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Abstract – Situation Assessment and decision making

in monitoring and surveillance scenarios are evolving

from centralized models to high-level, reasoning oriented,

net-centric models, according to new information fusion

paradigms proposed by recent research.

In this paper, we propose the design of a multi-agent ar-

chitecture for Situation Assessment, where situations are

classified through agent collaboration, in order to provide

human operators with a synthetic vision, that points out the

elements of the scenario that require human intervention.

Specifically, our approach provides for: i) high level classi-

fication of situations based on OWL ontology reasoning; ii)

distributed assessment by a protocol which solves disagree-

ments possibly arising among agents’ conclusions.

Experiments in a real maritime surveillance scenario

show that the proposed approach approximates the results

of a centralized architecture, while preserving independency

of decision makers and dramatically reducing the amount of

communication required.

Keywords: Situation Assessment, Multi-Agent Systems,

Coordination, Description Logics.

1 INTRODUCTION
In modern applications, decision making processes often

require to coordinate several actors. For example, in large-

scale, complex domains like space explorations, disaster re-

sponse, real-time monitoring, defense and security systems,

collaboration is critical in order to achieve a prompt reaction

to many unexpected situations that may happen. In particu-

lar, among the several challenges, a current objective, both

from the scientific and industrial perspective, is to eliminate

the dependency from a centralized decision entity, relying

instead upon mechanisms which allow for decision-making

in a distributed way.

In other words, Situation Assessment [2] is a process that

“dynamically attempts to develop a description of current re-

lationships among entities and events in the context of their

environment”. In other words, it aims at fusing information

from different sources in order to recognize high-level re-

lationships in a complex scenario, which deals with several

actors and events.

Several techniques allow current systems to achieve effec-

tive low level analysis (level 0 and 1 of the JDL model [5]),

thus we focus only on Situation Assessment. Very often,

the classical approaches to high level information fusion are

based on a centralized architecture [7, 4], or aim at refining

perceptions at data level [1], instead of allowing for higher

level conclusions. Among the multi-agent approaches to

data fusion, some works based on probabilistic models have

been proposed [6, 15, 13], but they are generally used for

low level fusion (distributed sensing), while high level fu-

sion needs, in general, more informative interpretation of

data. In [14], a multi-agent system is used, but agents han-

dle only feature level perceptions. A similar approach is

the event based information fusion [8], where semantics of

information is considered; however, the distributed informa-

tion sources are able to perform only the feature extraction

process, while fusion still relies on a single system entity.

In this paper, we present a multi-agent approach to Situ-

ation Assessment. Such solution is key whenever the appli-

cation domain is endangered to become unmanageable with

actual centralized solutions, due to the foreseeable increase

of entities involved (e.g. maritime surveillance, air traffic

control [11]). In order to achieve this goal, it is necessary to

devise techniques which can convey pieces of information

towards those destinations where they are strategic for deci-

sion making. “The right information, in the right place, at

the right time”.

Our approach provides the following innovative contribu-

tions: (1) We formulate Situation Assessment as a multi-

agent coordination process, where each agent’s knowledge

base (KB) and reasoning capability is represented in OWL-

DL [10], a well known standard for high level reasoning; (2)

we apply and adapt a coordination protocol for multi-agent

situation assessment [13], in order to work for high level

conclusions; (3) we present a validation of the approach in a

real case maritime surveillance scenario.

About the first contribution, we formalize the problem us-

ing a set of cognitive agents that share a symbolic represen-
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tation of the domain and, through collaboration, are able to

classify situations of interest in order to share high level con-

clusions. The standard used for formal knowledge represen-

tation (ontology web language - OWL-DL [10]) is based on

the formalism of Description Logics (DL) [9], which allow

each agent for the classification of high level situations over

a set of events, perceived with noise.

The second contribution of this paper is to address the

core of the multi-agent Situation Assessment, which is to

let the agents assess obtained conclusions, that may dif-

fer due to the different owned perceptions. We apply a

distributed algorithm for situation assessment [13], which

solves disagreements among agents perceived events, by us-

ing dialogues based on sequences of one to one interactions.

