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ABSTRACT

To act effectively under uncertainty, multi-robot teamgaé¢o ac-
curately estimate the state of the environment. Althouglvidual
robots, with uncertain sensors, may not be able to accyrdtel
termine the current situation, the team as a whole should tre
capability to performsituation assessmentHowever, sharing all
information with all other team mates is not scalable noeistial-
ization of all information possible. This paper presentseaenh-
tralized approach to cooperative situation assessmetriatences
use of communication bandwidth with the need for good sitnat
assessment. When a robot believes locally that a partigldar
should be executed, it sends a proposal for that plan, to bite o
team mates. The robot receiving the plan proposal, carreigree
with the plan and forward it on, or it can provide sensor infar
tion to suggest that an alternative plan might have highpeeted
utility. Once sulfficient robots agree with the proposal, pihen is
initiated. The algorithm successfully balances the valuieoop-
erative sensing against the cost of sharing large volumé¥af
mation. Experiments verify the utility of the approach, wing
that the algorithm dramatically out-performs individuacision-
making and obtains performance similar to a centralizedazgmt.

Categories and Subject Descriptors
1.2.11 [Artificial Intelligence ]: Distributed Atrtificial Intelligence—

Multiagent systems, Coherence and coordingtio.9 [Artificial
Intelligence]: Robotics

General Terms
Algorithms, Experimentation
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1. INTRODUCTION

Emerging, large multi-robot teams hold great promise fonte
lutionizing the way some important, complex and dangerasks,
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Figure 1: Example of simulated multi-robot rescue responsén
USARSIm.

such as monitoring and surveillance[7], space explorptjoand
disaster response [15] are performed. Such teams mustechoes
operative courses of action in the face of considerablertaiogy
and time pressure. To coordinate their activities in compie-
structured scenarios, robots need the ability to aggrégéiema-
tion into estimates ofeaturesrelevant to their mission and their
interactions. The process of acquiring this knowledge makmas
situation assessmdtf]. The more accurately and more quickly
the team can determine the situation, the better it cantseteam
plan to achieve its objectives.

Situations are organized into a hierarchy with the most ggne
situations at the top of the hierarchy and the most specifiasbns
at the leaves. There is a corresponding hierarchy of teans pla.,

a plan for each class of situation. It is assumed that moreifape
plans are more effective, but it is better to execute a monergd
plan than a more specific one for the wrong situation. For gxem
in the rescue domain the presence of a victim is the most gesier
uation, with an unconscious, badly injured victim and a camss,
uninjured victim being more specific situations. Based diebin
the current situation and a model of the reward for diffefgans

in different situations an individual can compute the exeéaitil-
ity (EU) of each plan. However, based only on local, uncartai
sensor readings, individual beliefs will be inaccurateetin the



best case, this will lead to the individual deciding that engeneral
plans have higher EU even though the team might have had bnoug
information to select a plan more specific to the situation.

In many multi-robot environments, multiple robots will tagen-
sor readings of the same situation over a relatively shoe tiThose
readings will be from heterogeneous sensors with both satte
and random noise. In the cases of interest to this papel, tifial
sensor readings could be provided to an appropriate filtaican-
rate assessment of the situation could be performed, bividoe
ally each robot would have a significant probability of ineatly
characterizing the situation. Unfortunately, communaaband-
width limitations typically preclude sharing all sensotalaespe-
cially in large teams. This paper presents an approach foecae
tively, distributedly and efficiently choosing an appra@pe course
of action in the face of this uncertainty thus improving tepen-
formance. The key hypothesis in this paper is that uncéytamust
be explicitly dealt with in a distributed and coordinatedywar
most effective team behavior. Our current focus is robatrsh
and rescue, where robots need to explore an unknown envératnm
searching for victims identified via suggestive featureg.(é¢em-
perature, movement, shape, etc.). While various appreauénee
been developed for this problem [11, 20, 21], little attenthas
been devoted to distributedly and cooperatively dealirty wicer-
tainty. Most previous work has either addressed unceytdintn
an individual perspective [2, 3, 19], or has proposed cénéth
solutions [13, 1, 17].

extraction process indicating the presence of an intexgétature
in a given location of the environment. Robots have a modéi®f
noise in their observations and a model of how events evolee o
time. By integrating observations over time, robots caretebe-
lief over eventsBel,(el) which represents the probability that the
evente; is true.

