and both display cyclic behaviour.

Thus, depending on problem being addressed, and the convergence
properties observed, the algorithm may be used with different ter-
mination rules:

1. Continue to propagate messages until they converge, either
changing the state of the agents continuously to match the
optimum indicated, or only after convergence has occurred.

2. Propagate messages for a fixed number of iterations per agent
(again either changing the state of the agent continuously or
only at termination).

The first termination rule favours the quality of the solution.
When the algorithm converges, it does not converge to a simple lo-
cal maximum, but to a neighbourhood maximum that is guaranteed
to be greater than all other maxima within a particular large region
of the search space [16]. Depending on the structure of the factor
graph, this neighbourhood can be exponentially large. However,
only limited guarantees for convergence of the max-sum algorithm
exist, and for general factor graphs the algorithm might not con-
verge. For practical applications, therefore, the second termination
rule is often preferred. In fact, empirical evidence shows that the
max-sum algorithm reaches good approximate solutions in few it-
erations. In addition, in dynamic scenarios where the utilities of
the agents or the interactions between them change over time, the
max-sum algorithm can run indefinitely without any termination
rule; each agent can decide at every cycle which state to choose
based on Equation 4, and operates on a continuously changing co-
ordination problem.

Note that at this stage, the description of the max-sum algorithm
applies equally well to both continuously valued and discrete vari-
ables. However, the summation and marginal maximisation opera-
tions required in Equations 2 and 3 are much more readily imple-
mented in the case of discrete variables. In the next section, we
describe an efficient representation that uses simplexes to describe
the utility interactions over continuous valued variables. This then
allows us to derive exact algorithmic solutions for these operations.

4. MAX-SUM IN CONTINUOUS SPACE
As described above, in order to apply the max-sum algorithm to
cases in which the variables can take on continuous values, we
need to be able to express each individual agent’s utility Ui(xi)
as a function of these continuous variables, and perform the funda-
mental operations of the max-sum algorithm on these functions. As
mentioned earlier, in this paper, we restrict our attention to cases in
which this function Ui(xi) is a multivariate continuous piecewise
linear function (CPLF). We choose this particular class of utility
function because they represent a general class that can be used to
approximate any arbitrary continuous function. Furthermore, under
this restriction, the two aforementioned operations have an attrac-
tive geometric interpretation that makes it possible to define and
manipulate them using standard techniques from computational ge-
ometry, hence allowing the continuous versions of the operations
required by max-sum to be performed. Thus, more specifically, in
this section we show how to:

A1

A2

A3

(a)

A2

A3A1

A1

U1

U2

A2

A3

U3

(b)

F4 F5

F3F1

F2

x1 x2 x3

A1

A2

A3

(c)

Figure 1: Diagram showing (a) the interactions of agents, A1, A2 and A3, (b) factor graph representing the agents’ utility (c) factor
graph representing the agents’ interactions.

1. Represent each agents’ utility function as a continuous piece-
wise linear function (CPLF).

2. Perform the summation of two continuous piecewise linear
functions (in order to perform the necessary summation of
the utility function, Fj(xj), and the summation of incoming
messages,

P
k∈Nj\i

qk→j(xk) shown in Equation 3).

3. Calculate the marginal maximisation of a continuous piece-
wise linear function with respect to a single variable (in order
to perform the necessary max operation in Equation 3).

We next present a formal definition of a CPLF, before going on
to derive exact algorithmic solutions for computing the sum of two
CPLFs, and the marginal maximisation of a CPLF with respect to a
single variable. Finally, we connect the formalism developed here
to the max-sum algorithm as described in the previous section.

4.1 Representing CPLFs with Simplexes
A continuous piecewise linear function is a function whose domain
can be partitioned into a set of convex polytopes4, such that it is
linear on each of these polytopes. For one variable, a CPLF is a
function that can be represented with a finite number of line seg-
ments, while a CPLF of two variables can be represented by a finite
number of two-dimensional polygons. An example of the latter is
given in Figure 3. The domain of the function in this figure is par-
titioned into triangles (shown on the (x1, x2) plane) on which the
function is linear.