While, in [13], only events were addressed, our extension

is that here we let the dialogue be feasible in the context of

a OWL-DL knowledge bases, allowing for a major expres-

sivity and a standard representation for high level situations.

In Sec.4.1, we present a viable solution, which requires to

introduce in the agent’s KB which events take part to the

classification of each high level conclusion.

A validation in a real case context of maritime surveil-

lance has been conducted in collaboration with Selex-SI,

the system integrator house within the Finmeccanica group,

which started addressing a net-centric architecture for har-

bour protection in the early 2000s, and is currently explor-

ing the potentiality of multi-agent technologies in order to

extend their system with more sophisticated decision mak-

ing. Experiments in the maritime scenario will show that

our approach requires a smaller amount of knowledge to

be exchanged among agents than other solutions that broad-

cast each assertion, thus preserving locality and dramatically

limiting communication requirements.

The paper is organized as follows. In Sec.2, we present

our multi-agent approach to Situation Assessment; in Sec.3,

we describe in detail the mapping from feature extraction

to situation assertions in a OWL-DL KB; in Sec.4, the is-

sues specifically concerning the multi-agent architecture are

addressed. In Sec.5, we present the set of experiments per-

formed in the context of maritime surveillance.

2 A multi-agent approach to Situa-

tion Assessment
In Fig.1, the main steps of a multi-agent approach to Sit-

uation Assessment are shown. Squares represent the agents

that take part to the process. Fires, emoticons and lightnings

represent dynamic events which are imperfectly perceived

by agents.

In the first step of the process, denoted as “Perception and

feature extraction”, distributed sensing is performed, where

each agent separately performs perception with his own sen-

sors, and extracts some relevant features from sensor read-

ings. This part of the process includes also data association

(or object assessment).

The second part of the process, denoted as “Situation

Classification”, consists in obtaining, from a single agent

perspective, a high-level assessment hypothesis of situations

which are of interest in the perceived scenario. Each agent

may estimate that several situations are currently present in

the scenario1. Due to different agent’s perceptions, agents

may have different assessment at the end of this phase.

The third part of the process, denoted as “Multi-agent as-

sessment”, consists in the agents arguing, generally through

message exchange, about their assessments, aiming at reach-

ing an agreement on each of their previous conclusions. At

the end of this phase, the team as a whole has somehow

solved the conflicting assessments. In general, it is not nec-

essary that each agent knows the assessment of each situa-

tion, because it may not be interested in having information

about certain situations at all.

The last part of the process, denoted as “Task assignment

and execution”, involves planning the best intervention, as-

signing tasks to the agents and execute them. Some parts of

this phase may again be performed in a distributed way.

Our research will focus precisely on the two central parts

of the process. The notation and the definitions which are

presented in the remaining of the paper will deliberately fo-

cus only on them, considering the remaining ones out of the

scope of this research.

2.1 Problem formalization

We considered a certain number of observed entities pur-

suing some unknown private goals, and a set of agents

A1, ..., Am. Each agent has a world model, its own percep-

tions, it communicates with the other agents, and takes part

pro-actively in the classification process. The agent’s world

model is an ontology, which is a symbolic representation of

the organization of concepts and their relevant relationships

into the domain (intensional knowledge, TBox), plus a set of

assertions on individuals (extensional knowledge, ABox);

the TBox is shared among all the agents, and constitutes a

common language for communication.

An event ei is represented as a logical condition, which

denotes a specific feature of interest, and its detection is

based on the observations (perceptions) on the environment.

In order to extract only few relevant elements of the per-

ceived events, we consider the set of the relevant situation

classes SCL = {S1, . . . , Sn} ∪ S⊤, in which each Si iden-

tifies a type of situations, of interest with respect to the con-

text. Basically, each relevant situation class Si represents a

group of semantically equivalent circumstances of the world

(for the purpose of Situation Assessment). A symbolic defi-

nition of each Si is given in terms of the type of events which

are observable in the environment. In the following, the sit-

uation classes are defined in Description Logics (DL) [9].

