Resource-Aware Junction Trees for Efficient Multi-Agent
Coordination

N. Stefanovitch
LIP6 - UPMC
75016 Paris, France

A. Farinelli
University of Verona
Verona, 1-37134, Italy

A. Rogers, N.R. Jennings
University of Southampton
Southampton, SO17 1BJ, UK

stefanovitch@poleia.lip6.fr alessandro.farinelli@univr.it {acr,nrj}@ecs.soton.ac.uk

ABSTRACT

In this paper we address efficient decentralised coordinati co-
operative multi-agent systems by taking into account thezhc
computation and communication capabilities of the agente
consider coordination problems that can be framed as bigé&d
Constraint Optimisation Problems, and as such, are saitabbe
deployed on large scale multi-agent systems such as seator n
works or multiple unmanned aerial vehicles. Specifically,facus

on techniques that exploit structural independence amgegts’
actions to provide optimal solutions to the coordinationkjem,
and, in particular, we use the Generalized Distributive (@ML)
algorithm. In this settings, we propose a novel resourcerawa
heuristic to build junction trees and to schedule GDL corapjabs
across the agents. Our goal is to minimise the total runnimg t
of the coordination process, rather than the theoreticaipbex-

ity of the computation, by explicitly considering the contgtion
and communication capabilities of agents. We evaluate oox p
posed approach against DPOP, RDPI and a centralized satver o
a number of benchmark coordination problems, and show tirat o
approach is able to provide optimal solutions for DCOPsfatian
previous approaches. Specifically, in the settings consitjevhen
resources are scarce our approach is up to three times faater
DPOP (which proved to be the best among the competitors in our
settings).

Categories and Subject Descriptors

1.2.11 Distributed Artificial Intelligence]: [Coherence and coor-
dination, Multiagent systems]

General Terms
Algorithms, Performance, Experimentation

Keywords

multiagent coordination, junction tree, treewidth, vhtéelimina-
tion, heuristic algorithm, GDL, DCOP

1. INTRODUCTION

Many practical applications require the development oéctffe
decentralised coordination techniques for cooperativéiagent
systems. For example, agent-based techniques have beely wid

Cite as: Resource-Aware Junction Trees for Efficient Multi-AgentoGo
dination, N. Stefanovitch, A. Farinelli, A. Rogers and N.JenningsProc.

of 10th Int. Conf. on Autonomous Agents and Multiagent 8yste
— Innovative Applications Track (AAMAS 201Tdymer, Yolum, So-
nenberg and Stone (eds.), May, 2-6, 2011, Taipei, Taiwan{EX-XXX.
Copyright © 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights resetve

used to control physical devices which can acquire and psoite
formation from the environment, such as sensor networkkogeg
to collect environmental data [12] or multiple unmannedadee-
hicles deployed to collectively patrol and map a defined gtéh
The development of decentralised coordination technidggi@ar-
ticularly challenging in these domains because such devseally
have constrained computational resources (due to theresnent
of minimising power consumption) and because communioatio
is usually limited in bandwidth and is dependent on the ptalsi
distance and mutual positions of the devices (due to thelegise
communication technology frequently used). Moreover,aeetbp
more cost effective systems, and to manage legacy, it iscéagbe
that the devices within such networks will be heterogengbas-
ing different computation and communication capabilities

Recent work has shown that to develop effective and efficient
coordination techniques it is crucial to exploit the stuat inde-
pendence between the agents’ utility functions (i.e. ttoe flaat
the utility of each agent only depends on its own choice abact
and that of a small number of locally interacting neighbp(it§,
14]. Doing so allows the decentralised coordination pnoble be
framed as a Distributed Constraint Optimisation Proble@ (),
enabling a number of optimal algorithms to be used as swolutio
techniques, e.g., ADOPT [9], OptAPO [8] and DPOP [15].

However, these algorithms take no account of the heteragsne
computational and communication resources available éadtfh
ferent agents within the system. In many settings, andquéatily
in the cooperative settings we focus on here, it may be bealefic
to delegate computations such that (i) we take advantaggenita
with greater than average computational capabilities, (@have
minimise communication between agents with poor communica
tion links. Current algorithms for solving DCOPs do not ddes
such strategies. For example, DPOP arranges the congtetint
work into a pseudo-tree using a Depth First Search (DFS)adeth
While the DFS can be conveniently performed using distabut
algorithms, it does not take into account agents’ indiviadaenpu-
tation and communication capabilities, and it can resudririnef-
ficient allocation of computations to the agents. In contPaskin
and Guestrin developed an approach to cope with networks tha
have poor quality communication links (as it is frequentig tase
with wireless networks)[14]. Their approach uses the nmutree
of the communication network to arrange agents inforection
tree, which is then further optimised in order to minimise commu-
nications. While this work takes computation and commuivca
into account, it forces the junction tree structure to beansmg
tree of the communication network, which can, as we shalvsho
later, significantly reduce the efficiency of the coordioatprocess.

Thus, against this background, in this paper we addrese thes
shortcomings by proposing msource awaresolution technique
for DCOPs. Our approach pre-processes the constraint etwo

building a junction tree, over which optimal inference isfpemed
using standard message passing techniques, such as thasegdr
by the Generalised Distributive Law (GDL) framework [1].ndd
tion trees are well known structures, frequently used implgical
models and constraint processing [7] and while finding théeod
junction tree (in the sense of a minimal size of the largeguel
is NP-hard, a number of heuristics that build near optimatjion
trees are well known. Here, we propose a distributed appraac
build the junction tree that is based on the variable elindmealgo-
rithm [5], but is extended to consider the heterogeneousraaif
both computational and communication resources withinntste
work. In this context, the optimal tree is not the one thatimiges
the theoretical complexity of the computation (as is thesagishin
the standard literature of junction trees), but is the ora thin-
imises the total running time of the coordination algoritfintlud-
ing both the time required by the agents to individually coiep
their partial solutions, and the time for these solutiongrtipagate
up and down the junction tree).