A situationrepresents the fact that a certain combination of events
are true or false at the same time in a certain location. Famex
ple, a situations might be defined as; A —e;. We indicate with
S ={st,...,s%,} the set ofituation instances, each one referring
to a specific location. Situation instances are groupedassgls,
where S, = {S., So,...,Sk} is the set ofsituation classes
A class of situations is a grouping of situations into sericafiy
equivalent groups. For example, the situation cléissight be de-
fined ase; A (e; V —e;), if e; is irrelevant to any action that might
be taken in that class of situation. For example, the stnabi
an unconscious victim would be defined by everitsim present
localized35 < heat source< 42, C02 presenandno movement
Notice that if events are independent, then the belief intaasi
tion is simply the product of the belief of the constitueneets.
However, it is more typically the case that events are natped-
dent and that techniques such as Bayesian networks areeequi
to compute the probability of a situation, given the probaes of
events. For example, if the team has a high belief that anvitgi
present in a locatiom, then it is more likely that heat will be de-
tected inz, as compared to other locations. Multiple robots can

The approach presented here works as follows. When a robotsense the same events, taking observations that allow thésm

believes a plan should be initiated, before initiating thenpt cre-

belief distributions over events and, subsequently sanat

ates a message with the proposed plan and sends it randomly to Each member of the team is provided with the same set of plans
another team member. The robot receiving the message Iotoks aP, containing a specified plaR; for each possible situation class

the proposed plan and checks the proposal against itsbalidie
events constituting the situation for the plan. If its bisliare in
line with the proposed plan or it has no sensor readings fmths
the conclusion, it simply forwards the message on. Conlerie
its beliefs do not match those required for that plan iritiat it

chooses some of the observations that lead to that beltathats

them to the message and sends it back to the robot from which it

was received. The robot receiving the challenge to its maho
integrates the attached observations into its beliefs aagdsesses
the choice of plan. This process continues until a suffiaiembber
of robots agree on the choice of plan. Notice that obsemstive
only shared when beliefs differ enough to change the apjatapr
plan to be executed, minimizing unnecessary communicatfole
still allowing the team to leverage collective sensing tgses to
make decisions. The overall process is inspired by work go-ar
mentation [8] adapted to a large team setting.

To evaluate the effectiveness of the proposed approacleriexp
ments were performed in a simulated search and rescue grenar

The approach is shown to perform almost as well as an approach

that broadcasts every detected feature to every other, rolnite
using an order of magnitude less communication bandwiddw-H
ever, the performance of the team with the distributed paltde-
grades when the environment is very sparse, since fewetsobo
have information about the same situation, and when the@mnvi
ment is very dynamic since team mates information is often ou
dated.

2. PROBLEM

This section formally describes the problem addressed isy th
paper. R = {ri,...,rm} is the set of mobile robots.E =
{el,...,eL} is the set of events which occur in the environment
and can be imperfectly observed by robots. Observationsare
direct sensor readings (e.g., laser scans) but the resalfezfture

S;. The planP, (associated to situation class ) represents the
default situation where the team will not take any particaletion.
For example S, can represent a situation where there is no victim
present. Plans are organized in a hierarchy. At the top Eile
hierarchy there are the most general situations, whileeatethves
are the most specific situations (those specified in the netatlijl

A functionU : P x Scr — R specifies the utility (reward
or cost) for the team when executing the plan for a situatlassc
Since the situation class for each location is unique andged-
dent of other locations, we can focus on one location onlyeré&h
fore, for ease of notation, we remove, when possible, thatimc
subscript from situation instances and represent thet&ituin-
stance simply as. The functionU must meet the following con-
straints:

e scS; ands € Sj andSi - Sj — U(.Pi7 SL) > U(Pj7 Sz)
® S ¢ S ands € Sj andSi - Sj — U(PL',S]') < U(Pj,Sj)
e U(PL,51)=0

The first constraint requires that higher reward will be nesé
when more specific plans are executed in appropriate sinsati
The second constraint says that it is better to execute neergl
plans than inappropriate but more specific plans. The finat co
straint simply requires that there is no reward or cost faraoting
when the situation does not require action.

Given the above definitions, the problem is for the team t@sho
the plan that maximizes their expected utility, given thmlief in
the current situation. Typically better information will@av more
specifically tailored plans to be executed and when thereglseh
uncertainty more general, less effective plans will be usedr-
mally the team must maximize for each situation instance
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wherei is the most specific situation clas®elongs to, and: is
the estimated class for the situation by the team, at tin@ptimal
performance will be obtained if = i for each time step and each
situation instance.