With S⊤ we denote the most generic situation class, which

1The presence of several situations in the agents’ balloon may be mis-

leading the reader who is familiar with the term situation in formal logics,

because having several situations would represent that an agent has several

alternative models for the KB. This is not the intended meaning: speaking

in terms of formal logics, we may say that we indicate with different terms

independent conclusions extracted from the KB typically corresponding to

a single model (the global situation).
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Figure 1: Description of a multi-agent situation assessment process.

includes all possible situations. A situation class Si is more

specific than Sj , iff every instance of Si is also an instance

of Sj . In DL, this is indicated by Si ⊑ Sj .

A situation instance si is an individual characterized by a

set of events, which are actually observed by an agent on the

scenario. From the point of view of the agent’s knowledge,

with Kp(si ∈ Sj) we denote that an agent Ap knows that

si ∈ Sj , which means that a set of events, which charac-

terize si as in the definition of a class Sj , are known to Ap:

in DL, this simply means that in Ap’s knowledge base, si is

classified as an instance of Sj .

We can now provide a formal definition of the Situation

Assessment process.

Definition 1 We say that si is assessed as Si by an agent

Ap iff

• Kp(si ∈ Si)

• ∄Sj s.t. Kp(si ∈ Sj) ∧ Sj ⊑ Si.

Thus, given the above formalization, Situation Assess-

ment (SA) is the non-trivial assessment of all the instances

si. A classification of si as Si is non-trivial if Si 6= S⊤.

3 Situation classification: event as-

sessment
In order to populate the agent’s ontology with data ex-

tracted from the agent’s information sources, we have to ex-

plicitly deal with the uncertainty of event perception. The

connection between agent’s KB and lower level fusion does

not impact on our approach, thus we chose the simplest pos-

sible solution, a Bayesian filter: devising a more sophisti-

cated technique on this respect is out of the paper’s scope.

Each time a new sensor reading is provided, features are

extracted about specific circumstances of interest, and they

are abstracted as positive or negative observations of cer-

tain events at specific time instances. Algorithm 1 presents

the pseudo-code executed by an agent, when a new observa-

tion is received (directly from sensors or another agent). A

simple Bayesian filter is instantiated to obtain a belief about

each detected event in the environment, which considers all

the observations in the past, and the ones received from other

agents. When a reading referring to a past time is obtained,

the filter is reinitialized, and the belief recalculated, starting

from the time of the oldest observation. Once a belief is

available, a simple rule allows an agent to add assertions to

the agent’s ABox (the facts in the KB).

Algorithm 1 INTEGRATEOBSERVATION

Input: an observation obs
Output: update of agent’s list of observations and ABox

1: event Obs←GETOBS(event)
2: if obs /∈ event Obs then

3: event Obs← event Obs ∪ obs
4: belief ← EVOLVE FILTER(event Obs)
5: REVISE( event )

6: REVISE( ¬event )

7: if belief > k1 then

8: ASSERT( event )

9: if belief < 1− k1 then

10: ASSERT( ¬event )

Algorithm 1 allows each agent to know whether consider-

ing an event to be true, false or unknown, given his available

observations. Thus, in our approach, each ABox assertion is

“justified” by a list of observations, which can be retrieved

at any time, if needed. The function GETOBS retrieves from

the agent’s memory the list of observations related to a cer-

tain assertion. The functions ASSERT/REVISE are used to

add/remove assertions from the agent’s assertion ontology

(ABox). REVISE has no effect if the assertion is not al-

ready present in the KB. Notice that, when using an open

world logic -like DL are-, ASSERT (¬e) has a different

meaning than REV ISE(e) because the first one asserts the

fact e to be false, the second one leaves it unknown.

For the sake of simplicity, in lines 7-9, the condition to

assert an event (or its negation) into the KB has a single pa-

rameter k1, which expresses the degree of certainty required

to believe it true or false, however other more sophisticated

techniques may be used.
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3.1 Situation classification

The taxonomy, which is shared by all agents, has been

illustrated in [12]. Each agent is provided with a taxonomy

of the relevant events of the domain, and one which includes

the definitions of the relevant situation classes.