In doing the above, this paper makes the following contitinst
to the state of the art:

e We present the first model of decentralised coordination tha
explicitly considers the total running time required by a co
ordination algorithm that operates in heterogeneous multi
agent system.

e \We propose a novel distributed algorithm, based on the vari-
able elimination algorithm, which uses a novel resourceawa
heuristic to minimise the running time of the coordination
process (as defined above).

e We empirically evaluate the proposed technique on a simu-
lated environment, comparing it with three state of the art
approaches for multi-agent systems: the pseudo-treeltyuilt
DPOP, the junction tree formation algorithm of Paskin and

Guestrin, and a benchmarking centralised approach. Our re-

Figure 1: Example of a MAS coordination problem : commu-
nication (wide grey edges) and constraint network (thin blak
edges), nodes represent both agents and variables

the variables it depends on. Given this settings, we wismtbtfie
variable assignmerX* such that the sum of all constraint func-
tions is maximised:

X* = argm}gxz\lfi(xi) 1)

i=1

2.2 Junction Trees

DCOPs can be solved using message passing algorithms #ueoss
constraint networka graph representation of a DCOP where nodes
are variables and edges are constraint functions. However;

der to ensure completeness and termination, the constietinbrk
must be a tree. If this is not the case, then it is necessaraiie-t

sults show that, when communication resources are Scarce,form the original constraint network into a special graphigtruc-
our resource aware heuristic improves upon previous tech- yre called a junction tree. This is done by forming a cliquept

niques being up to 3 times faster than DPOP, which proved
to be the best competitors in our settings.

The rest of the paper is organised as follows: Section 2 pro-
vides basic background knowledge on DCOPs and graphical mod
els while Section 3 formalises the problem we are addresSiag-
tion 4 details our approach and the resource aware heuwigtic
propose. Section 5 presents the empirical analysis of qumoaph,
Section 6 discusses related work and Section 7 concludes.

2. BACKGROUND

We provide here a brief review of background knowledge comce
ing DCOPs, junction trees and the GDL framework.

2.1 Distributed Constraint Optimisation Prob-
lems

Formally a DCOP can be defined as a tuple X', D, V), where
A={A,..., Ay} isasetofagentsY = {1,...,n} is a set of
variables. Each variable is owned by exactly one agent rbagant
can potentially own more than one variable. An agent is nesibte
for assigning values to the variables it owi3.= {D1,--- , Dn}
is a set of discrete and finite variable domains, each variatdn
take value in the domai®;. Finally, v = {¢1,...,¥n}is a
set of constraint functions that describe the constraimisrey vari-
ables. Each functiotp; : D;, X --- x D;,. — R depends on a set
of variableX; C X, wherer; = |Xj| is the arity of the function.
Each function assigns a real value to each possible assigrohe

whose nodes (cliques) and edges (separators) are clusteas-o
ables. A junction tree is simply a clique graph which satssfre
following four properties: single-connectedness, rugriitersec-
tion, covering and maximality. Single-connectedness mssthat
the graph is a tree, yielding termination. Running intetisecen-
sures that any variable present in the intersection of tineadlo of

two cliques is also present in every clique of the path jajrtirem,
yielding correctness. Covering ensures that the domairverye
constraint function of the DCOP is the subset of at least tigae
Maximality states that a clique can not have a domain which is
a subset of the domain of another clique. One of the most well-
known algorithms to transform a constraint graph into a fiamc
tree is the variable elimination algorithm. This algoritirarks by
sequentially selecting variables of the constraint grafiminating
them and forming cliques accordingly (see [7] for more ds}ai

23 GDL

Having formed a junction tree, the optimal solution of the @
can be found using a suitable message passing algorithrrhiofiw
GDL is the most general [1]. The GDL algorithm uses two oper-
ators,® for function combination aned for function marginalisa-
tion, and exploits the distribution property ®@fover®. It works by
passing messages along the edges of the junction tree dondper
ing computation at the level of the nodes. DCOPs can be sblyed
GDL using thesum andmax operators respectively.

A message from a clique to a cliquem is a utility function
defined recursively over the intersection of the domains afidm

by the formulaVy € d(m) N d(n), where the functior gives the
set of variables associated to a clique or separator (¢qlese):

1/1nﬁm()’) = 69xed(n)\d(m) (®z€l"(n)\mwlﬂn ® wn)(x U y)

A special node, called the root, receives the informatiomfall of
its neighbours. It computes the optimal instantiation®fdriables
and then starts the recursive phase of local optimisatigidiyig the
global optima (propagation phase). Specifically hen a eligure-

ceives the instantiation from its paremtit conditionally optimise
the instantiation of its variable and then propagates thefsa-

stantiation it knows:

X:L = (arg®x6d(n)\d(m) (®z€l"(n)\mwlﬂn®wn) (Xuxjnﬁn))uxjnﬁn

Both the collect and propagation phases can be performéddavit
linear number of messages. However, during the collectqphibe

computation of the messages and the size of the messages are e

ponential in the size of the clique sending them, and therality
of the corresponding separator respectively.