More formally, to perform the maximization specified in Equa
tion 1, robots should execute at each time stdpr each situation
instances, the planP;; such that:

> Bel(S.) # U(P, Sa)

Sz€ScL

@)

*
k™ = arg max

Since each situation class is related to a set of events, we ca
translate the condition on plan execution that derives fEgna-
tion 2 to a set of constraints of the fomm,; < Bel(e;) < M;; for
eache; that relates to situation clasgk. This computation can be
done off-line. In other words, for ranges of beliefs, therappiate
plan to execute can be determined without computing the EU of
each plan. During the mission execution, robots will maniteeir
belief value over the possible events and instantiate tiregpond-
ing plan (i.e., the plan that meets the pre-computed canttja

2.1 Example

For example, consider the simple situation where there rlse o
two eventse;, representing presence of a human shape,eand
representing human like movement; victim is defined by
e1 A (e2 V —e2) and Sz = unconscious_victim is defined by
e1 N\ —ez. Suppose the team has a plBnfor S; where the plan
involves sending in a robot to try to lead the victim to safegnd-
ing human rescuers only if this fails. A pld® involves immedi-
ately sending in human rescuers and is best suitedfovhere the
victim is unconscious. Suppose the rewards@fé, S1) = 2,
U(P1,SQ) = -1, U(PQ,Sl) = -2 andU(Pg,Sg) = 4. Notice
that, following the constraints specified in 2, for the teais better
to execute the more specific plan in the more specific sitndtie.
U(P2,S2) > U(Py,S1)) and it is better to act more general than
wrong (i.e.U (P2, S1) < U(P1, S1)).

Figure 2 illustrates the situation and shows the robotsrérep
sented as circles) in the environment, attempting to utaledsthe
situation. Notice that multiple robots may have sensor iregd
that can help the plan selection, but, after communicabaly, the
filled robot has enough information to decide that a plandsiired
and initiate the process.

In this case, following Equation 2 the team should exediite
whenBel(S1)*2+ Bel(S2)*(—1) > Bel(S1)*(—2)+ Bel(S2)*

4 Assuming thak; ande; are independent3el(S1) = Bel(e1)
and Bel(Sz) = Bel(e1) x (1 — Bel(ez)). Thus, the decision
above can be broken down into the team should exePutehen
Bel(e2) > 1/5.

3. DISTRIBUTED ALGORITHM

The aim of the distributed algorithm is to cooperatively cb®
the plan that maximizes the team utility, in the face of senscer-
tainty, without overloading communications networks. Hasic
approach is as follows: each robot individually perform&aision
theoretic computation and decides to instantiate the planmax-
imizes the expected reward. When a robot decides to inaterdi

Figure 2: An example of cooperative perception in a simple
search and rescue scenario.

plan selection, based on its own utility calculation. If ttodot
agrees or has no observations that disagree, it passestherpto
another team member. The proposal is passed on until a fixad nu
ber of robots agree with the choice of plan. If the robot'sddfsl
support the choice of a different plan, it sends backallenge at-
taching to the message observations that caused its belidifer

in such a way that it would choose the different plan. In tleis r
spect, the approach is inspired by argumentation-baseatiaggn,
where agents reach an agreement iteratively proposingoi®ss-
ternatives and provide arguments in favour of their projsosa

The key to the efficiency of the proposed approach is thaesinc
the whole team shares the same taxonomy of situations and, pla
then arguments are simply observations about the eventdhaes
the disagreement. Such events can be easily identified asehes
that do not meet the constraints deriving from Equation 2ttie
proposed plan. In other words, they are those beliefs wiaitthnf
ranges that mean a different plan has a higher EU. Only these o
servations are shared, while many irrelevant observatoakept
private, thus minimizing the information exchange. In maioy
mains, the resulting message use is low enough to be pradtica
the remainder of this section, the algorithm is describedkitail.

When a robot makes an observation it integrates the new-obser
vation to update its beliefs about events. The belief upaper-
formed using a standard Bayesian framework. Given the eddat
belief over events, the robot assesses, via Equation 2hahexe-
cuting some plan is appropriate. If the robot decides tamsite
a planP, it will create a proposal message for that plan. The mes-
sage will have the following structure:

Msg=<plan,statusTTL,j agregobservations-

where

plan = ID of the proposed plan

status= {"PROPOSAL"|“CHALLENGE"}

TTL (time-to-live of the proposal) is the number of agents thasm
agree to the plan before it is initiated,

fagreeis the number of agents that have agreed so far
observations= {(e;, obsList)} is a list of observations fat;.
Unless there is an ongoing challengésList = (.

Notice that since only contradicting observations are sk
only to the robot that disagrees, this message format saidtles|
key environmental and team variables.