In the following sections, we will build on an example

placed in the domain of maritime surveillance. We define

the following concept names: CF is a free access sea area,

CL is a lockout sea area, CN is a not navigable area, CD is a

dangerous area, CU is an unidentified vessel, CW is a vessel

with weapons onboard. Moreover, R1 is the property which

relates a vessel with its position. We will consider that all

agents are provided with the following TBox assertions:

(1) Free access zones are disjoint from lockout zones

(2) Lockout zones are the union of not navigable and

dangerous areas

(3) A vessel has a unique position

(4) S1 is the set of unidentified vessels

(5) S2 is the set of vessels detected in a lockout zone

(6) S3 is the set of vessels both unidentified and armed

and agent A1 is provided with ABox:

(7) a1 is a position in a free access zone

(8) a vehicle s is detected in position a1

(9) vehicle s is unidentified

(10) vehicle t is unidentified

Assertions (1),(2),(3) refer to a simple taxonomy of the

scenario, while (4),(5),(6) are a simple taxonomy for situa-

tion classes. In Description Logics, the above sentences are

written as follows:

(1) CF ≡ ¬CL

(2) CL ≡ CN ⊔ CD

(3) ⊤ ⊑≤ 1 R1

(4) S1 ≡ CU

(5) S2 ≡ ∃R1.CL

(6) S3 ≡ CU ⊓ CW

and agent A1’s ABox is:

(7) CF (a1)
(8) R1(s, a1)
(9) CU (s)
(10) CU (t)

The situation instances are classified and assessed using

standard DL inference capabilities. The classification pro-

cess is also explained in details in [12]. The specific rea-

soning service used is implemented in common Description

Logics reasoners, and it is called Realization [9], whose re-

sults meet, by definition, the requirements of definition 1. In

the following, we will call EVALASSESSMENT on a specific

instance s the result of a Realization query over s. Thus, we

do not need to use any rule propagation engine, unlike [7].

The approach that we have just presented to situation

management may still lead to inconsistent information be

introduced into the agent’s KB. Notice that, since the inten-

sional knowledge (TBox) is shared among the agents, we

can reasonably assume it is consistent and contains all the

relevant cases which can actually happen in the perceived

environment. Thus, we only have to deal with inconsistent

assertions about individuals; a generic inconsistency man-

ager can be used to retrieve the subset of assertions which

create the inconsistency.

4 Multi-agent assessment
A coordination technique is necessary, in order to agree

on a single classification, since agents may reach different

conclusions, due to their partial (and noisy) perceptions. We

have chosen to extend the coordination protocol proposed in

[13], that we briefly describe here.

When an agent is able to formulate locally a non-

trivial situation assessment proposal, it sends a pro-

posal for that conclusion. The proposal is sent through

the agents that, when receiving the assessment pro-

posal, evaluate it (EVALARGUMENTS). In case they dis-

agree, instead of forwarding the message on, they chal-

lenge the proposal, sending back the observations that

are conflicting (RETRIEVEREFUTINGARGUMENTS). The

agent receiving the challenge integrates these observa-

tions into its own beliefs (as in Sec.3) and reconsid-

ers a change in the classification. In case the addi-

tional observations do not cause a change in the assess-

ment, the agent sends to the challenger the list of ob-

servations (RETRIEVESUPPORTINGARGUMENTS) that are

needed solve the conflict; vice-versa, if the agent changes

its assessment, it sends the proposal back to where it re-

ceived it, attaching relevant observations and asking again

for agreement; the challenge continues until it is solved, or

the proposal destroyed. Once a sufficient number of agents

agree with the proposal, the assessment is completed.

Every disagreement is solved by the algorithm in [13]

through exchange of observations, using an ad-hoc KB to

allow for simple retrieval of justifications. If agents are pro-

vided with a KB, where conclusions are obtained through

logic inference, a more general solution must be addressed.

4.1 Retrieving justifications

The algorithm in [13] may be used with a generic knowl-

edge base, if three key functions can be provided:

• EVALARGUMENTS.

Input: an assessment proposal P on an instance s.

Output: a boolean value.

This function returns true if the executing agent agrees

with a received proposal P on the situation instance s,

false otherwise.

• RETRIEVEREFUTINGARGUMENTS.

Input: an assessment proposal P on an instance s.

Output: a set of arguments.

If the executing agent disagrees with P, it returns the

arguments to attack P.

