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ABSTRACT
To act effectively under uncertainty, multi-robot teams need to ac-
curately estimate the state of the environment. Although individual
robots, with uncertain sensors, may not be able to accurately de-
termine the current situation, the team as a whole should have the
capability to performsituation assessment. However, sharing all
information with all other team mates is not scalable nor is central-
ization of all information possible. This paper presents a decen-
tralized approach to cooperative situation assessment that balances
use of communication bandwidth with the need for good situation
assessment. When a robot believes locally that a particularplan
should be executed, it sends a proposal for that plan, to one of its
team mates. The robot receiving the plan proposal, can either agree
with the plan and forward it on, or it can provide sensor informa-
tion to suggest that an alternative plan might have higher expected
utility. Once sufficient robots agree with the proposal, theplan is
initiated. The algorithm successfully balances the value of coop-
erative sensing against the cost of sharing large volumes ofinfor-
mation. Experiments verify the utility of the approach, showing
that the algorithm dramatically out-performs individual decision-
making and obtains performance similar to a centralized approach.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Multiagent systems, Coherence and coordination; I.2.9 [Artificial
Intelligence]: Robotics

General Terms
Algorithms, Experimentation

Keywords
cooperative perception, robotics, situation assessment

1. INTRODUCTION
Emerging, large multi-robot teams hold great promise for revo-

lutionizing the way some important, complex and dangerous tasks,
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Figure 1: Example of simulated multi-robot rescue responsein
USARSim.

such as monitoring and surveillance[7], space exploration[4] and
disaster response [15] are performed. Such teams must choose co-
operative courses of action in the face of considerable uncertainty
and time pressure. To coordinate their activities in complex un-
structured scenarios, robots need the ability to aggregateinforma-
tion into estimates offeaturesrelevant to their mission and their
interactions. The process of acquiring this knowledge is known as
situation assessment[10]. The more accurately and more quickly
the team can determine the situation, the better it can select a team
plan to achieve its objectives.

Situations are organized into a hierarchy with the most general
situations at the top of the hierarchy and the most specific situations
at the leaves. There is a corresponding hierarchy of team plans, i.e.,
a plan for each class of situation. It is assumed that more specific
plans are more effective, but it is better to execute a more general
plan than a more specific one for the wrong situation. For example,
in the rescue domain the presence of a victim is the most general sit-
uation, with an unconscious, badly injured victim and a conscious,
uninjured victim being more specific situations. Based on belief in
the current situation and a model of the reward for differentplans
in different situations an individual can compute the expected util-
ity (EU) of each plan. However, based only on local, uncertain
sensor readings, individual beliefs will be inaccurate. Even in the



best case, this will lead to the individual deciding that more general
plans have higher EU even though the team might have had enough
information to select a plan more specific to the situation.

In many multi-robot environments, multiple robots will take sen-
sor readings of the same situation over a relatively short time. Those
readings will be from heterogeneous sensors with both systematic
and random noise. In the cases of interest to this paper, if all the
sensor readings could be provided to an appropriate filter anaccu-
rate assessment of the situation could be performed, but individu-
ally each robot would have a significant probability of incorrectly
characterizing the situation. Unfortunately, communication band-
width limitations typically preclude sharing all sensor data, espe-
cially in large teams. This paper presents an approach to coopera-
tively, distributedly and efficiently choosing an appropriate course
of action in the face of this uncertainty thus improving teamper-
formance. The key hypothesis in this paper is that uncertainty must
be explicitly dealt with in a distributed and coordinated way for
most effective team behavior. Our current focus is robotic search
and rescue, where robots need to explore an unknown environment,
searching for victims identified via suggestive features (e.g., tem-
perature, movement, shape, etc.). While various approaches have
been developed for this problem [11, 20, 21], little attention has
been devoted to distributedly and cooperatively dealing with uncer-
tainty. Most previous work has either addressed uncertainty from
an individual perspective [2, 3, 19], or has proposed centralized
solutions [13, 1, 17].