When a robot receives a message it executes the proc€dure
MsgReceivedpecified in Algorithm 1. The robot first checks whether
the constraints related to the event beliefsyrare satisfied (line
2) that is, it checks whether its beliefs are in ranges thatldvo

plan, it sends a plan proposal to a team mate. When receiving amake P, the utility maximizing plan. If the constraints are satis-

plan proposal, the robot checks whether its beliefs agrée thve

fied, it will just forward the message randomly to anotheioton-



Algorithm 1: Algorithm executed by each robot
ONM SGRECEIVED(msg)
(1) INTEGRATEBELIEFS(msg.obs)
2) planAgree «— EVAL ARGUMENTSmsg.plan)
(3) if msg.status == PROPOSAL
(4) if planAgree
msg.fagree «— msg.agree + 1
if § msg.agree< TTL
SEND(msg,nextAgent())
else
INSTANTIATEPLAN (msg.plan)

(20) else

(11) msg.status — CHALLENGE

(12) msg.obs «—RETRIEVEREFUTINGOBS(msg.plan)
(13) SEND(msg,msg.sender)

(14) else

(15) [* msg.status == CHALLENGE */

(16) if planAgree

a7) msg.status «— PROPOSAL

(18) msg.obs «—RETRIEVESUPPORTINAOBS(msg.plan)
(29) SEND(msg,0rigMsg.nextAgent())

(20) else

(21) if origM sg.prevAgent() # null

(22) msg.obs < RETRIEVEREFUTINGOBS(msg.plan)
(23) SEND(msg,origMsg.prevAgent())

(24) else

(25) DESTROY(msg)

creasingiagree(lines 4- 7). If the constraints are violatedatus

is changed to “CHALLENGE”". Observations relevant to therdve
that caused the violation are inserted inte List. For example, if
the robot would have chosdpy instead of the proposel; because
Bel(e;) > 0.4 then it sends observations that led to that belief. It
then sends the message back to the robot it received it fiaes(l
11-13). The functionetrieveRefutingObservatiorgets those ob-
servations from the agent history.

The robot receiving the challenge, integrates the obsensin
the message into its own beliefs and reconsiders the chbam
Due the integration, two possibilities exist: (i) the aduiial obser-
vations did not sufficiently changes its local beliefs tosmit to
believe a different plan has higher EU; (ii) it now believemther
plan has higher EU. In case (i) the robot clearsdb ist changes
the status back to “PROPOSAL" and forwards it randomly (lines
21- 25). The functiometrieveSupportingObservatiartrieves the
list of events whose observations are needed by the chali¢tnge
persuaded by the current plan. In case (ii), the robot atgelmy
additional observations to the message and sends it backeoew
it received it (16- 19). If it was the robot that initiated theposal,
the plan is changed and new message passing begins (liné\25).
team plan is instantiated when the number of agreeing agettits
a proposed plan reaches TTagree == TTL) (line 9).

Notice, that this approach potentially allows conflictifgns to
be initiated by different robots in the same team. Solvinghsu
conflicts is outside of the aim of this work, but has been askird
in literature [16]. Notice, that if message passing was oaag for
conflicting plans, the robots may be able to notice this antyme
the conclusions of both sequences for more efficient pedaoa.

3.1 Execution example

To illustrate execution of the algorithm, we present a sifigal
execution sequence for a single plan. There are 5 agentgn2sev
and the plan needs 3 agents to agree before being instantaie
simplicity, we show only observations about the situatidrthe

specified under the robot identifier. We indicate positiVe,and
negative F’, observations, together with the event and the time step
they refer to. Positive observations support belief in treng neg-
ative ones undermine it. For examplg is a positive observation,
related tae; observed at time step 5. The example begins at time 5,
when the robotd g, has five observations indicating that a pign
should be instantiated. The plan is for the situation clafed
ase; A ez. The robot creates a new message, and sends it, without
observations as a proposal to robbj,. The robotAgs has differ-

ent observations talg;, but it agrees with the overall conclusion
about the plan, so it simply updates the number of agreeingtso
fagree, in the message and passes it orlyg. The robotAgs dis-
agrees with the plai;, because its observations say;. Hence,

it challenges:; .

In order to do this, it changes the status of the message té\tcH
LENGE" and attaches its own observations about ewentt then
sends the message back to the sendegi. When Ag, receives
the message, it updates his own list of observations addegries
contained in the message; then re-evaluates whetherlifiistis
P, to have maximum EU. In this casdgs’s observations did not
changeAg.’s calculation thatP; was appropriate.Ag, attaches
its observations to the message and send #gg. Ags receives
the message again, this time witty,’s observations. Wittlgs's
observations. Ags now also agrees with the choice #5. It in-
crements agree and moves the message on. Finally, the plan is
initiated, whenAgs also agrees with the plan.

