
Resource-Aware Junction Trees for Efficient Multi-Agent
Coordination

N. Stefanovitch
LIP6 - UPMC

75016 Paris, France
stefanovitch@poleia.lip6.fr

A. Farinelli
University of Verona

Verona, I-37134, Italy
alessandro.farinelli@univr.it

A. Rogers, N.R. Jennings
University of Southampton

Southampton, SO17 1BJ, UK
{acr,nrj}@ecs.soton.ac.uk

ABSTRACT
In this paper we address efficient decentralised coordination of co-
operative multi-agent systems by taking into account the actual
computation and communication capabilities of the agents.We
consider coordination problems that can be framed as Distributed
Constraint Optimisation Problems, and as such, are suitable to be
deployed on large scale multi-agent systems such as sensor net-
works or multiple unmanned aerial vehicles. Specifically, we focus
on techniques that exploit structural independence among agents’
actions to provide optimal solutions to the coordination problem,
and, in particular, we use the Generalized Distributive Law(GDL)
algorithm. In this settings, we propose a novel resource aware
heuristic to build junction trees and to schedule GDL computations
across the agents. Our goal is to minimise the total running time
of the coordination process, rather than the theoretical complex-
ity of the computation, by explicitly considering the computation
and communication capabilities of agents. We evaluate our pro-
posed approach against DPOP, RDPI and a centralized solver on
a number of benchmark coordination problems, and show that our
approach is able to provide optimal solutions for DCOPs faster than
previous approaches. Specifically, in the settings considered, when
resources are scarce our approach is up to three times fasterthan
DPOP (which proved to be the best among the competitors in our
settings).

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: [Coherence and coor-
dination, Multiagent systems]

General Terms
Algorithms, Performance, Experimentation

Keywords
multiagent coordination, junction tree, treewidth, variable elimina-
tion, heuristic algorithm, GDL, DCOP

1. INTRODUCTION
Many practical applications require the development of effective
decentralised coordination techniques for cooperative multi-agent
systems. For example, agent-based techniques have been widely

Cite as: Resource-Aware Junction Trees for Efficient Multi-Agent Coor-
dination, N. Stefanovitch, A. Farinelli, A. Rogers and N. R.Jennings,Proc.
of 10th Int. Conf. on Autonomous Agents and Multiagent Systems
– Innovative Applications Track (AAMAS 2011), Tumer, Yolum, So-
nenberg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. XXX-XXX.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

used to control physical devices which can acquire and process in-
formation from the environment, such as sensor networks deployed
to collect environmental data [12] or multiple unmanned aerial ve-
hicles deployed to collectively patrol and map a defined area[16].
The development of decentralised coordination techniquesis par-
ticularly challenging in these domains because such devices usually
have constrained computational resources (due to the requirement
of minimising power consumption) and because communication
is usually limited in bandwidth and is dependent on the physical
distance and mutual positions of the devices (due to the wireless
communication technology frequently used). Moreover, to develop
more cost effective systems, and to manage legacy, it is expected
that the devices within such networks will be heterogeneous; hav-
ing different computation and communication capabilities.

Recent work has shown that to develop effective and efficient
coordination techniques it is crucial to exploit the structural inde-
pendence between the agents’ utility functions (i.e. the fact that
the utility of each agent only depends on its own choice of action
and that of a small number of locally interacting neighbours) [16,
14]. Doing so allows the decentralised coordination problem to be
framed as a Distributed Constraint Optimisation Problem (DCOP),
enabling a number of optimal algorithms to be used as solution
techniques, e.g., ADOPT [9], OptAPO [8] and DPOP [15].

However, these algorithms take no account of the heterogeneous
computational and communication resources available to the dif-
ferent agents within the system. In many settings, and particularly
in the cooperative settings we focus on here, it may be beneficial
to delegate computations such that (i) we take advantage of agents
with greater than average computational capabilities, and(ii) we
minimise communication between agents with poor communica-
tion links. Current algorithms for solving DCOPs do not consider
such strategies. For example, DPOP arranges the constraintnet-
work into a pseudo-tree using a Depth First Search (DFS) method.
While the DFS can be conveniently performed using distributed
algorithms, it does not take into account agents’ individual compu-
tation and communication capabilities, and it can result inan inef-
ficient allocation of computations to the agents. In contrast Paskin
and Guestrin developed an approach to cope with networks that
have poor quality communication links (as it is frequently the case
with wireless networks)[14]. Their approach uses the routing tree
of the communication network to arrange agents into ajunction
tree, which is then further optimised in order to minimise commu-
nications. While this work takes computation and communication
into account, it forces the junction tree structure to be a spanning
tree of the communication network, which can, as we shall show
later, significantly reduce the efficiency of the coordination process.

Thus, against this background, in this paper we address these
shortcomings by proposing aresource awaresolution technique
for DCOPs. Our approach pre-processes the constraint network by

building a junction tree, over which optimal inference is performed
using standard message passing techniques, such as those provided
by the Generalised Distributive Law (GDL) framework [1]. Junc-
tion trees are well known structures, frequently used in graphical
models and constraint processing [7] and while finding the optimal
junction tree (in the sense of a minimal size of the largest clique)
is NP-hard, a number of heuristics that build near optimal junction
trees are well known. Here, we propose a distributed approach to
build the junction tree that is based on the variable elimination algo-
rithm [5], but is extended to consider the heterogeneous nature of
both computational and communication resources within thenet-
work. In this context, the optimal tree is not the one that minimises
the theoretical complexity of the computation (as is the case within
the standard literature of junction trees), but is the one that min-
imises the total running time of the coordination algorithm(includ-
ing both the time required by the agents to individually compute
their partial solutions, and the time for these solutions topropagate
up and down the junction tree).