In our formalism, we use n-dimensional simplexes, or n-simplex-
es, to partition the domain of an n-ary CPLF. The reason for this
is that an n-simplex is the simplest n-dimensional polytype and
are therefore easy to manipulate. More specifically, an n-simplex
is constructed by taking the convex hull of a set of n + 1 affinely
independent vertexes in {p1, . . . ,pn+1} ∈ Rm (m ≥ n), and is
denoted by ∆n. Note that we will omit the superscript n when its
value is clear from the context. The set of points enclosed by a
simplex is given by the following equation:

∆n = {x ∈ Rm|
nX

i=1

aipi = x,
X

i

ai = 1, ∀i : ai ≥ 0} (5)

Now, an n-ary CPLF f : D → R is defined by a set of n-
simplexes in Rn+1: {∆1, . . . ,∆m} ⊂ Rn+1. Here, domain D is
the Cartesian product of the domains of its variables (x1, . . . , xn):5

4A convex polytope is a multi-dimensional generalisation of the
two-dimensional convex polygon. In n dimensions, it is a convex
hull of at least n+ 1 points.
5In what follows, (x1, . . . , xn) and x are used interchangeably.

0
5

10

0

5

10
0

2

4

6

8

x
1

x
2

f(
x 1, x

2)

Figure 3: An example of a CPLF in two dimensions. This CPLF
encodes the utility of two sensors S1 and S2 in the wide area
surveillance scenario described in Section 5.1. Sensor S1 can
be active for l1 = 2 out of every L = 10 time units, while S2

can be active for l2 = 5 out of every 10 time units.

D = Dx1 × · · · × Dxn . Since each xi is a scalar, Dxi is a closed
interval in R. Consequently, D is an interval in Rn, or an n-cube.
From the definition of a CPLF, we require that the projection of the
simplexes that make up f is a partition PD of D. More formally,
PD = {e∆i|1 ≤ i ≤ m,

S
i
e∆i = D, e∆i

T e∆j = ∅, 1 ≤ i < j ≤
m}, where e∆i is the projection of ∆i onto the x hyperplane.

4.2 Summation of Two CPLFs
In order to perform the summation of two CPLFs g and h, we
need to compute the simplexes that make up function f such that
∀x ∈ D : f(x) = g(x) + h(x) holds. We denote the operator
that adds two CPLFs as ⊕, which works in two steps. First, we
need to compute a domain partition Pf of f , such that Pf contains
a corner6 at every corner in g and h. Second, we need to compute
the values of f at each vertex p of the simplexes that partition f .
The latter step is trivial; for each vertex p, evaluate g(p) and h(p)
and add them together. However, the former step is a little more
involved, since computing the domain partition of f involves over-
laying or merging the partitions Pg and Ph in order to determine
where the sum of g and h might have a corner. Algorithm 1 details
how to perform this partition and it proceeds in two main steps:

1. Copy partition Pg to the variable Pf that contains the result
6A corner is the location at which two simplexes meet at an angle.

x2

x1

x2

x1

x2

x1

Figure 2: (a) Domain partition Pg of function g. (b) Domain partition Ph of function h. (c) Merged partition Pf of function f = g⊕h.

Algorithm 1 An algorithm for merging two partitions

Input: Partitions Pg and Ph

Output: Partition Pf = Pg ⊕ Ph

1: Pf ← Pg

2: for all ∆ ∈ Ph do
3: for all p ∈ {p∆

1 , . . . ,p∆
n+1} do

4: Pf ← S(Pf ,p)
5: end for
6: end for
7: for all ∆h ∈ Ph and ∆f ∈ Pf do
8: for all intersections p of the edges of ∆h with the (n − 1)-faces of

∆f do
9: Pf ← S(Pf ,p)
10: end for
11: end for
12: return Pf

while it is constructed (line 1).

2. Merge every simplex in Ph with Pf by overlaying it on Pf :

(a) Add the vertexes of all simplexes in Ph to Pf (lines 2
to 6).

(b) Add the edges of the simplexes in Ph to Pf (lines 7 to
13). These edges are the corners of h, and therefore
need to be present in Pf .