The approach presented here works as follows. When a robot
believes a plan should be initiated, before initiating the plan it cre-
ates a message with the proposed plan and sends it randomly to
another team member. The robot receiving the message looks at
the proposed plan and checks the proposal against its beliefs in the
events constituting the situation for the plan. If its beliefs are in
line with the proposed plan or it has no sensor readings to dispute
the conclusion, it simply forwards the message on. Conversely, if
its beliefs do not match those required for that plan initiation, it
chooses some of the observations that lead to that belief, attaches
them to the message and sends it back to the robot from which it
was received. The robot receiving the challenge to its proposal,
integrates the attached observations into its beliefs and reassesses
the choice of plan. This process continues until a sufficientnumber
of robots agree on the choice of plan. Notice that observations are
only shared when beliefs differ enough to change the appropriate
plan to be executed, minimizing unnecessary communicationwhile
still allowing the team to leverage collective sensing resources to
make decisions. The overall process is inspired by work on argu-
mentation [8] adapted to a large team setting.

To evaluate the effectiveness of the proposed approach, experi-
ments were performed in a simulated search and rescue scenario.
The approach is shown to perform almost as well as an approach
that broadcasts every detected feature to every other robot, while
using an order of magnitude less communication bandwidth. How-
ever, the performance of the team with the distributed protocol de-
grades when the environment is very sparse, since fewer robots
have information about the same situation, and when the environ-
ment is very dynamic since team mates information is often out-
dated.

2. PROBLEM
This section formally describes the problem addressed by this

paper. R = {r1, . . . , rm} is the set of mobile robots.E =
{et

1, . . . , e
t
n} is the set of events which occur in the environment

and can be imperfectly observed by robots. Observations arenot
direct sensor readings (e.g., laser scans) but the result ofa feature

extraction process indicating the presence of an interesting feature
in a given location of the environment. Robots have a model ofthe
noise in their observations and a model of how events evolve over
time. By integrating observations over time, robots can have a be-
lief over eventsBelr(e

t
i) which represents the probability that the

eventei is true.
A situationrepresents the fact that a certain combination of events

are true or false at the same time in a certain location. For exam-
ple, a situations might be defined asei ∧ ¬ej . We indicate with
S = {st

1, . . . , s
t
m} the set ofsituation instances, each one referring

to a specific location. Situation instances are grouped in classes,
whereSCL = {S⊥, S0, . . . , Sk} is the set ofsituation classes.
A class of situations is a grouping of situations into semantically
equivalent groups. For example, the situation classS might be de-
fined asei ∧ (ej ∨ ¬ej), if ej is irrelevant to any action that might
be taken in that class of situation. For example, the situation of
an unconscious victim would be defined by eventsvictim present,
localized,35 < heat source< 42, C02 presentandno movement.
Notice that if events are independent, then the belief in a situa-
tion is simply the product of the belief of the constituent events.
However, it is more typically the case that events are not indepen-
dent and that techniques such as Bayesian networks are required
to compute the probability of a situation, given the probabilities of
events. For example, if the team has a high belief that a victim is
present in a locationx, then it is more likely that heat will be de-
tected inx, as compared to other locations. Multiple robots can
sense the same events, taking observations that allow them to form
belief distributions over events and, subsequently situations.

Each member of the team is provided with the same set of plans
P , containing a specified planPi for each possible situation class
Si. The planP⊥ (associated to situation classS⊥) represents the
default situation where the team will not take any particular action.
For example,S⊥ can represent a situation where there is no victim
present. Plans are organized in a hierarchy. At the top levelof the
hierarchy there are the most general situations, while at the leaves
are the most specific situations (those specified in the most detail).

A function U : P × SCL → R specifies the utility (reward
or cost) for the team when executing the plan for a situation class.
Since the situation class for each location is unique and indepen-
dent of other locations, we can focus on one location only. There-
fore, for ease of notation, we remove, when possible, the location
subscript from situation instances and represent the situation in-
stance simply ass. The functionU must meet the following con-
straints:

• s ∈ Si ands ∈ Sj andSi ⊆ Sj → U(Pi, Si) ≥ U(Pj , Si)

• s /∈ Si ands ∈ Sj andSi ⊆ Sj → U(Pi, Sj) < U(Pj , Sj)

• U(P⊥, S⊥) = 0

The first constraint requires that higher reward will be received
when more specific plans are executed in appropriate situations.
The second constraint says that it is better to execute more general
plans than inappropriate but more specific plans. The final con-
straint simply requires that there is no reward or cost for not acting
when the situation does not require action.