• RETRIEVESUPPORTINGARGUMENTS

Input: an instance s, a set of arguments.

Output: a set of arguments.
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The executing agent, who receives a set of challenging

arguments, evaluates the arguments to attack the chal-

lenge, and the ones to support its proposal.

We define arguments as 〈C(i1), obsList〉 or

〈R(i1, i2), obsList〉, where C is a concept name, R is

a role name, i1 and i2 are instance names, obsList is a list

of sensor feature observations. The intuitive meaning of

an argument 〈C(i1), obsList〉 (〈R(i1, i2), obsList〉) is that

the observations related to the fact that C(i) (R(ii, i2)) are

valid assertions into an agent’s KB, and they are supported

by the observations in obsList. Instead, if obsList = ∅, the

argument indicates that the fact is unknown to the agent.

We assume, as it is in the example, that the agent’s KB is

consistent before starting the agent dialogue. (If it is present,

an inconsistency in the agent’s KB must be handled first).

EVALARGUMENTS When receiving an assessment pro-

posal Si for a situation instance s, evaluating the agree-

ment means verifying whether the best assessment of s is Si.

Recalling Definition (1), the Algorithm EVALARGUMENTS

will yield true if EVALASSESSMENT on s yields Si, false

otherwise.

RETRIEVEREFUTINGARGUMENTS This function is ex-

ecuted whenever agent A1 receives an assessment proposal

and he does not agree with it. In our example, agent A1

will disagree, if he receives a proposal claiming S2(s); sim-

ilarly, if the proposal claims S3(s). In both cases, he must

compute the set of arguments to attach in a reply message to

challenge the proposal.

Let’s analyze what the correct answer would be in our ex-

ample. In case the agent receives S3(s), the agent disagrees

because he lacks of certainty about CW (s). In this case, the

agent’s answer will include the argument 〈CW (s), ∅〉, which

means “To the best of my (A1’s) knowledge, it is unknown

s being of class CW ”.

Let’s analyze now the case of the agent receiving S2(s).
In this case, he disagrees because:

i) Instance s participates to R1 with instance a1. Since, (3)

claims that R1 is functional, there can not be another in-

stance, related to s through R1;

ii) the agent is not aware of a1 being instance of CN or CD,

but it does for CF that, according to (1), is disjoint from CL;

iii) The agent knows that his best assessment of s is S1, be-

cause he knows s being instance of CU .

Notice that, while the agent answers i) and ii) concern chal-

lenging the other agent’s proposal, iii) aims at justifying his

own assessment. Moreover, the agent did not justify why

S3 is not his best classification, because that would be off

topic. Excluding TBox assertions, the agent should then

challenge with observations related to assertions (7), (8), (9),

and claiming unknown arguments CN and CD .

The mechanism we use to retrieve the justifications cur-

rently requires the ontology designer to specify, for each sit-

uation class, the subset of arguments that may allow for the

classification of an instance to that given class. In particular,

she is in charge of providing the sets JUSTSi
(TBox, T ),

which include, for each Si the set of all possible template

assertions that would allow the agent to classify a generic

instance T to class Si. These sets are dependent only on the

TBox, which is shared among the agents. E.g. in the TBox

of the example:

JUSTS1
(TBox, T ) = {CU (T )}

JUSTS2
(TBox, T ) = {R1(T, T2), CN (T2), CD(T2), CL(T2)}

JUSTS3
(TBox, T ) = {CU (T ), CW (T )}

Assuming that agents are provided with these sets, it is

easy to define a function JUST (KB, Si, s) which retrieves,

using a predefined procedure, from the knowledge base KB

a set of possible assertions, concerning a specific instance

s, which are related to the situation class Si. In particular,

the function JUST retrieves the set JUSTSi
, and applies

it on the particular agent’s ABox at execution time: the im-

plementation of the function JUST is general, and consists

in the matching of the template assertions with actual in-

stances. The results of JUST, applied on the instances of the

above ABox, for each situation class are:

JUST (KB, S1, s) = {CU (s)}
JUST (KB, S2, s) = {R1(s, a1), CN (a1), CD(a1), CL(a1)}
JUST (KB, S3, s) = {CU (s), CW (s)}
JUST (KB, S1, t) = {CU (t)}
JUST (KB, S2, t) = {}
JUST (KB, S3, t) = {CU (t), CW (t)}

Finally, notice that JUST does not provide any rea-

soning service, and, correctly, it may return also asser-

tions which are not in the ABox (in the example above,

CN (a1), CD(a1), CL(a1), CW (s), CW (t) are not in the

agent’s KB): these will let the agent retrieve also the un-

known assertions to attach.