The use of junction trees in combination with the GDL algo-
rithms is attractive as they inherently work in a distrilsiteay by
message passing. Moreover such an approach is efficienisas it
exponential only in the treewidth rather than in the totainber
of variables. The treewidth is a parameter of a tree decoitimos
which is the size of the largest clique, and is usually farlemthan
the total number of variables. Finding a junction tree of imial
treewidth is however an NP-hard problem [7].

3. PROBLEM DESCRIPTION

Having presented the necessary background, we now formedly
scribe the problem that we tackle; that of, minimising thaltoun-
ning time of a coordination algorithm when faced with heggro
neous computational resources, and a bandwidth congiraore-
munication structure. To this end, we introduce the conoéat
computationakask to model the GDL solution process for DCOP.
A computational task (¢n—m (y)) describes the amount of com-
putation that an agent has to perform in ordectémputethe mes-
sageyn—m(y) defined in Section 2.3.

Since the computation of a messagge ... (y) recursively de-
pends on the computation of messages from neighbouringediq
these computational tasks are tied by the set of execution co
straintsEC(r;) = {71, ,7¢} wherer] are tasks that must be
executed before;. We denote the set of all the computational tasks
asT, and this consists of the set of cliques of the junction treg a
the set of constraint functiohsExecution of a computational task
involves the processing of constraint functions and rexxbmes-
sages (i.e., the summation of those functions and the maation
over some subsets of the decision variables) in order to atenp
the message. Each computational task is assigned to a ageyié,
which is responsible for all the aspects of the executiohisftask.
We denotex : T — A the function representing this allocation.

Thecompletion timef a taskr depends on its size (given by the
size function), on the computational power of the agef(t) ex-
pressed as the number of constraint checks per unit of tier(g
by thespeed function), and on the characteristics of the communi-
cation links used to route the messages produced by thete®cu
of EC(7) to the agentx(7) (given by thetrans function). The
completion time of a single computational task, can thendfimed

Constraint functions can be seen as computational taskirireg
no processing from the agent side, but requiring some nom-ze
transmission time to the agent responsible of the cliquehizhv
the constraint function is allocated.

Figure 2: Instance of a solution obtained on the MAS coordi-
nation problem of Figure 1

as a functionrCT : T — N, whose expression is:

CT(r) = maz,,cpor)CT(m) +transa(r,),ac) (i)

+size(r)/speed(a(T))

Note that, we assume that agents are not multitasking aks tas
are not preemptive, such that agents can either computd,®en
receive messages at any time, and can not interrupt one s tho
activities if already started. We consider a restricted rommi-
cation structure composed of pairwise communication linker
each link we consider a symmetric limited bandwidth thatrobefi
the time required to transmit messages over the link. If anag
on the shortest path between two agents is performing oneeof t
above activities, messages between these two agents liasetei
wait or to find a new route. Such a setting models some impor-
tant aspects of wireless sensor networks such as limitedikieth,
limited connectivity, multi-hop communication and podsimet-
work congestions. Small bandwidth values can represehtlbat
throughput reliable communication links or high throughpaore-
liable communication links.

Figure 1 shows an exemplar instance of a constraint netwsrk a
sociated with a restricted communication network. The sade-
resent decision variables, the thin black edges are camstia-
pendencies between the variables. Constraints that holeba
variables are associated with constraint functignsas shown in
the figure. The thick grey edges represent the underlyingroom
nication network between the agents responsible for thiables.
Numbers next to those edges correspond to the bandwidtheof th
communication links while numbers next to the agents repres
computational speed of the agents.

Now, given any specific constraint network, we can define the
set of computational tasks and the set of messages thatmébed t
computed and propagated according to the GDL algorithm. The
GDL algorithm can then be described as the execution of $wras
ated computational tasks using agents as computatiormines.
Specifically, given a DCOP instanced, X', D, ¥'), to obtain the
set of associated computational tasks we have to choose@ set
of cliques, an allocatioavy : ¥ — C of constraints functions to
cliques, and an allocation: : C — A of the cliques onto the
agents. We can now define S(C, aw, ac) as the time to com-
plete all tasks subject to the execution constraints. Suchexion
is known as the makespan in the scheduling literdfuard in our
setting it corresponds to the time at which the last task k&n b
computed (which is the maximisation of the root clique). Ehe
fore, representing the special task associated to the lootecof
the GDL algorithm as-., the makespan can be defined 465 =

2The makespan is a concept more general but akin to the number
of non concurrent constraint checks in DCOP literatureesinex-
plicitly takes into account communication delays

CT (7). Our aim is then to find the junction tree, the allocation of
constraints to cliqgues and cliques to agents that will misénthis
makespan, such that:

arg min MS(C,aw,ac)
C,ay,oc
Unfortunately, optimally scheduling a set of tasks onto taoe
heterogeneous processors, even without considering cainaiu
tion, is known to be NP-hard [18]. Therefore, in this papes,aim
to design an effective heuristic that works well in practise

4. RESOURCE-AWARE JUNCTION TREES

Here we present our approach to build junction trees andatko
computational tasks to agents in order to heuristicallyimise
the makespan of the coordination process. We first note hisat t
minimisation problem stated in the previous section canilidet
into two sub-problems: (i) finding a suitable junction treszdm-
position of the problem, by defining cliques and allocatimy-c
straint functions to cliques; (ii) allocating the resufficomputa-
tional tasks to agents to minimise the makespan. Howeweityih
subproblems are interconnected because grouping of \esiab
cligues induced by the junction tree impacts on the comjmutat
and communication that agents need to perform. The apprsach
propose treats both subproblems at the same time, and Widedi
into two key parts: a distributed protocol that implemerdsable
elimination and a novel resource aware heuristic (RAH) sieatks
to select variables in order to heuristically minimise thaekespan
of the coordination process.