Given the above definitions, the problem is for the team to choose
the plan that maximizes their expected utility, given theirbelief in
the current situation. Typically better information will allow more
specifically tailored plans to be executed and when there is higher
uncertainty more general, less effective plans will be used. For-
mally the team must maximize for each situation instances:
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k
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wherei is the most specific situation classs belongs to, andx is
the estimated class for the situation by the team, at timet. Optimal
performance will be obtained ifx = i for each time step and each
situation instance.

More formally, to perform the maximization specified in Equa-
tion 1, robots should execute at each time stept, for each situation
instances, the planP ∗

k such that:

k∗ = arg max
k





∑

Sx∈SCL

Bel(Sx) ∗ U(Pk, Sx)



 . (2)

Since each situation class is related to a set of events, we can
translate the condition on plan execution that derives fromEqua-
tion 2 to a set of constraints of the formmij < Bel(ej) < Mij for
eachej that relates to situation classSi. This computation can be
done off-line. In other words, for ranges of beliefs, the appropriate
plan to execute can be determined without computing the EU of
each plan. During the mission execution, robots will monitor their
belief value over the possible events and instantiate the correspond-
ing plan (i.e., the plan that meets the pre-computed constraints).

2.1 Example
For example, consider the simple situation where there are only

two eventse1, representing presence of a human shape, ande2,
representing human like movement.S1 = victim is defined by
e1 ∧ (e2 ∨ ¬e2) andS2 = unconscious_victim is defined by
e1 ∧ ¬e2. Suppose the team has a planP1 for S1 where the plan
involves sending in a robot to try to lead the victim to safety, send-
ing human rescuers only if this fails. A planP2 involves immedi-
ately sending in human rescuers and is best suited forS2 where the
victim is unconscious. Suppose the rewards areU(P1, S1) = 2,
U(P1, S2) = −1, U(P2, S1) = −2 andU(P2, S2) = 4. Notice
that, following the constraints specified in 2, for the team it is better
to execute the more specific plan in the more specific situation (i.e.
U(P2, S2) ≥ U(P1, S1)) and it is better to act more general than
wrong (i.e.U(P2, S1) ≤ U(P1, S1)).

Figure 2 illustrates the situation and shows the robots (repre-
sented as circles) in the environment, attempting to understand the
situation. Notice that multiple robots may have sensor readings
that can help the plan selection, but, after communication,only the
filled robot has enough information to decide that a plan is required
and initiate the process.

In this case, following Equation 2 the team should executeP1

whenBel(S1)∗2+Bel(S2)∗(−1) > Bel(S1)∗(−2)+Bel(S2)∗
4 Assuming thate1 ande2 are independent,Bel(S1) = Bel(e1)
and Bel(S2) = Bel(e1) × (1 − Bel(e2)). Thus, the decision
above can be broken down into the team should executeP1 when
Bel(e2) > 1/5.

3. DISTRIBUTED ALGORITHM
The aim of the distributed algorithm is to cooperatively choose

the plan that maximizes the team utility, in the face of sensor uncer-
tainty, without overloading communications networks. Thebasic
approach is as follows: each robot individually performs a decision
theoretic computation and decides to instantiate the plan that max-
imizes the expected reward. When a robot decides to instantiate a
plan, it sends a plan proposal to a team mate. When receiving a
plan proposal, the robot checks whether its beliefs agree with the

1

2
3

Figure 2: An example of cooperative perception in a simple
search and rescue scenario.

plan selection, based on its own utility calculation. If therobot
agrees or has no observations that disagree, it passes the plan on to
another team member. The proposal is passed on until a fixed num-
ber of robots agree with the choice of plan. If the robot’s beliefs
support the choice of a different plan, it sends back achallenge, at-
taching to the message observations that caused its beliefsto differ
in such a way that it would choose the different plan. In this re-
spect, the approach is inspired by argumentation-based negotiation,
where agents reach an agreement iteratively proposing possible al-
ternatives and provide arguments in favour of their proposals.