Assuming agent is provided with the function JUST ,

the pseudo-code for RETRIEVEREFUTINGARGUMENTS is

shown as Algorithm 2.

Algorithm 2 RETRIEVEREFUTINGARGUMENTS

Input: a classification C(o1)
Output: a set of arguments

1: RET SET ← ∅ //set of refuting arguments

2: ASSERT SET ← ∅ //set of refuting assertions

3: J1 ← JUST (KB, C, o1)
4: for all s ∈ J1 do

5: if TBox ∪ABox 2 s then

6: ASSERT SET ← ASSERT SET ∪ s
7: best← EVALASSESSMENT(o1)

8: J2 ← JUST (KB, best, o1)
9: for all s ∈ J2 do

10: ASSERT SET ← ASSERT SET ∪ s
11: for all a ∈ ASSERT SET do

12: RET SET ← RET SET ∪ 〈a,GET OBS(a)〉
13: return RET SET

We provide an example, following again the case where

the agent receives a proposal for S2(s). First (lines 3-

6), some arguments to challenge will be extracted from
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J1 = JUST (KB, S2, s) = {(7), (8), CN (a1), CD(a1)}.

The observations related to {(7), (8)} will be at-

tached to the message. Moreover, the arguments

〈CN (a1), ∅〉, 〈CD(a1), ∅〉 will be attached. Finally (lines 7-

10), agent A1 will justify its best assessment S1 and will

add also observations related to the KB assertion (9) to the

message.

Now, consider the case where the agent receives a pro-

posal for S3(s). Again, KB 2 S3(s), therefore A1 does

not agree. J1 = {CU (s), CW (s)}. Then, A1 will prelimi-

narily attach only the fact that CW (s) is unknown, since he

agrees on CU (s). Finally, to justify its own best assessment,

he will retrieve J2 = {CU (s)}, and attach also CU (s). This

is a small lack of efficiency, since, in this case, A1 is sure

already that the agent who has proposed S1 knows the ar-

gument related to CU (s); even if it would be easy to solve

the cause of this inefficiency in this example, it would be

difficult to detect it in the general case.

RETRIEVESUPPORTINGARGUMENTS This function is

executed by an agent, after he received a reply to a proposal

with a set of arguments attached, and he integrated the ob-

servations in the arguments, and evaluated that he did not

change his best assessment. The aim of the function is to

estimate which are the arguments to attach to a reply back

to the challenger to guarantee his agreement.

We use a similar policy for this function, as for RE-

TRIEVEREFUTINGARGUMENTS. We use again the function

JUST , that has been defined in the previous paragraph. Al-

gorithm 3 for retrieving supporting arguments slightly dif-

fers from the one for computing refuting arguments. In par-

ticular, the agent will have to consider the arguments that

have been sent to him, and attach its related observations on

each of the arguments. Moreover, it will have to attach the

justifications for his best assessment.

Algorithm 3 RETRIEVESUPPORTINGARGUMENTS

Input: a situation instance o1, a set of received argu-

ments ARG RCV D
Output: a set of arguments

1: RET SET ← ∅ //set of support arguments

2: ASSERT SET ← ∅ //set of support assertions

3: for all 〈a, obsList〉 ∈ ARG RCV D do

4: ASSERT SET ← ASSERT SET ∪ a
5: best← EVALASSESSMENT(o1)

6: J1 ← JUST (KB, best, o1)
7: for all s ∈ J1 do

8: ASSERT SET ← ASSERT SET ∪ s
9: for all a ∈ ASSERT SET do

10: RET SET ← RET SET ∪〈a,GET OBS(a)〉
11: return RET SET

In the above described approach, the ontology designer

is in charge of defining the sets JUSTSi
, for each situation

class Si. Sometimes, she may exploit this property of the

system to deploy different sets of possible template justifi-

cations for each situation class, and verify the performance

of the system, when attaching only a small subset of events.