In doing the above, this paper makes the following contributions
to the state of the art:

• We present the first model of decentralised coordination that
explicitly considers the total running time required by a co-
ordination algorithm that operates in heterogeneous multi-
agent system.

• We propose a novel distributed algorithm, based on the vari-
able elimination algorithm, which uses a novel resource aware
heuristic to minimise the running time of the coordination
process (as defined above).

• We empirically evaluate the proposed technique on a simu-
lated environment, comparing it with three state of the art
approaches for multi-agent systems: the pseudo-tree builtby
DPOP, the junction tree formation algorithm of Paskin and
Guestrin, and a benchmarking centralised approach. Our re-
sults show that, when communication resources are scarce,
our resource aware heuristic improves upon previous tech-
niques being up to 3 times faster than DPOP, which proved
to be the best competitors in our settings.

The rest of the paper is organised as follows: Section 2 pro-
vides basic background knowledge on DCOPs and graphical mod-
els while Section 3 formalises the problem we are addressing. Sec-
tion 4 details our approach and the resource aware heuristicwe
propose. Section 5 presents the empirical analysis of our approach,
Section 6 discusses related work and Section 7 concludes.

2. BACKGROUND
We provide here a brief review of background knowledge concern-
ing DCOPs, junction trees and the GDL framework.

2.1 Distributed Constraint Optimisation Prob-
lems

Formally a DCOP can be defined as a tuple〈A,X ,D,Ψ〉, where
A = {A1, . . . , Ak} is a set of agents,X = {1, . . . , n} is a set of
variables. Each variable is owned by exactly one agent, but an agent
can potentially own more than one variable. An agent is responsible
for assigning values to the variables it owns.D = {D1, · · · ,Dn}
is a set of discrete and finite variable domains, each variable i can
take value in the domainDi. Finally, Ψ = {ψ1, . . . , ψm} is a
set of constraint functions that describe the constraints among vari-
ables. Each functionψi : Di1 × · · · ×Diri

→ R depends on a set
of variableXi ⊆ X , whereri = |Xi| is the arity of the function.
Each function assigns a real value to each possible assignment of

X1

X2

X3 X4

X5

X6

4 2

4 8

10 5

8

8

2

8

8

2

2

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7 ψ8

Figure 1: Example of a MAS coordination problem : commu-
nication (wide grey edges) and constraint network (thin black
edges), nodes represent both agents and variables

the variables it depends on. Given this settings, we wish to find the
variable assignmentX∗ such that the sum of all constraint func-
tions is maximised:

X
∗ = arg max

X

m
X

i=1

Ψi(Xi) (1)

2.2 Junction Trees
DCOPs can be solved using message passing algorithms acrossthe
constraint network; a graph representation of a DCOP where nodes
are variables and edges are constraint functions. However,in or-
der to ensure completeness and termination, the constraintnetwork
must be a tree. If this is not the case, then it is necessary to trans-
form the original constraint network into a special graphical struc-
ture called a junction tree. This is done by forming a clique graph
whose nodes (cliques) and edges (separators) are clusters of vari-
ables. A junction tree is simply a clique graph which satisfies the
following four properties: single-connectedness, running intersec-
tion, covering and maximality. Single-connectedness ensures that
the graph is a tree, yielding termination. Running intersection en-
sures that any variable present in the intersection of the domain of
two cliques is also present in every clique of the path joining them,
yielding correctness. Covering ensures that the domain of every
constraint function of the DCOP is the subset of at least one clique.
Maximality states that a clique can not have a domain which is
a subset of the domain of another clique. One of the most well-
known algorithms to transform a constraint graph into a junction
tree is the variable elimination algorithm. This algorithmworks by
sequentially selecting variables of the constraint graph,eliminating
them and forming cliques accordingly (see [7] for more details).

2.3 GDL
Having formed a junction tree, the optimal solution of the DCOP
can be found using a suitable message passing algorithm, of which
GDL is the most general [1]. The GDL algorithm uses two oper-
ators,⊗ for function combination and⊕ for function marginalisa-
tion, and exploits the distribution property of⊗ over⊕. It works by
passing messages along the edges of the junction tree and perform-
ing computation at the level of the nodes. DCOPs can be solvedby
GDL using thesum andmax operators respectively.

A message from a cliquen to a cliquem is a utility function
defined recursively over the intersection of the domains ofn andm

by the formula:∀y ∈ d(m)∩ d(n), where the functiond gives the
set of variables associated to a clique or separator (collect phase):

ψn→m(y) = ⊕x∈d(n)\d(m)(⊗i∈Γ(n)\mψi→n ⊗ ψn)(x ∪ y)

A special node, called the root, receives the information from all of
its neighbours. It computes the optimal instantiation of its variables
and then starts the recursive phase of local optimisation yielding the
global optima (propagation phase). Specifically hen a cliquem re-
ceives the instantiation from its parentn it conditionally optimise
the instantiation of its variable and then propagates the set of in-
stantiation it knows:

x
∗
n = (arg⊕x∈d(n)\d(m)(⊗i∈Γ(n)\mψi→n⊗ψn)(x∪x∗

m∩n))∪x∗
m∩n

Both the collect and propagation phases can be performed with a
linear number of messages. However, during the collect phase, the
computation of the messages and the size of the messages are ex-
ponential in the size of the clique sending them, and the cardinality
of the corresponding separator respectively.

The use of junction trees in combination with the GDL algo-
rithms is attractive as they inherently work in a distributed way by
message passing. Moreover such an approach is efficient as itis
exponential only in the treewidth rather than in the total number
of variables. The treewidth is a parameter of a tree decomposition
which is the size of the largest clique, and is usually far smaller than
the total number of variables. Finding a junction tree of minimal
treewidth is however an NP-hard problem [7].