As an example, Figures 2(c) shows the output of Algorithm 1 on
the partitions shown in Figures 2(a) and 2(b). Note that the parti-
tion of f shown in Figure 2(c) indeed has corners at every location
where function g and h have corners.

To complete the specification of Algorithm 1, we need to define
the split operator S that is essential in the merge process (lines
4 and 10). Specifically, the split operator S partitions a simplex
∆n around a point x: S(∆n,x) = {∆n

1 , . . .∆
n
m}. Thus, each

∆n
i ∈ S(∆n,x) is obtained by creating a simplex with vertexes
{x,p1, . . . ,pn+1} \ {pi}. Depending on the location of x in ∆n,
the split operator creates a different number of simplexes. In more
detail, depending on the complexity of the face7 of ∆n on which x
lies, S splits ∆n into at least 1, and at most n simplexes. Figures
4(b) and 4(c) show how the 2-simplex in 4(a) is split on points on
a 2-face (body) and a 1-face (edge) respectively. Note that, in the
latter case, the simplex is split in two, since vertexes {p1,p2,x}
are not affinely independent, and therefore do not form a simplex.
Splitting on a 0-face (or vertex) does not split the simplex, neither
does splitting on a point outside the simplex. To avoid cluttering
7The faces of a simplex are simplexes that make up its boundaries.
The complexity of a face of an n-simplex is its dimensionality,
which ranges from 1 to n. A face of complexity i is called an i-
face. A 0-face is a vertex of the simplex, a 1-face is an edge, a
2-face is a triangle, etc. The n-face of the simplex is the simplex
itself, which is also referred to as the body.

∆2

p2

p3p1

(a)
p1

∆2
2

x
∆2

1∆2
3

p3

p2

(b)
p1 p3

p2

∆2
2

∆2
1x

(c)

Figure 4: (a) A 2-simplex. (b) Splitting a 2-simplex on point
x on a 2-face. (c) Splitting a 2-simplex on point x on a 1-face
(edge)

0 2 4 6 8 10
4

5

6

7

8

9

x
1

g(
x 1)

Figure 5: A CPLF y = g(x1, x2) projected onto the (x1, y)
plane. The dotted line indicates the upper envelope of these
simplexes, and equals g(x1) = maxx2 g(x1, x2).

the notation in Algorithm 1, we denote the operation of splitting all
simplexes in a partition P on a point as S(P,x), which is shorthand
for ∪∆∈PS(∆,x).

4.3 Marginal Maximisation of a CPLF
Marginal maximisation is the second operator that is needed in
max-sum. It takes as input a function y = f(x1, . . . , xn), and com-
putes a single-dimensional CPLF f(xi) = maxx\i f(x1, . . . , xn).
This is achieved by first projecting all simplexes of f onto the
(xi, y) plane and then extracting the upper envelope. In more de-
tail, in order to project a n-simplex ∆, we project each of its m =`

n
2

´
edges to obtain a set of line segments S∆ = {s1, . . . , sm}.

The upper envelope ÛS of the set S of all projected line segments

of all simplexes that make up f is then a function:

ÛS(x) = max{s(x)|s ∈ S ∧ x ∈ [ss, se]}

where [ss, se] is the closed interval on which line segment s is de-
fined. The upper envelope of a set of n line segments can be com-
puted in O(n logn) operations [6].

Figure 5 shows an example of this operation. In this figure the
function y = g(x1, x2) is projected onto the (x1, y) plane. This
function g(x1, x2) is the sum of the function from Figure 3 and
the function h(x1, x2) = 0.1x2 that slightly shears it along the x2

axis8. The figure also shows the upper envelope of this projection
that is the result of applying the marginal maximisation operator on
this function g with respect to variable x1.

4.4 Instantiating the Continuous Max-Sum
Algorithm

Now that we have defined the CPLF and the two required oper-
ations, we can instantiate the max-sum algorithm for continuous
variables, by defining the processes through which messages be-
tween the variables and functions are computed:

• From variable to function (Equation 2). Since the messages
rk→i(xi) are real-valued functions of a single continuous
variable xi, computing qi→j involves summing over single-
dimensional CPLFs using the⊕ operator of Section 4.2. The
addition of scalar aij is then a trivial operation.