For example, she may allow for several iterations of a dia-

logue between two agents, by sending most probable justifi-

cations first, then, only if the disagreement is not solved, the

rare ones. However, in most cases, it will be probable that

the designer will not want to define these sets, and just be

sure that the system will attach all possible relevant informa-

tion to solve the challenge and avoid multiple iterations. Re-

sults from the belief revision theory [3] may be used, where

it is evaluated the minimal amount of assertions which cause

an inconsistency inside a KB. Even if the justifications are

evaluated through logic reasoning, the experiments shown

in Sec.5 should not be affected, because the results of the

function JUST is identical in the two implementations.

5 Experiments and results in a sea-

coast surveillance scenario
This evaluation has been performed on a multi-agent plat-

form for maritime surveillance. Agents represent patrol-

ships and command and control workstations. This multi-

agent platform is a component of a general architecture,

from which it receives in input perceptions in terms of

objects with an uncertain estimated position and a unique

(possible incorrect) ID; other inputs are available through

database access. On the output side, the software architec-

ture provides a graphical interface, which shows every as-

sessed situation as a warning on a display, to allow for hu-

man decision making. The multi-agent architecture can be

run on a laptop with single core processor, with small sized

teams of cognitive agents (from 1 up to 5 members) and

about 100 external entities moving. The number of agents is

limited due to the high amount of radar data received and of

real time reasoning service requests over the ontologies.

With respect to the quality of the input data, the noise

in the radar data can not be eliminated, therefore it will be

always present. Thus, in our experiments, we will consider

three different settings. We call “high quality perception”

the setting where we consider only sensors’ noise. Then, we

reduce the quality of the feature extraction process through

an exponential decay factor, which increases observations’

noise in relation to the distance from the perceived event:

“medium quality perceptions” refers to exponential decay

equal to 0.01, and “low quality perceptions” equal to 0.1.

We focus on various suspect operations to be detected.

Among the others, for example:

splitting: it is the manoeuver of remaining hidden staying

close to another vessel, then suddenly move away directed

to a critical area. (see Fig.2).

suspect approach: it is the case of a suspect vessel ap-

proached by other (at least two) vessels. A suspect vessel

is a vessel whose identification is not known, which stays

near the border of a surveilled zone.

Other situation classes are present. For example, there

are some partially specified situations, which are general-
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Figure 2: A splitting situation. Two boats (red circles) per-

formed a split close to a surveillance area (red arc) and one

of them is directed to the critical point (in purple).

Figure 3: Performances varying quality of perceptions.

izations of the above two. While detecting this high level

situation, agents may have a disagreement on different as-

sertions, like the region were the vessel first appeared, the

average direction of the vessel (which is obtained reasoning

also on past perceptions) or the number of vehicles involved

in the procedure.

Our approach (referred as mas Policy) was compared to

two different strategies. The first one, centralized, repre-

sents an approach where the high level fusion process is per-

formed by a specific agent (which represents a command

and control center) and patrolships which are distributed

in the sea area considered, are used only as information

sources. The second benchmark policy, share all ABox,

represents the multi-agent solution, where agents execute

the proposed algorithm to reach agreements, solving their

disagreements by attaching all assertions in the ABox.

Preliminarily, we show the quality of the overall team as-

sessment, comparing our policies, under varying noise con-

ditions. In this case, the mas Policy and share All ABox are

undistinguishable, because all the relevant observations are

shared, in both policies. On the x axis, the perception quality

is shown. On the y-axis there is an indicator of performances

prew (% of reward). prew uses an utility function which

gives rewards and costs to correct/wrong assessments and

partially correct/wrong ones. Then, prew = u∗

umax

, where

u∗ is the utility that the team achieves through its classifi-

cations, and umax is the maximum achievable utility, con-

Figure 4: Communication costs of 3 different agent policies.

sidering the set of classifications of the centralized policy,

in the “high quality” configuration, as ground truth (correct

assessment).