3. PROBLEM DESCRIPTION
Having presented the necessary background, we now formallyde-
scribe the problem that we tackle; that of, minimising the total run-
ning time of a coordination algorithm when faced with heteroge-
neous computational resources, and a bandwidth constrained com-
munication structure. To this end, we introduce the conceptof a
computationaltask to model the GDL solution process for DCOP.
A computational taskτ (ψn→m(y)) describes the amount of com-
putation that an agent has to perform in order tocomputethe mes-
sageψn→m(y) defined in Section 2.3.

Since the computation of a messageψn→m(y) recursively de-
pends on the computation of messages from neighbouring cliques,
these computational tasks are tied by the set of execution con-
straintsEC(τi) = {τ i

1, · · · , τ
i
k} whereτ i

j are tasks that must be
executed beforeτi. We denote the set of all the computational tasks
asT, and this consists of the set of cliques of the junction tree and
the set of constraint functions1. Execution of a computational task
involves the processing of constraint functions and received mes-
sages (i.e., the summation of those functions and the maximisation
over some subsets of the decision variables) in order to compute
the message. Each computational task is assigned to a singleagent,
which is responsible for all the aspects of the execution of this task.
We denoteα : T→ A the function representing this allocation.

Thecompletion timeof a taskτ depends on its size (given by the
size function), on the computational power of the agentα(τ) ex-
pressed as the number of constraint checks per unit of time (given
by thespeed function), and on the characteristics of the communi-
cation links used to route the messages produced by the execution
of EC(τ) to the agentα(τ) (given by thetrans function). The
completion time of a single computational task, can then be defined

1Constraint functions can be seen as computational tasks requiring
no processing from the agent side, but requiring some non-zero
transmission time to the agent responsible of the clique to which
the constraint function is allocated.

X1X2X3

X1X3X6 X3X4X6

X4X5X6

X1X3

X3X6

X4X6

ψ1ψ2ψ7

ψ6 ψ3

ψ4ψ5ψ8

∗

1

3 3

4

Figure 2: Instance of a solution obtained on the MAS coordi-
nation problem of Figure 1

as a functionCT : T→ N, whose expression is:

CT (τ) = maxτi∈EC(τ)CT (τi) + transα(τi),α(τ)(τi)

+size(τ)/speed(α(τ))

Note that, we assume that agents are not multitasking and tasks
are not preemptive, such that agents can either compute, send or
receive messages at any time, and can not interrupt one of those
activities if already started. We consider a restricted communi-
cation structure composed of pairwise communication links. For
each link we consider a symmetric limited bandwidth that defines
the time required to transmit messages over the link. If an agent
on the shortest path between two agents is performing one of the
above activities, messages between these two agents have either to
wait or to find a new route. Such a setting models some impor-
tant aspects of wireless sensor networks such as limited bandwidth,
limited connectivity, multi-hop communication and possible net-
work congestions. Small bandwidth values can represent both low
throughput reliable communication links or high throughput unre-
liable communication links.

Figure 1 shows an exemplar instance of a constraint network as-
sociated with a restricted communication network. The nodes rep-
resent decision variables, the thin black edges are constraint de-
pendencies between the variables. Constraints that hold between
variables are associated with constraint functionsψi as shown in
the figure. The thick grey edges represent the underlying commu-
nication network between the agents responsible for the variables.
Numbers next to those edges correspond to the bandwidth of the
communication links while numbers next to the agents represent
computational speed of the agents.

Now, given any specific constraint network, we can define the
set of computational tasks and the set of messages that need to be
computed and propagated according to the GDL algorithm. The
GDL algorithm can then be described as the execution of the associ-
ated computational tasks using agents as computational resources.
Specifically, given a DCOP instance〈A,X ,D,Ψ〉, to obtain the
set of associated computational tasks we have to choose a setC
of cliques, an allocationαΨ : Ψ → C of constraints functions to
cliques, and an allocationαC : C → A of the cliques onto the
agents. We can now defineMS(C, αΨ, αC) as the time to com-
plete all tasks subject to the execution constraints. Such acriterion
is known as the makespan in the scheduling literature2, and in our
setting it corresponds to the time at which the last task has been
computed (which is the maximisation of the root clique). There-
fore, representing the special task associated to the root clique of
the GDL algorithm asτr, the makespan can be defined as:MS =

2The makespan is a concept more general but akin to the number
of non concurrent constraint checks in DCOP literature since it ex-
plicitly takes into account communication delays

CT (τr). Our aim is then to find the junction tree, the allocation of
constraints to cliques and cliques to agents that will minimise this
makespan, such that:

arg min
C,αΨ,αC

MS(C, αΨ, αC)

Unfortunately, optimally scheduling a set of tasks onto a set of
heterogeneous processors, even without considering communica-
tion, is known to be NP-hard [18]. Therefore, in this paper, we aim
to design an effective heuristic that works well in practise.

4. RESOURCE-AWARE JUNCTION TREES
Here we present our approach to build junction trees and allocate
computational tasks to agents in order to heuristically minimise
the makespan of the coordination process. We first note that the
minimisation problem stated in the previous section can be divided
into two sub-problems: (i) finding a suitable junction tree decom-
position of the problem, by defining cliques and allocating con-
straint functions to cliques; (ii) allocating the resulting computa-
tional tasks to agents to minimise the makespan. However, the two
subproblems are interconnected because grouping of variables in
cliques induced by the junction tree impacts on the computation
and communication that agents need to perform. The approachwe
propose treats both subproblems at the same time, and it is divided
into two key parts: a distributed protocol that implements variable
elimination and a novel resource aware heuristic (RAH) thatseeks
to select variables in order to heuristically minimise the makespan
of the coordination process.