The key to the efficiency of the proposed approach is that since
the whole team shares the same taxonomy of situations and plans,
then arguments are simply observations about the event thatcauses
the disagreement. Such events can be easily identified as theevents
that do not meet the constraints deriving from Equation 2, for the
proposed plan. In other words, they are those beliefs which fall in
ranges that mean a different plan has a higher EU. Only these ob-
servations are shared, while many irrelevant observationsare kept
private, thus minimizing the information exchange. In manydo-
mains, the resulting message use is low enough to be practical. In
the remainder of this section, the algorithm is described indetail.

When a robot makes an observation it integrates the new obser-
vation to update its beliefs about events. The belief updateis per-
formed using a standard Bayesian framework. Given the updated
belief over events, the robot assesses, via Equation 2, whether exe-
cuting some plan is appropriate. If the robot decides to instantiate
a planPx it will create a proposal message for that plan. The mes-
sage will have the following structure:
Msg=<plan,status,TTL,] agree,observations>
where
plan = ID of the proposed plan
status= {“PROPOSAL”|“CHALLENGE”}
TTL(time-to-live of the proposal) is the number of agents that must
agree to the plan before it is initiated,
]agreeis the number of agents that have agreed so far
observations= {〈ei, obsList〉} is a list of observations forei.
Unless there is an ongoing challenge,obsList = ∅.

Notice that since only contradicting observations are sentand
only to the robot that disagrees, this message format scaleswith all
key environmental and team variables.

When a robot receives a message it executes the procedureOn-
MsgReceivedspecified in Algorithm 1. The robot first checks whether
the constraints related to the event beliefs forPx are satisfied (line
2) that is, it checks whether its beliefs are in ranges that would
makePx the utility maximizing plan. If the constraints are satis-
fied, it will just forward the message randomly to another robot, in-



Algorithm 1: Algorithm executed by each robot
ONMSGRECEIVED(msg)
(1) INTEGRATEBELIEFS(msg.obs)
(2) planAgree← EVAL ARGUMENTS(msg.plan)
(3) if msg.status == PROPOSAL
(4) if planAgree
(5) msg.]agree← msg.]agree + 1
(6) if ] msg.agree< TTL
(7) SEND(msg,nextAgent())
(8) else
(9) INSTANTIATEPLAN (msg.plan)
(10) else
(11) msg.status← CHALLENGE
(12) msg.obs←RETRIEVEREFUTINGOBS(msg.plan)
(13) SEND(msg,msg.sender)
(14) else
(15) /* msg.status == CHALLENGE */
(16) if planAgree
(17) msg.status← PROPOSAL
(18) msg.obs←RETRIEVESUPPORTINGOBS(msg.plan)
(19) SEND(msg,origMsg.nextAgent())
(20) else
(21) if origMsg.prevAgent() 6= null
(22) msg.obs←RETRIEVEREFUTINGOBS(msg.plan)
(23) SEND(msg,origMsg.prevAgent())
(24) else
(25) DESTROY(msg)

creasing]agree(lines 4- 7). If the constraints are violated,status
is changed to “CHALLENGE”. Observations relevant to the event
that caused the violation are inserted intoobsList. For example, if
the robot would have chosenPj instead of the proposedPi because
Bel(ei) > 0.4 then it sends observations that led to that belief. It
then sends the message back to the robot it received it from (lines
11-13). The functionretrieveRefutingObservationsgets those ob-
servations from the agent history.