• From function to variable (Equation 3). The computation
of the message rk→i(xi) proceeds in two steps. First, the
expression between the brackets is evaluated. The first term
in this expression is the utility of agent j, which is a CPLF.
The second term is the sum of multiple single-dimensional
CPLFs of different variables, which is a multi-dimensional
CPLF. So, to evaluate this expression, we add the first and
second term using the ⊕ operator, which, again, results in a
CPLF. Second, we use the marginal maximisation operator
on this CPLF to obtain the message as required.

Now that we have performed the necessary steps to instantiate the
continuous max-sum algorithm, we will compare its performance
with that of the discrete max-sum algorithm next.

5. EMPIRICAL EVALUATION
To empirically validate the performance of our continuous max-
sum algorithm, we focus on its application for coordinating a net-
work of energy constrained wireless sensors deployed for a wide
area surveillance task. We choose this application domain since it
represents a challenging real world coordination problem which in-
volves continuously valued control parameters, and also allows us
to empirically compare the performance of our novel continuous
max-sum algorithm against the conventional discrete one. We note
that the discrete max-sum algorithm has previously been bench-
marked against approximate (DSA) and complete (DPOP) tech-
niques for DCOPs in a graph k-colouring test-bed [2], and was
shown to obtain better solutions than DSA while scaling very well
with the number of agents, in terms of total message size (as op-
posed to the exponential increment exhibited by DPOP).

In the following, we first describe the problem scenario in detail
and then instantiate the agents’ utilities in this setting. We then de-
scribe the application of both the conventional discrete max-sum al-
gorithm and our novel continuous max-sum algorithm to this prob-
lem, and empirically compare their properties.
8This is equivalent to receiving a message q2→f (x2) = 0.1x2 from
variable x2.

S1 A{12} A{2}
S2

A{3}
S3

A{13}

A{123}

A{1}
A{23}

(a)

l1

l3

0 l1 + l2l1

l2

L

S1

S2

S3

P (X1,2,3)

(b)

Figure 6: (a) Example coordination problem in which three
sensors, {S1, S2, S3}, have sensing fields that overlap (b) An
optimal solution

5.1 The Wide Area Surveillance Scenario
We consider a network of wireless sensors that are randomly de-
ployed within some area to detect events (e.g. vehicle and pedes-
trian activity in an urban setting). We assume that these sensors are
able to harvest energy from the environment (e.g. using a photo-
voltaic cell or vibration-harvesting microgenerators), but at a rate
that is insufficient to allow them to be powered continually. Thus
at any time a sensor can be in one of two states: either sensing or
sleeping. In the former state the sensor consumes energy at a con-
stant rate, and is able to interact with the surrounding environment
(e.g. it can detect events within its sensing field and communicate
with other sensors). In the latter state the sensor can not interact
with the environment but it consumes negligible energy. To main-
tain energy-neutral operation [8], and thus exhibit an indefinite life-
time, sensors adopt a repeated schedule of length L, during which
each sensor can be active for only a given time li. This amount
of time depends on specific characteristics of the environment sur-
rounding the sensor, and the way energy is harvested. For example,
if a sensor is using solar panels to harvest energy, sensors which are
in shaded regions will have shorter duty cycles compared to those
located in spots with a greater exposure to sunlight.

The sensing ranges of multiple sensors will typically overlap.
However, just a single sensor is required to be active in order to
detect an event. Thus, there is no gain for the system in having
more than one sensor actively sensing the same region (i.e. we
have a sub-additive utility function), and hence, to maximise the
probability of detecting events while maintaining energy neutral
operations, sensors whose sensing fields overlap should coordinate
the start times of their duty cycles. Therefore, in this setting, the
continuously valued control parameter, xi, represents the time at
which sensor i will start sensing, while the domain over which this
variable can take values is the interval [0, L]. Once the sensors
have decided on the value of this parameter, they will repeat this
schedule indefinitely.