Distributed Protocol for Variable Elimination
This protocol is a distributed negotiation protocol that extends the
variable elimination algorithm by making use of calls for proposals
(CFP) and bids in order to determine the next variable to elimi-
nate and the agent responsible for the associated clique maximisa-
tion. Our protocol proceeds by each agent broadcasting one CFP
for each variable it is responsible for. Each agent then replies to
a CFP by estimating the makespan associated with itself being re-
sponsible for the computation of the clique that would be created
if the variable specified in the CFP was eliminated. Given this de-
scription, we now formally define the key elements of our protocol.
•A constraintis a tuple〈f,Xf , ψf , af 〉, wheref is the identifier

of the constraint,Xf ⊆ X is the domain (or label) of the constraint
function,ψf : 2Xf → R is the constraint function andaf ∈ A is
the identity of the agent owning the constraint.
• A variable is a tuple〈X,ΓX ,Γ

past
X , aX , cX〉, whereX is the

identifier of the variable,ΓX ⊆ X is the set of neighbours of
this variable in the constraint graph,Γpast

X ⊆ X is the set of for-
mer neighbours that have already been eliminated,aX ∈ A is the
agent responsible for this variable andcX ∈ C is the clique related
to the elimination of this variable (initially void). For instance,
in the Figure 1 variableX2 is represented by the following tuple
〈X2, {1, 2, 3}, {}, 2, ∅〉.
• A cliqueis a tuple〈c,Xc,Ψc,Γ

C
c ,Xc, ac〉, wherec is the iden-

tifier of the clique,Xc ⊆ X is the domain (or label) of the clique,
Ψc ⊆ Ψ is the set of constraint functions allocated to the clique
(initially void), ΓC

c ⊆ C is the set of neighbours in the junction tree
(initially void), Xc ∈ X is the variable whose elimination led to
the creation ofc andac ∈ A is the identity of the agent responsi-
ble of the clique. For instance in the Figure 2 the cliqueX1X2X3

is represented by the following tuple〈X1X2X3, {X1,X2, X3},
{ψ1, ψ2, ψ7}, {X1X3X6},X2, 1〉.
• An agentis a tuple〈a,Xa,Ψa, Ca,Γ

com
a 〉, wherea is the iden-

tifier of the agent,Xa ⊆ X is the subset of variables the agent
owns,Ψa ⊆ Ψ is the set of constraint functions allocated to the

agent,Ca ⊆ C is the set of cliques allocated to the agent (initially
void) andΓcom

a ⊆ A is the set of neighbours of the agent in the
communication graph. For instance in the Figure 2, agent 3 isrep-
resented by the following tuple〈3, {X3}, {ψ3, ψ6}, {X1X3X6,
X3X4X6}, {1, 2, 3}〉.
• A CFP is initiated by one agent which proposes to another to

take the responsibility of a clique (which is onlypartially created
and initialised). Formally a CFP is a tuple〈s, c, d〉, wheres ∈ A is
the sender agent,d is a date (the number of the bidding turn), and
c is a clique, whose function (of exponential size) is not created.
The initialised fields ofc are Ψc - with the list of subfunctions
that would be allocated toc, ΓC

c - with the list of neighbouring
cliques in the junction tree (this set is needed to determinethe set of
separators, which in turns define the scope of messages that would
have to be transmitted or received byc andXc - which identifies
the variable for which the CFP has been sent.
• A bid is formally a tuple〈s, r, cfp, clique, v〉 wheres ∈ A is

the sender agent,r ∈ A is the addressee agent,cfp is the CFP for
which the bid is a reply,clique is the identity of the clique to which
the constraint functions of the clique of the CFP will be allocated
andv ∈ R

+ is an evaluation of the time it would take the agents
to compute the clique proposed by agentr in his CFP.

Algorithm 1 Variable selection and elimination (selection)
1: parallel { treat_CFP() }
2: date← 0
3: while date < |X | do
4: // compute variables’ heuristic values
5: send_CFP()
6: treat_bids()
7: // select the next variable to eliminate
8: selected_bid← consensus_select(best_bid)
9: c← selected_bid.cfp.c

10: X ← Xc

11: // allocate the clique
12: if selected_bid.s = a then
13: Ca ← Ca ∪ {cX}
14: end if
15: // update the set of constraint

functions
16: if X ∈ Xa then
17: Ψa ← Ψa \Ψc

18: end if
19: // add new constraint dependencies

between each pair of neighbours
20: for Y ∈ Xa ∩ Xc do
21: for Z ∈ Xc : Y 6= Z do
22: if Y 6∈ ΓZ then
23: // extend variables’ neighbourhood
24: ΓZ ← ΓZ ∪ {Y }
25: ΓY ← ΓY ∪ {Z}
26: end if
27: end for
28: end for
29: // update variables neighbourhood with

respect to X
30: for all Xa ∈ Xa do
31: // remove variables’ constraint edges
32: ΓXa ← ΓXa \ {X}
33: // memorise variables’ past constraint

edges
34: Γpast

Xa
← Γpast

Xa
∪ {X}

35: end for
36: // reset the algorithm’s local variables
37: best_bid← ∅
38: date← date+ 1
39: end while
40: compute a maximum spanning tree and connect the cliques ac-