The robot receiving the challenge, integrates the observations in
the message into its own beliefs and reconsiders the choice of plan.
Due the integration, two possibilities exist: (i) the additional obser-
vations did not sufficiently changes its local beliefs to cause it to
believe a different plan has higher EU; (ii) it now believes another
plan has higher EU. In case (i) the robot clears theobsList changes
thestatus back to “PROPOSAL" and forwards it randomly (lines
21- 25). The functionretrieveSupportingObservationretrieves the
list of events whose observations are needed by the challenger to be
persuaded by the current plan. In case (ii), the robot attaches any
additional observations to the message and sends it back to where
it received it (16- 19). If it was the robot that initiated theproposal,
the plan is changed and new message passing begins (line 25).A
team plan is instantiated when the number of agreeing agentswith
a proposed plan reaches TTL (]agree == TTL) (line 9).

Notice, that this approach potentially allows conflicting plans to
be initiated by different robots in the same team. Solving such
conflicts is outside of the aim of this work, but has been addressed
in literature [16]. Notice, that if message passing was occurring for
conflicting plans, the robots may be able to notice this and merge
the conclusions of both sequences for more efficient performance.

3.1 Execution example
To illustrate execution of the algorithm, we present a simplified

execution sequence for a single plan. There are 5 agents, 2 events
and the plan needs 3 agents to agree before being instantiated. For
simplicity, we show only observations about the situation of the
example. Figure 3 shows the messages exchanged among agents
over time. The observations each robot has about each event,are

specified under the robot identifier. We indicate positive,T , and
negative,F , observations, together with the event and the time step
they refer to. Positive observations support belief in the event, neg-
ative ones undermine it. For example,T 5

1 is a positive observation,
related toe1 observed at time step 5. The example begins at time 5,
when the robotAg1 has five observations indicating that a planP1

should be instantiated. The plan is for the situation class defined
ase1 ∧ e2. The robot creates a new message, and sends it, without
observations as a proposal to robotAg4. The robotAg4 has differ-
ent observations toAg1, but it agrees with the overall conclusion
about the plan, so it simply updates the number of agreeing robots,
]agree, in the message and passes it on toAg3. The robotAg3 dis-
agrees with the planP1, because its observations say¬e1. Hence,
it challengese1.

In order to do this, it changes the status of the message to “CHAL-
LENGE" and attaches its own observations about evente1. It then
sends the message back to the sender,Ag4. WhenAg4 receives
the message, it updates his own list of observations adding the ones
contained in the message; then re-evaluates whether it still finds
P1 to have maximum EU. In this case,Ag3’s observations did not
changeAg4’s calculation thatP1 was appropriate.Ag4 attaches
its observations to the message and send it toAg3. Ag3 receives
the message again, this time withAg4’s observations. WithAg4’s
observations,Ag4 now also agrees with the choice ofP1. It in-
crements] agree and moves the message on. Finally, the plan is
initiated, whenAg5 also agrees with the plan.

3.2 Discussion
In this section, some basic termination and performance prop-

erties of the algorithm are shown. First, we define the concept of
“hard" challenge.

DEFINITION 1. During the execution of the protocol, given a
list of agreeing agents[ak1

, .., akn
] a challenge is “hard” if, none

of the robots among[ak2
, .., akn

] is able to resolve the challenge
for at least one of the events that are challenged.

After a challenge is resolved, the two agents (the challenger and
the solver) have the same observations and agree with the proposed
plan. If a challenge is “hard”, the message has to be passed back
through all the robot chain, until it reaches the proposal initiator.
Then, if the first robot still believes that the plan maximizes EU,
the message will have to be passed forward through all the chain
again to the challenging robot. If a challenge is not “hard”,the
agreement will be reached with some robot in the chain, saving the
number of messages used.

We can now show that the algorithm always terminates.

THEOREM 1. If TTL is fixed and no further observations are
obtained during execution, Algorithm 1 always terminates.

PROOF. The proof is based on the fact that there is an upper
bound on the number of messages that are required by the algorithm
to find an agreement among TTL agents, if TTL is a fixed number.
In the worst case, the plan will be actually instantiated, but only
after that each of the TTL agents starts a challenge message on at
least one event; in particular, in the worst case, each new challenge
has to be “hard” (so that the message comes back always to the
initiator, and it is the only one that is able to solve the challenge).