5.2 Applying the Max-Sum Algorithm
In order to apply the max-sum algorithm, in either its continuous
or discrete forms, it is first necessary to instantiate the agents’ util-
ity functions for this problem. Thus, we define Ni to be a set of
indexes indicating which other sensors’ sensing fields overlap with
that of sensor i and k is any subset of Ni (including the empty
set). A{i}∪k is the area that is overlapped only by sensor i and
those sensors in k. For example, with respect to Figure 6(a), which
shows the three overlapping sensors, the areaA{1,2} is the area that
is sensed only by sensors 1 and 2.9 In a slight abuse of notation,

9Here, we assume that sensors have knowledge of the overlaps they
have with their neighbours. While this may not hold in all applica-

0 5 10 15 20 25 30 35
0.75

0.8

0.85

0.9

0.95

Discretisation

So
lu

tio
n

Q
ua

lit
y

Continuous
Discrete

(a) Solution quality after 20 iterations

0 5 10 15 20 25 30 35
0.75

0.8

0.85

0.9

0.95

Discretisation

So
lu

tio
n

Q
ua

lit
y

Continuous
Discrete

(b) Averaged solution quality over 20 iterations

Figure 7: Solution quality as a fraction of the optimal solution. Error bars are the standard error in the mean.

we represent the entire sensing area of sensor S1 as S1, and thus,
note that the area A{1,2} is different from S1 ∩S2 because the area
S1 ∩ S2 would include also the sub area S1 ∩ S2 ∩ S3. In general,
we have:

A{i}∪k =
\

j∈({i}∪k)

Sj \
[

l6∈({i}∪k)

Sl (6)

The utility of sensor i is then simply given by the weighted sum
of the probability of detecting an event in any particular sub area:

Ui(xi) =
X

k⊆Ni

A{i}∪k
|{i} ∪ k| × P (x{i}∪k) (7)

where P (x{i}∪k) is the probability of detecting an event per unit
area given the combined sensing schedules of sensors {i} ∪ k. In
our experiments, we assume that this is simply given by the fraction
of the time during which at least one sensor is actively sensing dur-
ing the interval of length L. Note, that we divide each sub area by
the number of sensors who can sense it to avoid double-counting
areas that are represented by multiple sensors. In addition, when
the set k is empty we consider the area covered only by the sin-
gle sensor. For example, the utility of sensor S2 shown in Figure
6(a), is calculated by considering the areas A{2}, A{1,2}, A{2,3}
and A{1,2,3}.

Given this utility function we can now decompose it into a fac-
tor graph on which we run the max-sum algorithm. As discussed
in Section 3, there are several ways of doing this. Here, we use
a separate function to represent the utility of each sub area and
connect this function to all variable nodes that represent sensors
whose sensing field overlaps with this sub area. We then remove
the functions that model areas where more than two sensors over-
lap, which is equivalent to only considering pairwise interactions
between agents. This is a very common approach in the DCOP lit-
erature, and one that reduces the computational complexity of the
coordination, while still providing good solutions in this particular
scenario. However, we note that our formalism supports modeling
higher order interactions. We can now apply both versions of the
max-sum algorithm directly to this factor graph.

5.2.1 The Discrete Version
To apply the discrete max-sum algorithm, we artificially discretise
the continuously valued control parameter and only allow the sen-
sors to select xi from a set of d discrete values in the range [0, L].
The summation and marginal maximisation operators of the max-
sum algorithm are performed over this discrete sample space, and

tions, we use this simplified model here to focus on the coordina-
tion aspects of this application scenario.

the messages exchanged by the sensors are represented by single-
dimensional functions evaluated at the d possible sample points.

5.2.2 The Continuous Version
To apply the continuous max-sum algorithm, we use the results
derived in Section 4 to represent the utility functions of the factor
graph as continuous piecewise linear functions. For example, the
function in Figure 3 encodes the utility for two sensors overlapping
in a sub area, with l1 = 2, and l2 = 5. The function has a minimum
plateau when the active sensing periods of both sensors completely
overlap in time (e.g. when x1 = x2 = 0), and a maximum plateau
when sensors do not (e.g. when x1 = 0 and x2 ∈ [2, 5]).