Distributed Protocol for Variable Elimination

This protocol is a distributed negotiation protocol thateexs the
variable elimination algorithm by making use of calls fooposals
(CFP) and bids in order to determine the next variable toielim
nate and the agent responsible for the associated cliquienisax
tion. Our protocol proceeds by each agent broadcasting e C
for each variable it is responsible for. Each agent thenegpb

a CFP by estimating the makespan associated with itselflrein
sponsible for the computation of the clique that would beawé

if the variable specified in the CFP was eliminated. Given tt@-
scription, we now formally define the key elements of our pcot.

e A constraintis a tuple(f, X¢, ¥, as), wheref is the identifier
of the constraint¥; C X is the domain (or label) of the constraint
function, s : 2% — R is the constraint function and; € A is
the identity of the agent owning the constraint.

e A variableis a tuple(X, I'x, F’;{“St, ax,cx), whereX is the
identifier of the variableI’x C X is the set of neighbours of
this variable in the constraint grapi** C X is the set of for-
mer neighbours that have already been eliminatedc A is the
agent responsible for this variable and € C is the clique related
to the elimination of this variable (initially void). For stance,
in the Figure 1 variableXs is represented by the following tuple
<X27 {17 2, 3}7 {}7 2, ®>

e A cliqueis a tuple(c, X., ¥.,T¢, X, a.), wherec is the iden-
tifier of the clique,X. C X is the domain (or label) of the clique,
V. C U is the set of constraint functions allocated to the clique
(initially void), I'¢ C C is the set of neighbours in the junction tree
(initially void), X. € X is the variable whose elimination led to
the creation ot anda. € A is the identity of the agent responsi-
ble of the clique. For instance in the Figure 2 the clidaeX; X3
is represented by the following tupleX: X» X3, { X1, X2, X3},
{'(/)17 d)27 '(/)7}7 {X1X3X6}7 X27 1>'

e An agentis a tuple(a, Xa, ¥4, Ca, I's"™), wherea is the iden-
tifier of the agent X, C X is the subset of variables the agent
owns, ¥, C W is the set of constraint functions allocated to the

agent,C, C C is the set of cliques allocated to the agent (initially
void) andT';°™ C A is the set of neighbours of the agent in the
communication graph. For instance in the Figure 2, agent&is
resented by the following tupl€3, { X3}, {13, ¥s }, {X1X3Xs,
X3XaX6}, {1,2,3}).

e A CFPis initiated by one agent which proposes to another to
take the responsibility of a clique (which is onpartially created
and initialised). Formally a CFP is a tuple, ¢, d), wheres € A is
the sender agend, is a date (the number of the bidding turn), and
c is a clique, whose function (of exponential size) is not trda
The initialised fields ofc are ¥. - with the list of subfunctions
that would be allocated to, I'S - with the list of neighbouring
cliques in the junction tree (this set is needed to deterthiaset of
separators, which in turns define the scope of messages o w
have to be transmitted or received bynd X. - which identifies
the variable for which the CFP has been sent.

e A bid is formally a tuple(s, r, cfp, clique, v) wheres € A is
the sender agent, € A is the addressee agenfp is the CFP for
which the bid is a reply;lique is the identity of the clique to which
the constraint functions of the clique of the CFP will be edited
andv € R is an evaluation of the time it would take the agent
to compute the clique proposed by ageti his CFP.

Algorithm 1 Variable selection and eliminationdlection)

1: parallel{ treat_CFP() }

2: date— 0

3: while date < |X| do

4: /] conpute vari abl es’
5. send_CFP()
6
7
8
9

heuristic val ues

treat_bids()

/1 select the next variable to elimnate
selected_bid «— consensus_selebt(st_bid)

c «— selected_bid.cfp.c

X «— X,

11: // allocate the clique

12: if selected_bid.s = a then

13: Co — CoU{cx}

14: endif

15: // update the set of constraint
functions

16: if X € X, then

17: U, — U, \ U,

18: endif

19: // add new constrai nt dependencies

bet ween each pair of nei ghbours

20: forY € X, NnA.do

21: for Ze X.:Y # Zdo

22: if Y ¢ T'z then

23: /1 extend vari abl es’ nei ghbour hood
24: I'z —TzU {Y}

25: I'y Ty U {Z}

26: end if

27: end for

28: end for

29: /| update vari abl es nei ghbourhood with

respect to X
forall X, € X, do

/! renpbve vari abl es’
32: an<—an\{X}

constrai nt edges

33: /1 menorise variables’ past constraint
edges

34: IR IR U{X}

35: end for

36: // reset the algorithm s local variables

37: best_bid «—

38: date «— date + 1

39: end while

40: compute a maximum spanning tree and connect the cligues a

cordingly
41: start the GDL message passing inference algorithm

Having defined our terms we now present our protocol in al-
gorithms 1-5. Variable elimination works first by computiag
heuristic evaluation for each variable. This is done by conc
rently executing the functiongreat_CF'P (line 1 of Algorithm
1), send_CF P andtreat_bids (lines 5-6 of Algorithm 1). CFP
are used in order to assess the impact on the makespan oiftiie el
nation of a variable. In order to do so a CFP contains the elapu-
responding to the elimination of this variable. No cliquadsled to
the junction tree until a consensus has been reached onriablea
to eliminate (lines 9-14 of Algorithm 1), at which time only®
clique is actually created.