In this case, to solve the challenge of the first robot receiving
the message, needs one message back and one message forward;to
solve the challenge of the second agent, needs two messages back
and two messages forward, and so on. Therefore, in general, the



Figure 3: Example of an execution of the protocol

upper bound is:

S(TTL) = 1 + 2 + 4 + 6 + ... + 2 × TTL = 1 + 2 ×
TTL
∑

i=1

i =

1 + TTL × (TTL + 1)

The analysis of the worst case shows that the protocol requires in
at most a number of messages polynomial in the TTL. Moreover,
experiments in Section 4 will show that the average number ofmes-
sages needed by the protocol is much lower than the one provided
by this theorem.

4. EXPERIMENTS AND RESULTS
The approach was evaluated in an abstract simulation environ-

ment. The simulator abstracts the low level details of robots ca-
pabilities and focuses on coordination issues, thus allowing to effi-
ciently run experiments with large number of robots (from 70up to
120 members), under varying environmental conditions (e.g., world
dynamism, world size, etc.).

To evaluate the agents’ performance, we compute the reward that
robots gain over time (according to Eq.1). In particular, wecom-
pute, at each time step, the ratio of obtained rewardu∗ to the high-
est possible rewardumax (the reward that would be obtained al-
ways executing the highest reward plan for each situation).Such
measure will be namedprew = u∗

umax
(percentage of reward).

The communication overhead is evaluated using two measures:
i) number of messages exchanged at each time step by each robot;
ii) size of the messages (in bytes) exchanged at each time step by
each robot. We count a broadcast message as point to point mes-
sage times the number of robots. While for a more precise analysis
of the overhead one should consider the specific network used, this

provides a general cost model for communication which is suitable
for our level of analysis.

The proposed approach (referred asMAS_Policyin the follow-
ing) was compared to two different strategies. The first one,Cen-
tralized, requires each robot share all its observations with all other
robots at each time step. Clearly, this type of approach is infeasible
for large teams, but it provides an upper bound on the performance
that can be achieved by the agents. Notice that theCentralizedap-
proach is not guaranteed to obtained the maximum reward. In the
Centralizedapproach, the team activity is based on the perceptions
of all the robots, therefore team performance is related to the avail-
able perceptions: e.g. if the density of the robots is very low (Figure
4) or the perception is very bad (Figure 6), the centralized approach
will not make optimal decisions.

The second benchmark strategy isSelfish_agent, where the first
agent that has enough information to initiate a plan, will just initiate
it. The results of this policy provide a bound on the performance
that can be achieved using a non-cooperative perception approach.
The general performance of this approach illustrate the difficulty of
the problem faced by robots.

Experiments have been performed in a 2D office-like environ-
ment. The simulated robots have limited knowledge of the overall
team state and can communicate with only a subset of the over-
all team. In each experiment there were 70 simulated homoge-
neous robots, each with the same perception model. The perception
model is based on a decreasing probability of correct detection with
distance, i.e. robots are more likely to obtain correct observations
when closer to the features. The initial distribution of robots in the
environment is random. Each graph reports values averaged over
10 trials of the same experiment. Each experiments is simulation
over a finite horizon of 100 time steps. When not explicitly stated,
the TTL is set to1/3 of the team size, providing a balance between
communication overhead and performance.



In all the experiments, the reward function was designed to as-
sign to situations a reward (and a cost) that is proportionalto their
depth in the hierarchy. Therefore, in a hierarchy of situation classes
with depthd, each situation class at depthi will receive a rewardr if
instantiated for the correct situation, and a costc is instantiated for a
wrong situation. The reward and cost are specified by the following
equations:r = k1×(i+1)×1/d c = −k2×(i+1)×1/d. For ex-
ample, leaves will have rewardr = k1 and costc = −k2, the nodes
that are direct sons of the root will receive rewardr = k1 × 1/d
and costc = −k2 × 1/d etc... Using this model for the reward
function allows us to test our approach with different hierarchical
structures, (i.e., varying the depth of the hierarchy) while meeting
the constraints specified in Section 2. In particular, sincewe want
to study the performance of the approach when specified situations
might be chosen, we set the weights such that (k2 = 1/2 × k1). In
this way, partially specified situations will be frequentlybe the best
choice for the team.