The graph in Fig.3 highlights three aspects. The first one

is that also the centralized approach does not get always the

best result, because it suffers as well from the quality of

received observations. Secondly, the centralized approach

always over-performs the multi-agent policy, as expected.

This happens because the centralized approach has always

instantaneous access to all available observations. Finally,

in case of low level perceptions the quality of results of the

multi-agent policy is sensibly affected: in this case, the ap-

proach suffers from the fact that a small number of agents

is used, and loosing some observations may result key to a

correct classification. Increasing the density of agents would

improve performances, as it is shown in the evaluation of the

chosen algorithm for coordination [13]; also, exploiting the

locality of information to forward proposals to the best in-

formed agents would enhance the performances with respect

to the actual random forwarding policy. In addition, we eval-

uate communication costs, in the three different policies. We

analyze the amount of bandwidth used, which is a better in-

dicator of the costs than the number of messages, because

messages have a different size in the various policies, due

to the possible presence (and the number) of observations

attached. We considered a fix size of 100 Bytes for each

observation. In Fig.4 we show the results. On the x axis,

the quality of observations is shown, while the y axis indi-

cates the bandwidth used, measured in bytes per second. We

can observe that centralized has severe bandwidth require-

ments, while the two multi-agent approaches significantly

reduce the amount of bandwidth used. The used bandwidth

of the approaches with distributed fusion is slightly influ-

enced by the quality of perceptions, since the number of con-

flicts in the assessment increases. Even for the worst case,

with very noisy observations, the policies with distributed

fusion largely reduce (more than half) the amount of neces-

sary bandwidth. Moreover, comparing the share all ABox

and the mas Policy approaches, the second one further re-

duces (about one order of magnitude less than centralized)

the bandwidth used, because the minimal amount of events

to be challenged is evaluated.

A major reason to compute and share minimal informa-
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high quality perc. medium quality perc. low quality perc.

assert. assert.shared assert. assert.shared assert. assert.shared

centralized 177 177 (100%) 673 673 (100%) 596 596 (100%)

shareAllABox 110 110 (100%) 151 151 (100%) 423 423 (100%)

mas Policy 110 12 (11%) 148 31 (21%) 439 123 (28%)

Table 1: Measuring information locality. The number of assertions and of shared assertions of each agent is shown.

tion among agents is to preserve information locality. To

evaluate this attribute, in Table 1 we related it to the amount

of ABox assertions which are shared among the agents. In

particular, we use the ratio between the number of assertions

shared and the total amount of assertions in the KB (both

averaged among the agents). We count as ABox assertions,

only those that derive from observations (and not, for exam-

ple, static facts). Moreover, changes in the value (positive,

negative, or unknown) of an assertion are correctly counted

just once. We consider an assertion to be shared, whenever

an observation related to that assertion is sent. Results are

shown in the table, where we may conclude that, with our

policy, each agent shares less than 30% of its KB. The mean-

ing of assertions that are not shared indicates that either they

are useless for current conclusions, or that they are agreed

(perhaps for different reasons) among the agents. We see

also that the share all ABox and the centralized policy

are worse with respect to locality, since they share all the

local assertions.

6 Conclusions
This paper is an important step towards a multi-agent ap-

proach to Situation Assessment. It provides a general frame-

work, and a solution encompassing all the components of

the process. In particular, it uses the standard logic infer-

ence for situation analysis, and addresses the comparison of

different conclusions, by using dialogues between agents.

The experimentation in a real case scenario of maritime

surveillance has shown that the approach dramatically re-

duces the amount of necessary communications. More-

over, it allows to obtain meaningful high level assessments,

merging conclusions of several agents, while preserving the

specificity of each agent.

Several aspects of the overall process could be improved.

We are concerned specifically on the agent interaction lead-

ing to high level assessment. For example, a future work in

this area will focus on the possibility to compute the set of

justifications for each relevant situation class, using results

from belief revision theory [3]. Another possible direction

to investigate is whether an agent may solve also inconsis-

tencies (and not only disagreements) in its own KB by ask-

ing for an agreement to team mates, attaching its subset of

inconsistent assertions.
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