e send_C'F P computes and sends a CFP for each of the variable
an agent is responsible for. The fiald is filled with the set of con-
straint function3 that would be allocated to this clique if actually
created, and the sEf is filled accordingly with the neighbourhood
of this clique. Notice that this is a conservative estinrats the
actual neighbours will be computed in Algorithm 1 (line 40).
CFP is compiled only with the information available in theedit
neighbourhood of the variable in the constraint graph ¢lide 6
and 8). The CFP is then propagated to all the agents.

e treat_C'F P waits for incoming CFP and calls upon receiving
the procedureRAH _evaluate_clique. This function returns an
heuristic evaluation of the impact on the makespan for thésato
compute the clique in the CFP. If the clique of the CFP has aailtom
which is a subset of one of the cliques associated with aberiaf
the agent, the evaluation is then set to 0, and the cliquentbald
be created is set to this already existing clique. Othenligevalue
is left untouched and the clique that would be created is tigeio
the CFP (lines 4-9). This is done in order to enforce the use of
maximal cliques only. The bid is then sent to the sender agent

e treat_bids handles received bid messages. If an incoming
bid has an evaluation lower than the current best bid, itlecsed
as the best bid (lines 5-8). The agent corresponding to thesb
evaluation is stored inside the bid data structure. Whethalbids
have been received, the flow of control returns to Algorithm 1

e selection is the function implementing the actual distributed
variable elimination algorithms. Once the previous algdnis com-
plete, it selects a variable to eliminate according to theriséic
evaluation computed (line 7). This step is made through aeon
sus, where each agent proposes the best bid it has receieed. V
ious algorithms such as a wave propagation algorithm [1d]cco
be used in order to perform a consensus, however the sinpgst
is to propagate each message to all the agents. The variadble a
the clique are then extracted (lines 8-9). The agent seldstehe
winning bid adds the new clique to the set of cliques that ieis
sponsible for (lines 11-13). The agent owning the selecteidble
first updates the set of its constraint functions by remottiegones
allocated to the new clique (line 17). All the neighbourirgeats
of the selected variables update concurrently both théghheur-
hood (lines 31-34) and the constraint neighbourhood of tregi-
ables (lines 24-25). It is necessary to do so in order to diote
the deleted edges (used to compute the heuristic) and theetul
of dependencies between variables (used to communicatealit
the relevant agents). When all the variables have beenrelied,
the cliques are connected together using a maximum spatreig
which enforces the tree structure and the running intdseptop-
erty of the junction tree [3]. This can be done efficiently idia-
tributed way using the approach of [6]. Finally, Algorithnstarts

3The actual function is not transmitted as it is of exponésiize.
The heuristic can be computed by considering only its dortsge
line 13 of Algorithm 5)

the GDL messages-passing algorithm (line 41). The root mede
selected as the one in the middle of the diameter of the jomcti
tree.

Algorithm 2 Outgoing CFP managementefid_C F P)

1:// conmpute and send CFPx
2: forall X € X, do

3: // conpute the domain of the clique

4: X, —{X}Ulx

5. // conpute the set of related constraint
functions

6 U, «— UYEFXUFI)}“SJ‘{O[’XJC’@’GY) : 'l/}f S \I/ay,Xf -
Xe

7: /é}con‘pute the set of related cliques

8. Fc — UYErg(ast{CY}

9: // partially create the clique

10: clique — (¢, Xe, ¥, TS, X,)

11: // create the CFP

12: CFPx < {a,clique,date)

13: broadcastCF Px

14: end for

Algorithm 3 Incoming CFP managemerit-¢at_CF P)
1: if receive(cfp = (s,c,d)) A d = date then

2. v« RAH_evaluate_clique(c)

3: //I enforce the use of maxinmal cliques
only

4: if3X € Xy : X C X, then

5: clique «— cx

6: v<«—0

7. else

8: clique «— ¢

9: endif

10: bid < {(a, s, cfp, clique, v)

11: sendbid

12: end if

Algorithm 4 Incoming bid managementi(eat_bids)

1: bids «— 0
2: while |bids| < |.A] do

3. if receive(bid = (s,r, cfp, clique,v)) AT =a A cfp.d=
date then

4 bids «— bids U {bid}

5: if best_bid.v > v then

6: best_bid «— bid

7. v+ 20

8: end if

9: /1 select the next variable

10: endif

11: end while

As there are a finite number of variables and one variable is al
ways eliminated at the end of each turn, this algorithm vhillays
terminate provided that there is no message loss. While wetio
deal with such an issue here, we note that such issue could-be a
dressed by using other consensus approaches [4] or spewific ¢
munication protocol (such as for example TCP). Our protadsol
fully distributed as an agent only needs to know the consat
is involved with and the total number of agents in the systam,
no moment does an agent know the full set of constraints @r var
ables. In contrast, each agent executes the part of thédlegbm-
ination relative to their variables. The consensus prdtensures
that at each step, all the agents are synchronised on thigtydein
the eliminated variable. Therefore, our protocol is cdrrand re-

“While each agent might not be able to reach all other agents Sults in the same junction tree that would be created thraugin-

directly, messages will be propagated to all the agentsilggss
though multi-hop communication.

ventional centralized variable elimination using our rgse aware
heuristic.