To exchange information about features present in the environ-
ment, robots need to share a common reference framework. To
simplify the experimental setting, we do not explicitly consider lo-
calization errors. As a matter of fact, standard localization tech-
niques [3] can be used for our experimental scenario, and local-
ization errors can be taken into account in the error model ofthe
feature extraction process.

Figure 4: Performance comparison varying world size

Figure 5: Performance comparison varying world dynamics

We first evaluate the performance of the approach varying key
parameters of the environment, namely the size of the world in
which robots operate and the dynamism of the world. Varying the
world size and keeping the number of robots constant, we testhow
the approach behaves when the robots have less mutual observation
of the same features (see Figure 4). Clearly, the performance of all
the three compared policies degrade as the world size increases,
however, theMAS_Policy is able to provide performance which

Figure 6: Performance comparison varying quality of percep-
tions

is very close to the one accrued by the centralized policy, while
the single agent policy performs very badly. Varying the world dy-
namism is intended to test whether our approach is able to react
to unexpected changes in the environment. In particular, the world
dynamism in this experiment determines how frequently features
appear and disappear from the environment. A world change rate
of x means that at each time step, each feature has a probability of
x to switch its state (i.e., appear in a given part of the environment
if it was not present or disappear if it was present). Resultsreported
in Figure 5, show that the approach is able to cope very well with
dynamism of the world.

Next, we evaluate how the algorithm behaves when quality of
the perception that robots obtain from the environment varies. As
mentioned the detection probability is dependent on the distance
from the observed feature. The law is a decreasing exponential and
the parameter of the exponential is the decay factor that we vary in
this experiments. Results reported in Figure 6 shows what happens
when the decay rate is raised. The approach to situation assessment
is able to provide good results even with very noisy perception.

Figure 7: Performance comparison varying hierarchy depth

Next, we look at performance as the depth of the situation hier-
archy is raised. Notice that increasing the depth of the hierarchy
increases also the number of events that have to be considered to
assess a situation. In fact, in the proposed model, the number of
events that compose a completely specified situation is equal to the
depth of the hierarchy. For example, for a hierarchy of depth4, a
completely specified situation ise0 ∧ e1 ∧ ¬e2 ∧ e4. Moreover,
when the situation hierarchy is deeper situations will be more dif-
ficult to distinguish. In fact, when the situations are similar for
more events, more specific observations are necessary to reach an



agreement among agents. Results reported in Figure 7 indicate that
our policy scales well with the hierarchy depth. In fact, theap-
proach has very similar performance to centralized decision maker.
Conversely, the performance of the selfish agent policy is heavily
affected by the increased complexity of the scenario.

Figure 8: Performance comparison for different TTL

Figure 9: Communication comparison for different TTL (num-
ber of messages)

As previously mentioned, a key aspect ofMAS_Policy is to
minimize the amount of information exchanged among agents.To
evaluate this we measured the amount and size of messages ex-
changed, as TTL was varied. The TTL is the key parameter that in-
fluences the amount of communication transmitted among robots,
since more agents are required to agree on a plan and more probable
is the occurrence of a challenge.

Figure 8 and 9 report the results of our method varying the TTL.
In particular, Figure 8 show how theprew measure changes with
increasing TTL values. We varied the TTL between 5 (1/14 of the
total number of agents) and 35 (1/2 of the total number of agents).
When TTL is very low, the results become very similar to the selfish
agent policy, because robots share very few observations, and thus
make wrong plan instantiation. High TTL values provide results
similar to the centralized strategy.

Figure 9 reports on the lefty axis, the number of messages per
agents per time step, and on the righty axis the communication
load per agent per time steps (bytes). Each sensor reading was
modeled as having 100 bytes. Results show that the proposed ap-
proach, not only requires a lower number of messages, but ensures

also a smaller communication overhead in terms of message size.
In particular, for this team size (70 robots), the communication gain
is approximatively one order of magnitude over the centralized ap-
proach.