cordingly
41: start the GDL message passing inference algorithm

Having defined our terms we now present our protocol in al-
gorithms 1-5. Variable elimination works first by computinga
heuristic evaluation for each variable. This is done by concur-
rently executing the functionstreat_CFP (line 1 of Algorithm
1), send_CFP andtreat_bids (lines 5-6 of Algorithm 1). CFP
are used in order to assess the impact on the makespan of the elimi-
nation of a variable. In order to do so a CFP contains the clique cor-
responding to the elimination of this variable. No clique isadded to
the junction tree until a consensus has been reached on the variable
to eliminate (lines 9-14 of Algorithm 1), at which time only one
clique is actually created.
• send_CFP computes and sends a CFP for each of the variable

an agent is responsible for. The fieldΨc is filled with the set of con-
straint functions3 that would be allocated to this clique if actually
created, and the setΓC

c is filled accordingly with the neighbourhood
of this clique. Notice that this is a conservative estimation as the
actual neighbours will be computed in Algorithm 1 (line 40).A
CFP is compiled only with the information available in the direct
neighbourhood of the variable in the constraint graph (lines 4, 6
and 8). The CFP is then propagated to all the agents.4

• treat_CFP waits for incoming CFP and calls upon receiving
the procedureRAH_evaluate_clique. This function returns an
heuristic evaluation of the impact on the makespan for this agent to
compute the clique in the CFP. If the clique of the CFP has a domain
which is a subset of one of the cliques associated with a variable of
the agent, the evaluation is then set to 0, and the clique thatwould
be created is set to this already existing clique. Otherwise, the value
is left untouched and the clique that would be created is the one in
the CFP (lines 4-9). This is done in order to enforce the use of
maximal cliques only. The bid is then sent to the sender agent.
• treat_bids handles received bid messages. If an incoming

bid has an evaluation lower than the current best bid, it is selected
as the best bid (lines 5-8). The agent corresponding to the lowest
evaluation is stored inside the bid data structure. When allthe bids
have been received, the flow of control returns to Algorithm 1.
• selection is the function implementing the actual distributed

variable elimination algorithms. Once the previous algorithms com-
plete, it selects a variable to eliminate according to the heuristic
evaluation computed (line 7). This step is made through a consen-
sus, where each agent proposes the best bid it has received. Var-
ious algorithms such as a wave propagation algorithm [17] could
be used in order to perform a consensus, however the simplestway
is to propagate each message to all the agents. The variable and
the clique are then extracted (lines 8-9). The agent selected by the
winning bid adds the new clique to the set of cliques that it isre-
sponsible for (lines 11-13). The agent owning the selected variable
first updates the set of its constraint functions by removingthe ones
allocated to the new clique (line 17). All the neighbouring agents
of the selected variables update concurrently both their neighbour-
hood (lines 31-34) and the constraint neighbourhood of their vari-
ables (lines 24-25). It is necessary to do so in order to storeboth
the deleted edges (used to compute the heuristic) and the full set
of dependencies between variables (used to communicate with all
the relevant agents). When all the variables have been eliminated,
the cliques are connected together using a maximum spanningtree,
which enforces the tree structure and the running intersection prop-
erty of the junction tree [3]. This can be done efficiently in adis-
tributed way using the approach of [6]. Finally, Algorithm 1starts

3The actual function is not transmitted as it is of exponential size.
The heuristic can be computed by considering only its domain(see
line 13 of Algorithm 5)
4While each agent might not be able to reach all other agents
directly, messages will be propagated to all the agents possibly
though multi-hop communication.

the GDL messages-passing algorithm (line 41). The root nodeis
selected as the one in the middle of the diameter of the junction
tree.

Algorithm 2 Outgoing CFP management (send_CFP)
1: // compute and send CFPX

2: for all X ∈ Xa do
3: // compute the domain of the clique
4: Xc ← {X} ∪ ΓX

5: // compute the set of related constraint
functions

6: Ψc ← ∪Y ∈ΓX∪Γ
past
X
{〈f,Xf , ∅, aY 〉 : ψf ∈ ΨaY

,Xf ⊆

Xc}
7: // compute the set of related cliques
8: ΓC

c ← ∪Y ∈Γ
past
X
{cY }

9: // partially create the clique
10: clique← 〈c,Xc,Ψc,Γ

C
c ,X, ∅〉

11: // create the CFP
12: CFPX ← 〈a, clique, date〉
13: broadcastCFPX

14: end for

Algorithm 3 Incoming CFP management (treat_CFP)

1: if receive(cfp = 〈s, c, d〉) ∧ d = date then
2: v ← RAH_evaluate_clique(c)
3: // enforce the use of maximal cliques

only
4: if ∃X ∈ Xa : Xc ⊆ XcX

then
5: clique← cX
6: v ← 0
7: else
8: clique← c
9: end if

10: bid← 〈a, s, cfp, clique, v〉
11: sendbid
12: end if

Algorithm 4 Incoming bid management (treat_bids)

1: bids← ∅
2: while |bids| < |A| do
3: if receive(bid = 〈s, r, cfp, clique, v〉) ∧ r = a ∧ cfp.d =

date then
4: bids← bids ∪ {bid}
5: if best_bid.v > v then
6: best_bid← bid
7: v ← 0
8: end if
9: // select the next variable

10: end if
11: end while

As there are a finite number of variables and one variable is al-
ways eliminated at the end of each turn, this algorithm will always
terminate provided that there is no message loss. While we donot
deal with such an issue here, we note that such issue could be ad-
dressed by using other consensus approaches [4] or specific com-
munication protocol (such as for example TCP). Our protocolis
fully distributed as an agent only needs to know the constraints it
is involved with and the total number of agents in the system,at
no moment does an agent know the full set of constraints or vari-
ables. In contrast, each agent executes the part of the variable elim-
ination relative to their variables. The consensus protocol ensures
that at each step, all the agents are synchronised on the identity of
the eliminated variable. Therefore, our protocol is correct, and re-
sults in the same junction tree that would be created througha con-
ventional centralized variable elimination using our resource aware
heuristic.