@) (b) (©

Figure 3: Constraint graphs of (a) ring, (b) tree and (c) cluster
instances

Resource Aware Heuristic

Algorithm 5 RAH heuristic RAH _evaluate_clique(c : clique))

v — X

. eval— +oo

. a «+ identity of the current agent

: timeComp— s(d(c))/speed(a)

. I/l estimatérans for T € C (separators)

: timeSep— 0

: forall ¢ € ¥.do

timeSep— max(timeSep,sp(a,’,s(X. N X,./)))

: end for

. Il estimatérans for T € ¥ (constraint functions)
: timeSub— 0

:forall feT¢do

timeSub— max(timeSub,sp(ay,s(Xy)))

: end for

. eval« min(eval,timeComp-+timeSep+timeSub)
: return eval

The RAH _evaluate_clique procedure takes as input a clique and
gives an heuristic estimate of the impact on the makespaheof t
computation of the clique on the current agent. This is done b
greedily allocating constraint functions to this cliguedaadlocat-
ing the clique to one agent. In more detail, this proceduremgdes
the sum of three values: the time to compute the task, thetome
transfer the allocated constraint functions, and the tioneansfer
the messages of the execution constraints (lines 5-14 afritgn

5). The evaluation of the time to transfer messages is cagdput
as the size of the message divided by the maximal bandwidth be
tween the involved agents. This computation is done bysihe
function (lines 8, 13 of Algorithm 5), where the functieneturns
the number of elements in the utility table representingretion
given its domains. Note that this is an approximation sirmeyes-
tion in the communication network will impact this resultyvirever

as discussed in Section 3 we focus here on an effective hieuris
approach rather than an optimal allocation which is knowheo
NP-hard [10].

Figure 2 depicts the results of our approach applied to th&&MA
coordination problem of Figure 1. The constraint functidio-a
cation are indicated beneath the cliques, and clique dittdo
agents are indicated on top of each cliqgue with the numbeneof t
responsible agent. The asterisk denotes the root. In tkiarine,
agent 3 is responsible for two cliques as the heuristic edém
that the makespan could best be reduced by saving commienicat
rather than exploiting distribution of computations.

5. EMPIRICAL EVALUATION

We empirically evaluate our RAH algorithm against two clgse
related state of the art distributed inference algorith()sDPOP,
whose pseudo-tree is built with a distributed DFS approaahd

SWe use here the most connected node (MCN) heuristics, which a

@ (b) ()

Figure 4: Three communication graphs of thecluster instance,
where (a) r=100, (b) r=300 and (c) r=700

(ii) RDPI (Robust Distributed Probabilistic Inferencehpetinitial
junction tree construction of Paskin and Guestrin whicHdsua
junction tree over the minimum spanning tree of the commainic
tion network [14]. We also compare against a centraliseattpen
marking approach, which generates a near-optimal jundtiea
using the standard variable elimination algorithm andntii@mum
size(MS) heuristic, and then allocates all tasks to the fasigshta
in the system. We refer to this algorithm as MS.

We benchmark these algorithms on a set of three scenaribs wit
different constraint network structures. Agents are ledan a
square of fixed size of 1000 unit and we consider three diftere
topologies: rings, trees and clusters with 30, 40 and 30tagen
spectively. For simplicity we consider that there are asynani-
ables as agent; constraints are n-ary. Figure 3 shows theiste
of the three constraint networks considered.

For each scenario we perform a set of experiments by varkimg t
communication range (i.e., the distance within which twerdg
can communicate) in order to study the impact of the avditgbi
of communication resources on the coordination procediitee
communication range describes the availability of the comica-
tion resources. A communication range lower than 100 indica
that only a few communication links between neighbouringrasg
exist, while a communication range greater than 500 imphas
each agent is roughly connected to at least half of the agettie
system. The wider is the communication range, the moreylikel
is to find direct high bandwidth communication links betweety
two agents. In the limit, such a case is equivalent to havimg n
communication constraint at all.

Figure 4 represents the structure of the communicationar&tw
for three different ranges of communication in testerinstance.
For each experiment (i.e. afixed constraint and commumwicat-
work structure) the agents’ computational speed and libksid-
width are randomly drawn from the set {2,4,8}.

Results

We measure the makespan and tteewidth(the size of a maxi-
mal clique [7]) for each algorithm. The makespan is empiiyca
computed on a simulation environment matching the full abar
teristics described in Section 3 (i.e., blocking commutiices, non
multitask agents and non preemptive tasks) using the saate ro
ing policy for all the algorithms (except RDPI which has it8r).
Note that in these simulations we include the full effect efiwork
congestion. The unit of makespan measurement is the tirpe ste
of the simulator. For each experiment we performed 15 rumd, a
we report the mean and the standard error of the mean in Figure
The treewidth measurements are reported in Table 1. In lzsh c
r notes the communication range parameter.

In the ring and cluster scenario, the resource aware heuristic
performs up to three times faster than DPOP when resourees ar

discussed in [15] drives the DFS to obtain pseudo-trees haith
treewidth

scarce (communication range below 100). The performarae th
stabilises (two times faster than DPOP) when the commuiaitat
range increases. In thieee scenario, because the communica-
tion and constraint networks are both tree structured andrgéed
according to a distance measure between agents, comnianicat
along the DPOP pseudo-tree matches the communication retwo
more closely than in other instances, where the agent reggen
for neighbouring cliques are less likely to be neighboutsiécom-
munication graph. As a result the performances of RAH and BPO
are similar until the point where communication is no longer
scarce resource (communication range of 400) where DPQffeis a
to perform better. These results show the importance ofigaikito
account the differences between the communication andradmts
networks in DCOPs.