Figure 10: Number of messages required for each execution of
the protocol

Finally, Figure 10 reports the total number of messages required
for each execution of our algorithm, varying the TTL. In particular,
we report the number of messages exchanged divided by the num-
ber of instantiated plans and the number of messages exchanged
divided by the number of created plans. The first measures theav-
erage number of messages required for plans that are instantiated
while the second measures the average number of messages ex-
changed by every execution of the algorithm. In Section 3.2 we
claimed that the number of messages required by the protocolin
the worst case is quadratic with respect to TTL. Figure 10, shows
that this worst case scenario is very unlikely to happen in practice.
Results indicate that the average number of messages required for
a generic execution of the protocol is in fact less than TTL itself.

5. RELATED WORK
Coordination in multi-robot systems has been successfullyad-

dressed using frameworks based on Belief Desire Intention archi-
tecture and Joint Intention theory [18, 6]. In particular, the STEAM
framework is based on the concept of Team Oriented Plan [18],
which are activities that need to be jointly carried out by the agent
team. Team Oriented Plans are decomposed into specific sub-activities
called roles that individual robots can perform. Our concept of plan
is related to the concept of Team Oriented Plans and our hierarchy
of situations resemble the one used in STEAM. However, with re-
spect to the STEAM architecture, our approach is specifically fo-
cused to address the impact that noisy perception have on thecoor-
dination process. Noisy perception results in misaligned,and pos-
sible conflicting agents’ knowledge, and is likely to be cause of
poor system performance. Cooperative perception techniques can
be used to address this problem.

Several approaches use cooperative perception to deal withper-
ception limitation of the single robot [13, 1, 17]. The general idea is
to exchange sensor readings and aggregate them using different fil-
tering techniques (e.g. Kalman filters [1, 17] or particle filters [13]).
These approaches attempt to reduce the uncertainty before deciding
how to act, by exploiting passive noise filtering techniques. Other
techniques, explicitly deal with the uncertainty when choosing a
course of actions, for example COM-MTDPs [12]. However, such
approaches often require to exchange large amounts of data among
robots. A key reason for this is that, typically, each robot attempts
to maintain an accurate model of the complete state when, in prac-
tice, only a small part of the overall state might be relevantto its



activities. Some works exist which explore this possibility [14], but
current results are still limited to small number of agents.

Recently, increasing attention has been devoted to the concept
of situation assessment. However, the concept has been mainly
investigated in centralized settings [10]. While several approaches
are now able to integrate information at data level1 among different
robots [9], limited attention has been devoted to the problem of
situation assessment in a distributed setting.

Finally, our approach is inspired by ideas taken from argumentation-
based negotiation [8]. Specifically, as in negotiation, ourapproach
is based on a sequence of one-to- one interaction. Differently then
argumentation, however, agents are not self interested. Robots are
willing to be totally cooperative with their team mates. In partic-
ular, our approach uses ideas from argumentation as a mean tore-
strict the amount of communication needed and thus avoidingsend-
ing irrelevant information when possible. Moreover, robots support
their plan proposal and plan challenges, using arguments, which in
our case are observations.

6. CONCLUSIONS
This paper represents an important first step towards a distributed

approach to situation assessment in uncertain environments; more-
over, to the best of our knowledge this is the first attempt to define
a distributed approach that cooperatively deals with the uncertainty
of team plan initiation. The approach explicitly and cooperatively
addresses the uncertainty that robots have due to noisy observa-
tions and gains its efficiently by ensuring only useful observations
are shared.

We presented an extensive evaluation of the algorithm across a
wide set of interesting operational conditions. In particular, we
compared the approach to a centralized and individual approaches.
The approach presented in this paper performed almost as well as
the centralized approach while using an order of magnitude less
communication. It far out-performed the individual approach.

Future work will look at a range of issues to make the approach
more relevant and more efficient for real robot teams. An imme-
diate point of interest is whether TTL can be dynamically adjusted
to account for the amount of agreement or disagreement between
agents. Another area of interest is whether plan deconfliction algo-
rithms can be combined with this algorithm, potentially simplifying
overall coordination and improving efficiency in one step.
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