(a) (b) (c)

Figure 3: Constraint graphs of (a) ring, (b) tree and (c) cluster
instances

Resource Aware Heuristic

Algorithm 5 RAH heuristic (RAH_evaluate_clique(c : clique))
1: v ← Xc

2: eval← +∞
3: a← identity of the current agent
4: timeComp← s(d(c))/speed(a)
5: // estimatetrans for τ ∈ C (separators)
6: timeSep← 0
7: for all c′ ∈ Ψc do
8: timeSep←max(timeSep,sp(a,ac′ ,s(Xc ∩ Xc′)))
9: end for

10: // estimatetrans for τ ∈ Ψ (constraint functions)
11: timeSub← 0
12: for all f ∈ ΓC

c do
13: timeSub←max(timeSub,sp(a,af ,s(Xf)))
14: end for
15: eval←min(eval,timeComp+timeSep+timeSub)
16: return eval

TheRAH_evaluate_clique procedure takes as input a clique and
gives an heuristic estimate of the impact on the makespan of the
computation of the clique on the current agent. This is done by
greedily allocating constraint functions to this clique and allocat-
ing the clique to one agent. In more detail, this procedure computes
the sum of three values: the time to compute the task, the timeto
transfer the allocated constraint functions, and the time to transfer
the messages of the execution constraints (lines 5-14 of Algorithm
5). The evaluation of the time to transfer messages is computed
as the size of the message divided by the maximal bandwidth be-
tween the involved agents. This computation is done by thesp
function (lines 8, 13 of Algorithm 5), where the functions returns
the number of elements in the utility table representing a function
given its domains. Note that this is an approximation since conges-
tion in the communication network will impact this result, however
as discussed in Section 3 we focus here on an effective heuristic
approach rather than an optimal allocation which is known tobe
NP-hard [10].

Figure 2 depicts the results of our approach applied to the MAS
coordination problem of Figure 1. The constraint function allo-
cation are indicated beneath the cliques, and clique allocation to
agents are indicated on top of each clique with the number of the
responsible agent. The asterisk denotes the root. In this instance,
agent 3 is responsible for two cliques as the heuristic estimates
that the makespan could best be reduced by saving communication
rather than exploiting distribution of computations.

5. EMPIRICAL EVALUATION
We empirically evaluate our RAH algorithm against two closely
related state of the art distributed inference algorithms:(i) DPOP,
whose pseudo-tree is built with a distributed DFS approach5, and
5We use here the most connected node (MCN) heuristics, which as

(a) (b) (c)

Figure 4: Three communication graphs of thecluster instance,
where (a) r=100, (b) r=300 and (c) r=700

(ii) RDPI (Robust Distributed Probabilistic Inference), the initial
junction tree construction of Paskin and Guestrin which builds a
junction tree over the minimum spanning tree of the communica-
tion network [14]. We also compare against a centralised bench-
marking approach, which generates a near-optimal junctiontree
using the standard variable elimination algorithm and theminimum
size(MS) heuristic, and then allocates all tasks to the fastest agent
in the system. We refer to this algorithm as MS.

We benchmark these algorithms on a set of three scenarios with
different constraint network structures. Agents are located in a
square of fixed size of 1000 unit and we consider three different
topologies: rings, trees and clusters with 30, 40 and 30 agents re-
spectively. For simplicity we consider that there are as many vari-
ables as agent; constraints are n-ary. Figure 3 shows the structure
of the three constraint networks considered.

For each scenario we perform a set of experiments by varying the
communication range (i.e., the distance within which two agents
can communicate) in order to study the impact of the availability
of communication resources on the coordination procedure.The
communication range describes the availability of the communica-
tion resources. A communication range lower than 100 indicates
that only a few communication links between neighbouring agents
exist, while a communication range greater than 500 impliesthat
each agent is roughly connected to at least half of the agentsin the
system. The wider is the communication range, the more likely it
is to find direct high bandwidth communication links betweenany
two agents. In the limit, such a case is equivalent to having no
communication constraint at all.

Figure 4 represents the structure of the communication network
for three different ranges of communication in theclusterinstance.
For each experiment (i.e. a fixed constraint and communication net-
work structure) the agents’ computational speed and links’band-
width are randomly drawn from the set {2,4,8}.

Results
We measure the makespan and thetreewidth(the size of a maxi-
mal clique [7]) for each algorithm. The makespan is empirically
computed on a simulation environment matching the full charac-
teristics described in Section 3 (i.e., blocking communications, non
multitask agents and non preemptive tasks) using the same rout-
ing policy for all the algorithms (except RDPI which has its own).
Note that in these simulations we include the full effect of network
congestion. The unit of makespan measurement is the time step
of the simulator. For each experiment we performed 15 runs, and
we report the mean and the standard error of the mean in Figure5.
The treewidth measurements are reported in Table 1. In both case
r notes the communication range parameter.

In the ring and cluster scenario, the resource aware heuristic
performs up to three times faster than DPOP when resources are

discussed in [15] drives the DFS to obtain pseudo-trees withlow
treewidth

scarce (communication range below 100). The performance then
stabilises (two times faster than DPOP) when the communication
range increases. In thetree scenario, because the communica-
tion and constraint networks are both tree structured and generated
according to a distance measure between agents, communication
along the DPOP pseudo-tree matches the communication network
more closely than in other instances, where the agent responsible
for neighbouring cliques are less likely to be neighbours inthe com-
munication graph. As a result the performances of RAH and DPOP
are similar until the point where communication is no longera
scarce resource (communication range of 400) where DPOP is able
to perform better. These results show the importance of taking into
account the differences between the communication and constraint
networks in DCOPs.