The comparison between RAH and MS shows that the differ-
ence in performance is not only highly contrasted but is nsa@
when communication is no longer a scarce resource. Spélgifica
in such a case MS is able to perform better than the resouraraw
heuristic we propose as all the agents are able to directhymoo
nicate with fast communication links with the centralisiagent,
indicating that in this case centralising the solution isreneffi-
cient. Conversely when resources are highly constrainedRhH
is able to perform up to 3 times faster than MS.

The makespan obtained with the RDPI algorithm was extremely
high (around two orders of magnitude higher than MS) in ot se
tings, and are thus not reported in the Figure 5. This isedl&d
the high treewidth (see Table 1) of the junction trees whichp
to six times the treewidth of a near-optimal junction tred amo
to three times larger on average.This is due to the fact tbBRIR
forces the junction tree to be built on top of a spanning tfeb®
communication network and this can result in junction tredh
very large treewidth. In order to tackle this problem, Pagkio-
poses to use simulated annealing in order to optimise thaigm
tree. However, such a procedure requires an expensivébdisil
evaluation procedure in order to evaluate the cost of a loale

and an unbounded number of messages [13]. As we focus here on

the efficiency of junction trees that can be obtained withpsinpre-
processing techniques, we only report for RDPI the perfoicaaf
the initial junction tree. The reported experimental enitks sug-
gest that the cost of RDPI when the optimisation proceduoes ¢
verge, is within a factor of two of hypothesized optimal jtion
tree, which was built using an off-line centralised procedwhile
the initial tree is up to seven times worst than that. Howener
tice that in our experiments RDPI results were orders of ritade
worst than competitors.

Furthermore notice that the treewidth for MS and RAH are very
similar (see Table 1) but RAH clearly outperforms MS when eom
munication is scarce (see Figure 5). These results agaim gteo
importance of taking into account agents’ communicaticch@m-
putation capabilities when building the junction tree.

Summarising, our results show that while the treewidth ef th
junction tree remains an important parameter as it has amnexp
tial impact on the efficiency of the algorithm, junction tsesith
higher treewidths can still result in better overall penfiances in
such heterogeneous distributed settings if computatiomsapro-
priately scheduled across agents.

Complexity

While the running time depicted in Figure 5 only shows thatreé
performance of the different junction trees, it is impottéon real-
world applications to also take into account the distridutenning
time of the preprocessing steps of all those algorithms. M&uds
here the complexity, in terms of number of messages exclddioge
the different approaches. For ease of notation, let us assene

Ring Structured Constraint Networks

w
a

—--MS
1NN —RAH
- - DPOF

w
S
<
/
-
;

Coordination Process Makespan
[y [N N
o 6] o Ul
=S < SR -
/
/
;
A

a
o

200 300 400 500
Range Parameter (r)
Tree Structured Constraint Networks

100

N
a

n
o
<

-
5
Q

i
o
Q

Coordination Process Makespan

500 200 300 400 500
Range Parameter (r)
Cluster Structured Constraint Networks

100

~
o

o
S
Q

w I o1
S S S
Q Q Q

Coordination Process Makespan
S
<

=
o

300 400 500 600
Range Parameter (r)

100 200

(=)

Figure 5: Coordination process makespan for the ajing b) tree
and c) cluster structured constraint graph instance

r | MS RAH DPOP RDPI
50 [5 58+01 6 10403
S|100| 5 54+01 6 8.8+ 0.2
|30 5 52+01 6 111+£05
500 5 51+01 6 19.4+05
50 [4 44£01 5 133:07
©|100| 4 44+£01 5 185:07
5300 4 42+£01 5 206+10
500 4 41+01 5 20.6+1.0
§ |50 | 7 7.0+0 7 8+ 0
%100 7 74+01 7 8+0
5|30 7 71+01 7 13+ 0.7
700| 7 7.0£0 7 242+05

Table 1: Benchmarked treewidths

are as many agents as variable, wherie this numbertw is the
treewidth, and that each agent possesses exactly onelgariab

In terms of number of messages, DFS exploration @semes-
sages, and the MCN heuristic uses messages at each steps,
yielding a number of messages for our DPOP implementation in
O(ntw). RDPI useD(n log n) messages in order to build a span-
ning tree and theB(n — 1) messages in order to build the junction
tree on top of it, yielding a number of message®im log n). The
MS algorithm is centralised and therefore each agent sentet
centralising agent its information regarding the variatded vari-
ables neighborhood, requiring the exchange ofessages. Finally
the number of messages of our approach is the following. fguri
the ste < k& < n of Algorithm 1n — k CFP andn(n — k) bids
are sent, yielding a total number of messages for RAB(n?).

While the number of messages of our algorithm is higher than
the others, as the results show, our approach can yield bette
ning time for the DCOP solving algorithm for the solution pha
For real applications the measure we are interested in isdhe
bined running time of the preprocessing phase and the astial
tion phase. Such a running time depends on various parangter
number of variables, the tree-widthtw and the cardinality! of
the variables and also depends on the computation and commun
cation capabilities of the multi-agent system. Now, the hanof
messages of the preprocessing phase for RAH is higher than co
petitors, but notice that messages sent in this preprocegpsiase
are of fixed size with respect ta andd, while the complexity of
the junction tree solution phase is exponentiatinwith a basis
of d. Therefore, depending on the values of the above parameters
the time required to send the messages for the preprocassasg
can be negligible with respect to the gain obtained in theinm
time for the solution phase. For instance if we considercthster
experiment, we have = 30, tw = 7, d = 2. The maximal time to
compute a clique in such a caseis= 128 times steps, while the
RAH algorithm needs to exchang2s - 10° messages. However,
if we considerd = 10, the complexity of the junction tree solution
phase become prevalent with - 10° times steps while the number
of messages sent by RAH does not change.