Consider the following example that illustrates the difference be-
tween the discrete and continuous max-sum algorithms. Suppose
that sensors are deployed as in Figure 6(a), and suppose that to
maintain energy neutral operations, the three sensors can be active
for l1, l2, and l3 time units out of L (with l1 + l2 + l3 = L). In this
case, an optimal solution10 is the one reported in Figure 6(b) where
x1 = 0, x2 = l1 and x3 = l1 + l2. Notice that, while continu-
ous max-sum is able to assign any value in the interval [0, L] to the
sensors’ variables, discrete max-sum will be able to find the opti-
mal solution only if the chosen discretisation includes the points l1
and l1 + l2. However, as previously mentioned, the sensors’ duty
cycles depend on the sensor deployment and on the environment
configuration, and thus they are not known before-hand. Hence, it
is not possible to always choose a discretisation that includes the
optimal solution and thus discrete max-sum will result in subopti-
mal solutions.

5.3 Experimental Results
As described above, we performed experiments comparing the per-
formance of discrete and continuous max-sum algorithms to assess
the benefits and limitations of our approach. In particular, we com-
pare the two algorithms by considering the quality of the solution
and the communication overhead in terms of the size of messages
that the agents must exchange. We performed experiments on de-
ployments of 10 sensors, that are randomly scattered across a unit
square. These sensors have a circular shaped sensing area with a
radius of 0.2. The sensors’ duty cycles li are drawn from a uniform
distribution over [0.3, 0.6].

During the experiments we ran both versions of the max-sum al-
gorithm for 20 iterations. Each experiment consisted of a single
run of our continuous max-sum algorithm, and multiple runs of the
discrete max-sum algorithm with increasing levels of discretisation.

10Note that, in this case, there is an infinite number of optimal so-
lutions, which can be generated by shifting the starting times of all
sensors by an equal amount.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2
x 10

4

Discretisation

T
ot

al
 M

es
sa

ge
 S

iz
e

Continuous
Discrete

Figure 8: Total number of values exchanged between the
agents. Error bars are the standard error in the mean.

Figure 7 shows the aggregated results of 100 runs, where the solu-
tion quality is expressed in terms of the optimal solution computed
with a centralised simulated annealing algorithm.

Specifically, Figure 7(a) reports the quality of the final solution
(e.g., after the 20 iterations), while Figure 7(b) reports the average
quality of the solutions obtained after each iteration. The latter
metric incorporates information on how the algorithms behave over
time; the quicker the algorithms converge towards better solutions,
the higher the average.

Figure 7(a) shows that the final solutions produced by continu-
ous max-sum are better than those produced by discrete the discrete
version. In particular, continuous max-sum exhibit up to a 10% in-
crease in the solution quality for low discretisation levels. More-
over, Figure 7(b) shows that, when considering the average quality
of solution, the difference is more pronounced also for higher dis-
cretisation levels, thus showing that continuous max-sum is able to
reach good, stable solutions quicker than the discrete version.

In terms of total message size, we can conclude from Figure 8
that, as expected, the communication overhead of discrete max-sum
increases proportionally to the level of discretisation. Significantly,
the continuous max-sum algorithm achieves better solution quality
over the entire range of discretisations, even when the message size
of the discrete max-sum algorithm is greater than the continuous
version. Thus the continuous version generates better solutions,
and also requires less communication overhead.

6. CONCLUSIONS
In this paper, we presented a novel decentralised algorithm for
social welfare maximisation in multiagent systems. In particular,
we focussed on scenarios where the agents’ control parameters are
continuous, and the interactions between the agents is expressable
as a piecewise linear functions. We extended the existing max-
sum algorithm to operate in the domain of continuous variables
by using techniques from computational geometry. We empiri-
cally evaluated our approach by applying it to a wide area surveil-
lance scenario where energy constrained agents need to coordinate
their sense/sleep schedules to maximise the probability of event de-
tection in a decentralised fashion. We compared the continuous
max-sum algorithm with its conventional discrete counterpart, and
showed that our continuous algorithm is able to achieve solutions
of better quality while exhibiting a lower communication overhead.