The comparison between RAH and MS shows that the differ-
ence in performance is not only highly contrasted but is reversed
when communication is no longer a scarce resource. Specifically
in such a case MS is able to perform better than the resource aware
heuristic we propose as all the agents are able to directly commu-
nicate with fast communication links with the centralisingagent,
indicating that in this case centralising the solution is more effi-
cient. Conversely when resources are highly constrained the RAH
is able to perform up to 3 times faster than MS.

The makespan obtained with the RDPI algorithm was extremely
high (around two orders of magnitude higher than MS) in our set-
tings, and are thus not reported in the Figure 5. This is related to
the high treewidth (see Table 1) of the junction trees which is up
to six times the treewidth of a near-optimal junction tree and two
to three times larger on average.This is due to the fact that RDPI
forces the junction tree to be built on top of a spanning tree of the
communication network and this can result in junction treeswith
very large treewidth. In order to tackle this problem, Paskin pro-
poses to use simulated annealing in order to optimise the junction
tree. However, such a procedure requires an expensive distributed
evaluation procedure in order to evaluate the cost of a localmove
and an unbounded number of messages [13]. As we focus here on
the efficiency of junction trees that can be obtained with simple pre-
processing techniques, we only report for RDPI the performance of
the initial junction tree. The reported experimental evidences sug-
gest that the cost of RDPI when the optimisation procedures con-
verge, is within a factor of two of hypothesized optimal junction
tree, which was built using an off-line centralised procedure, while
the initial tree is up to seven times worst than that. However, no-
tice that in our experiments RDPI results were orders of magnitude
worst than competitors.

Furthermore notice that the treewidth for MS and RAH are very
similar (see Table 1) but RAH clearly outperforms MS when com-
munication is scarce (see Figure 5). These results again show the
importance of taking into account agents’ communication and com-
putation capabilities when building the junction tree.

Summarising, our results show that while the treewidth of the
junction tree remains an important parameter as it has an exponen-
tial impact on the efficiency of the algorithm, junction trees with
higher treewidths can still result in better overall performances in
such heterogeneous distributed settings if computations are appro-
priately scheduled across agents.

Complexity
While the running time depicted in Figure 5 only shows the relative
performance of the different junction trees, it is important for real-
world applications to also take into account the distributed running
time of the preprocessing steps of all those algorithms. We discuss
here the complexity, in terms of number of messages exchanged for
the different approaches. For ease of notation, let us assume there

0 100 200 300 400 500
50

100

150

200

250

300

350

Range Parameter (r)

C
oo

rd
in

at
io

n
P

ro
ce

ss
 M

ak
es

pa
n

Ring Structured Constraint Networks

MS
RAH
DPOP

0 100 200 300 400 500
50

100

150

200

250
Tree Structured Constraint Networks

Range Parameter (r)

C
oo

rd
in

at
io

n
P

ro
ce

ss
 M

ak
es

pa
n

MS
RAH
DPOP

0 100 200 300 400 500 600 700
100

200

300

400

500

600

700

Range Parameter (r)

C
oo

rd
in

at
io

n
P

ro
ce

ss
 M

ak
es

pa
n

Cluster Structured Constraint Networks

MS
RAH
DPOP

Figure 5: Coordination process makespan for the a)ring b) tree
and c) cluster structured constraint graph instance

r MS RAH DPOP RDPI
50 5 5.8± 0.1 6 10.4± 0.3
100 5 5.4± 0.1 6 8.8± 0.2

cy
cl

e

300 5 5.2± 0.1 6 11.1± 0.5
500 5 5.1± 0.1 6 19.4± 0.5
50 4 4.4± 0.1 5 13.3± 0.7
100 4 4.4± 0.1 5 18.5± 0.7

tr
e
e

300 4 4.2± 0.1 5 20.6± 1.0
500 4 4.1± 0.1 5 20.6± 1.0
50 7 7.0± 0 7 8± 0
100 7 7.4± 0.1 7 8± 0

cl
u
st

e
r

300 7 7.1± 0.1 7 13± 0.7
700 7 7.0± 0 7 24.2± 0.5

Table 1: Benchmarked treewidths

are as many agents as variable, wheren is this number,tw is the
treewidth, and that each agent possesses exactly one variable.

In terms of number of messages, DFS exploration uses2n mes-
sages, and the MCN heuristic usestw messages at each steps,
yielding a number of messages for our DPOP implementation in
O(ntw). RDPI usesO(n log n) messages in order to build a span-
ning tree and then2(n− 1) messages in order to build the junction
tree on top of it, yielding a number of messages inO(n log n). The
MS algorithm is centralised and therefore each agent sends to the
centralising agent its information regarding the variables and vari-
ables neighborhood, requiring the exchange ofnmessages. Finally
the number of messages of our approach is the following. During
the step0 < k < n of Algorithm 1n− k CFP andn(n− k) bids
are sent, yielding a total number of messages for RAH inO(n3).

While the number of messages of our algorithm is higher than
the others, as the results show, our approach can yield better run-
ning time for the DCOP solving algorithm for the solution phase.
For real applications the measure we are interested in is thecom-
bined running time of the preprocessing phase and the actualsolu-
tion phase. Such a running time depends on various parameters, the
number of variablesn, the tree-widthtw and the cardinalityd of
the variables and also depends on the computation and communi-
cation capabilities of the multi-agent system. Now, the number of
messages of the preprocessing phase for RAH is higher than com-
petitors, but notice that messages sent in this preprocessing phase
are of fixed size with respect totw andd, while the complexity of
the junction tree solution phase is exponential intw with a basis
of d. Therefore, depending on the values of the above parameters,
the time required to send the messages for the preprocessingphase
can be negligible with respect to the gain obtained in the running
time for the solution phase. For instance if we consider thecluster
experiment, we haven = 30, tw = 7, d = 2. The maximal time to
compute a clique in such a case is27 = 128 times steps, while the
RAH algorithm needs to exchanges27 · 103 messages. However,
if we considerd = 10, the complexity of the junction tree solution
phase become prevalent with10 ·106 times steps while the number
of messages sent by RAH does not change.