Thus, depending on the settings of a coordination problem ou
algorithm can provide substantial gains in terms of totaininog
time despite having a preprocessing overhead greaterlibames
currently used in DPOP, MS and RDPI.

6. RELATED WORK

The use of junction trees (and other related graphical nsddet
solving DCOPs and the development of distributed appraaftdre
junction tree compilation is a recent research topic thagising
increasing attention. For example, Xia and Prassana uss-a di
tributed junction tree creation algorithm based on a DF& &mrd
propose to select the root so as to minimise the makespan(1:9]
ten and Dechter propose an heuristic for graphical modededha
on problem size measure that aims at load balancing effigitre
junction tree inference on as set of processors [11], Alewsnd al.
explicitly consider the problem of using distributed vateelimi-
nation in order to solve hard constraint optimisation peof [2].

However, none of these approaches address the problem from a

MAS perspective, and as such they do not consider heteritgene
of computation and communication and they do not focus or hav
ing a distributed approach

7. CONCLUSION

In this work we take a first important step to explicitly caesi
multi-agent system specific issues (such as heterogerfeiyno-
putation and communication across the agents) when ajgpdgn

lution techniques developed in the graphical model comtyuni
decentralised constraint optimisation.

Specifically, we show the importance of taking into accotet t
actual resources of a multi-agent system when solving coandi
rial optimisation problems across it, and validate our apph on
benchmark coordination problems

Future work are divided in two directions. The first is to eripi
cally validate our approach on a deployed wireless sengaionke.
The second aims to investigate bounded approximate aigusit

Addressing the trade-off among communication, computagiod

the bound that can be provided on solution quality.

8. REFERENCES

[1] S. Aji and R. McEliece. The generalized distributive |[d&EE
Transactions on Information Theqr§6(2):325-343, 2000.

[2] D. Allouche, S. de Givry, and T. Schiex. Towards paratieh serial

dynamic programming for solving hard weighted cspPhnciples

and Practice of Constraint Programmingolume 6308 of_ecture

Notes in Computer Scienggages 53-60, 2010.

[3] J.R. S. Blair and B. Peyton. An introduction to chordagins and
clique treeslInstitute for Mathematics and Its Applicatigrs6, 1993.

[4] T.D. Chandra and S. Toueg. Unreliable failure detectorseliable

distributed systemsl. ACM 43(2):225-267, 1996.

R. Dechter and J. Pearl. Network-based heuristics for

constraint-satisfaction probleméttif. Intell., 34(1):1-38, 1987.

R. G. Gallager, P. A. Humblet, and P. M. Spira. A distrigait

algorithm for minimum-weight spanning treeésCM Trans.

Program. Lang. Syst5(1):66—77, 1983.

K. Kask, R. Dechter, J. Larrosa, and A. Dechter. Unifytrep

decompositions for reasoning in graphical modamif. Intell.,

166(1-2):165-193, 2005.

R. Mailler and V. Lesser. Solving distributed consttaiptimization

problems using cooperative mediation.Rroc. of the 3rd Int. Conf.

on Autonomous Agents and MultiAgent Systgrages 438—445,

2004.

P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT:

Asynchronous distributed constraint optimization withabiy

guaranteegArtificial Intelligence (161):149-180, 2005.

A. Moukrim and A. Quilliot. Scheduling with communiéan delays

and data routing in message passing architectureRarallel and

Distributed Processingvolume 1388 of_ecture Notes in Computer

Sciencepages 438-451, 1998.

L. Otten and R. Dechter. Towards parallel search fomottion in

graphical models. IiProc. of the 11th Int. Symposium on Artificial

Intelligence and Mathematic2010.

P. Padhy, R. K. Dash, K. Martinez, and N. R. Jennings. A

utility-based sensing and communication model for a glagasor

network. InProc. of 5th Int. Conf. on Autonomous Agents and

Multi-Agent Systempages 13531360, 2006.

M. A. Paskin.Exploiting locality in probabilistic inferencePhD

thesis, University of California at Berkeley, 2004.

[14] M. A. Paskin and C. E. Guestrin. Robust probabilistiierence in

distributed systems. IRroceedings of the 20th Conf. on Uncertainty

in Artificial Intelligence pages 436-445, 2004.

A. Petcu.A Class of Algorithms for Distributed Constraint

Optimization Phd. thesis no. 3942, Swiss Federal Institute of

Technology (EPFL), 2007.

R. Stranders, A. Farinelli, A. Rogers, and N. Jennir@scentralised

coordination of mobile sensors using the max-sum algoritihm

Proc. of the 21st Int. Joint Conf. on Atrtificial Intelligengeages

292-298, 2009.

G. Tel.Introduction to Distributed AlgorithmsCambridge University

Press, 2000.

H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task schedulirgaithms

for heterogeneous processdpsoc. of Heterogeneous Computing

Workshop pages 3-14, 1999.

Y. Xia and V. K. Prasanna. Parallel exact inference end#ll

broadband engine processorHroc. of the 2008 ACM/IEEE Conf.

on Supercomputingages 1-12, 2008.

(5]
(6]

(7]

(8]

El

[20]

(11]

[12]

[13]

[15]

[16]

[17]

(18]

[19]