Our future work in this area is to extend the proposed approach
by considering arbitrary functions that describe the agents’ interac-
tions. A promising direction to do this is to investigate the use of
techniques such as Gaussian processes (GPs). GPs provide a pow-
erful mathematical tool to approximate arbitrary continuous func-
tions, and thus, could be extremely useful to describe the agents’

interactions that are non-linear. An application scenario where this
is the case is, for example, the coordinated exploration of an uncer-
tain environments using mobile sensors. In this setting, the sensors’
goal is to reduce the uncertainty they have about the environment,
therefore the agent interactions are related to the amount of infor-
mation that sensors obtain and such measures usually require the
use of strongly non-linear functions.

7. ACKNOWLEDGMENTS
The work reported in this paper was funded by the Systems En-
gineering for Autonomous Systems (SEAS) Defence Technology
Centre established by the UK Ministry of Defence. This research
was undertaken as part of the ALADDIN (Autonomous Learning
Agents for Decentralised Data and Information Systems) project
and is jointly funded by a BAE Systems and EPSRC (Engineering
and Physical Research Council) strategic partnership
(EP/C548051/1).

8. REFERENCES
[1] S.M. Aji and R.J. McEliece. The generalized distributive law.

Information Theory, IEEE Transactions on, 46(2):325–343, 2000.
[2] A. Farinelli, A. Rogers, A. Petcu, and N.R. Jennings. Decentralised

coordination of low-power embedded devices using the max-sum
algorithm. In Proc. of the 7th Int. Conf. on Autonomous Agents and
Multiagent Systems, pages 639–646, 2008.

[3] S. Fitzpatrick and L. Meertens. Distributed Sensor Networks A
multiagent perspective, chapter Distributed Coordination through
Anarchic Optimization, pages 257–293. Kluwer Academic, 2003.

[4] B. J. Frey and D. Dueck. Clustering by passing messages between
data points. Science, 315(5814):972–976, 2007.

[5] B. Grocholsky, J. Keller, V. Kumar, and G. Pappas. Cooperative air
and ground surveillance. IEEE Robotics & Automation Magazine,
13(3):16–25, 2006.

[6] J. Hershberger. Finding the upper envelope of n line segments in
O(n log n) time. Inf. Process. Lett., 33(4):169–174, 1989.

[7] C. Hsin and M. Liu. Network coverage using low duty-cycled
sensors: Random & coordinated sleep algorithm. In Proc. of the 3rd
Int. Symposium on Information Processing in Sensor Networks,
pages 433–442, 2004.

[8] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava. Power
management in energy harvesting sensor networks. ACM
Transactions on Embedded Computing Systems, 6(4), 2007.

[9] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and
the sum-product algorithm. IEEE Transactions on Information
Theory, 42(2):498–519, 2001.

[10] D. J. C. MacKay. Information Theory, Inference, and Learning
Algorithms. Cambridge University Press, 2003.

[11] R. J. Maheswaran, J. Pearce, and M. Tambe. A family of
graphical-game-based algorithms for distributed constraint
optimization problems. In Coordination of Large-Scale Multiagent
Systems, pages 127–146. Springer-Verlag, 2005.

[12] R. Mailler and V. Lesser. Solving distributed constraint optimization
problems using cooperative mediation. In Proc. of the 3rd Int. Joint
Conf. on Autonomous Agents and MultiAgent Systems, pages
438–445, 2004.

[13] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT:
Asynchronous distributed constraint optimization with quality
guarantees. Artificial Intelligence Journal, (161):149–180, 2005.

[14] M. Paskin, C. Guestrin, and J. McFadden. A robust architecture for
distributed inference in sensor networks. In Proc. of the 4th Int.
Symposium on Information Processing in Sensor Networks, page
55–62, 2005.

[15] A. Petcu and B. Faltings. DPOP: A scalable method for multiagent
constraint optimization. In Proc. of the 19th Int. Joint Conf. on
Artificial Intelligence, pages 266–271, 2005.

[16] Y. Weiss and W. T. Freeman. On the optimality of solutions of the
max-product belief propagation algorithm in arbitrary graphs. IEEE
Transactions on Information Theory, 47(2):723–735, 2001.