Thus, depending on the settings of a coordination problem our
algorithm can provide substantial gains in terms of total running
time despite having a preprocessing overhead greater than the ones
currently used in DPOP, MS and RDPI.

6. RELATED WORK
The use of junction trees (and other related graphical models) for
solving DCOPs and the development of distributed approaches for
junction tree compilation is a recent research topic that isgaining
increasing attention. For example, Xia and Prassana use a dis-
tributed junction tree creation algorithm based on a DFS tree and
propose to select the root so as to minimise the makespan [19], Ot-
ten and Dechter propose an heuristic for graphical models based
on problem size measure that aims at load balancing efficiently the
junction tree inference on as set of processors [11], Allouche and al.
explicitly consider the problem of using distributed variable elimi-
nation in order to solve hard constraint optimisation problems [2].
However, none of these approaches address the problem from a
MAS perspective, and as such they do not consider heterogeneity
of computation and communication and they do not focus on hav-
ing a distributed approach

7. CONCLUSION
In this work we take a first important step to explicitly consider
multi-agent system specific issues (such as heterogeneity of com-
putation and communication across the agents) when applying so-

lution techniques developed in the graphical model community to
decentralised constraint optimisation.

Specifically, we show the importance of taking into account the
actual resources of a multi-agent system when solving combinato-
rial optimisation problems across it, and validate our approach on
benchmark coordination problems

Future work are divided in two directions. The first is to empiri-
cally validate our approach on a deployed wireless sensor network.
The second aims to investigate bounded approximate algorithms.
Addressing the trade-off among communication, computation and
the bound that can be provided on solution quality.

8. REFERENCES
[1] S. Aji and R. McEliece. The generalized distributive law. IEEE

Transactions on Information Theory, 46(2):325–343, 2000.
[2] D. Allouche, S. de Givry, and T. Schiex. Towards parallelnon serial

dynamic programming for solving hard weighted csp. InPrinciples
and Practice of Constraint Programming, volume 6308 ofLecture
Notes in Computer Science, pages 53–60, 2010.

[3] J. R. S. Blair and B. Peyton. An introduction to chordal graphs and
clique trees.Institute for Mathematics and Its Applications, 56, 1993.

[4] T. D. Chandra and S. Toueg. Unreliable failure detectorsfor reliable
distributed systems.J. ACM, 43(2):225–267, 1996.

[5] R. Dechter and J. Pearl. Network-based heuristics for
constraint-satisfaction problems.Artif. Intell., 34(1):1–38, 1987.

[6] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed
algorithm for minimum-weight spanning trees.ACM Trans.
Program. Lang. Syst., 5(1):66–77, 1983.

[7] K. Kask, R. Dechter, J. Larrosa, and A. Dechter. Unifyingtree
decompositions for reasoning in graphical models.Artif. Intell.,
166(1-2):165–193, 2005.

[8] R. Mailler and V. Lesser. Solving distributed constraint optimization
problems using cooperative mediation. InProc. of the 3rd Int. Conf.
on Autonomous Agents and MultiAgent Systems, pages 438–445,
2004.

[9] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT:
Asynchronous distributed constraint optimization with quality
guarantees.Artificial Intelligence, (161):149–180, 2005.

[10] A. Moukrim and A. Quilliot. Scheduling with communication delays
and data routing in message passing architectures. InParallel and
Distributed Processing, volume 1388 ofLecture Notes in Computer
Science, pages 438–451, 1998.

[11] L. Otten and R. Dechter. Towards parallel search for optimization in
graphical models. InProc. of the 11th Int. Symposium on Artificial
Intelligence and Mathematics, 2010.

[12] P. Padhy, R. K. Dash, K. Martinez, and N. R. Jennings. A
utility-based sensing and communication model for a glacial sensor
network. InProc. of 5th Int. Conf. on Autonomous Agents and
Multi-Agent Systems, pages 1353–1360, 2006.

[13] M. A. Paskin.Exploiting locality in probabilistic inference. PhD
thesis, University of California at Berkeley, 2004.

[14] M. A. Paskin and C. E. Guestrin. Robust probabilistic inference in
distributed systems. InProceedings of the 20th Conf. on Uncertainty
in Artificial Intelligence, pages 436–445, 2004.

[15] A. Petcu.A Class of Algorithms for Distributed Constraint
Optimization. Phd. thesis no. 3942, Swiss Federal Institute of
Technology (EPFL), 2007.

[16] R. Stranders, A. Farinelli, A. Rogers, and N. Jennings.Decentralised
coordination of mobile sensors using the max-sum algorithm. In
Proc. of the 21st Int. Joint Conf. on Artificial Intelligence, pages
292–298, 2009.

[17] G. Tel.Introduction to Distributed Algorithms. Cambridge University
Press, 2000.

[18] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task scheduling algorithms
for heterogeneous processors.Proc. of Heterogeneous Computing
Workshop, pages 3–14, 1999.

[19] Y. Xia and V. K. Prasanna. Parallel exact inference on the cell
broadband engine processor. InProc. of the 2008 ACM/IEEE Conf.
on Supercomputing, pages 1–12, 2008.