3.2 Discussion

In this section, some basic termination and performance-pro
erties of the algorithm are shown. First, we define the canogp
“hard" challenge.

DEFINITION 1. During the execution of the protocol, given a
list of agreeing agentfuy, , .., ax,,] a challenge is “hard” if, none
of the robots amondpu,, .., ak,, | is able to resolve the challenge
for at least one of the events that are challenged.

After a challenge is resolved, the two agents (the challeage
the solver) have the same observations and agree with thesed
plan. If a challenge is “hard”, the message has to be passad ba
through all the robot chain, until it reaches the propostiaitor.
Then, if the first robot still believes that the plan maxinsizeU,
the message will have to be passed forward through all thie cha
again to the challenging robot. If a challenge is not “harttiie
agreement will be reached with some robot in the chain, gabhia
number of messages used.

We can now show that the algorithm always terminates.

THEOREM 1. If TTL is fixed and no further observations are
obtained during execution, Algorithm 1 always terminates.

PROOF The proof is based on the fact that there is an upper
bound on the number of messages that are required by théhifgor
to find an agreement among TTL agents, if TTL is a fixed number.
In the worst case, the plan will be actually instantiated, dnly
after that each of the TTL agents starts a challenge messege o
least one event; in particular, in the worst case, each nelleciye
has to be “hard” (so that the message comes back always to the
initiator, and it is the only one that is able to solve the tEraje).

In this case, to solve the challenge of the first robot rengivi
the message, needs one message back and one message forward;

example. Figure 3 shows the messages exchanged among agenspolve the challenge of the second agent, needs two messagjes b

over time. The observations each robot has about each erent,

and two messages forward, and so on. Therefore, in genkeal, t
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Figure 3: Example of an execution of the protocol

upper bound is:

TTL
S(ITL)=14244+6+..+2xTTL=1+2x Y i=
i=1
1+TTLx (TTL+1) O
The analysis of the worst case shows that the protocol resjirr
at most a number of messages polynomial in the TTL. Moreover,
experiments in Section 4 will show that the average numbares-

sages needed by the protocol is much lower than the one piavid
by this theorem.

4. EXPERIMENTS AND RESULTS

The approach was evaluated in an abstract simulation emnviro
ment. The simulator abstracts the low level details of rehuat-
pabilities and focuses on coordination issues, thus atiguo effi-
ciently run experiments with large number of robots (fronupto
120 members), under varying environmental conditions (erld
dynamism, world size, etc.).

To evaluate the agents’ performance, we compute the reward t
robots gain over time (according to Eq.1). In particular, veen-
pute, at each time step, the ratio of obtained rewdrtb the high-
est possible reward,,q, (the reward that would be obtained al-
ways executing the highest reward plan for each situatiGuch
measure will be namegrew = u“* (percentage of rewaid

The communication overhead is ‘evaluated using two measures

i) number of messages exchanged at each time step by eadh robo

i) size of the messages (in bytes) exchanged at each timpebgte

each robot. We count a broadcast message as point to poiat mes

sage times the number of robots. While for a more preciseysisal
of the overhead one should consider the specific network uhéd

provides a general cost model for communication which isbie
for our level of analysis.

The proposed approach (referredMAS_Policyin the follow-
ing) was compared to two different strategies. The first @en-
tralized, requires each robot share all its observations with aéioth
robots at each time step. Clearly, this type of approachféasgible
for large teams, but it provides an upper bound on the pedooa
that can be achieved by the agents. Notice thaCtetralizedap-
proach is not guaranteed to obtained the maximum rewarcheln t
Centralizedapproach, the team activity is based on the perceptions
of all the robots, therefore team performance is relateteavail-
able perceptions: e.qg. if the density of the robots is veny(lBigure
4) or the perception is very bad (Figure 6), the centralizgmt@ach
will not make optimal decisions.

The second benchmark strategySisifish_agentwhere the first
agent that has enough information to initiate a plan, wélt jaitiate
it. The results of this policy provide a bound on the perfance
that can be achieved using a non-cooperative percepticoap
The general performance of this approach illustrate tHeedify of
the problem faced by robots.

Experiments have been performed in a 2D office-like environ-
ment. The simulated robots have limited knowledge of theailve
team state and can communicate with only a subset of the over-
all team. In each experiment there were 70 simulated homoge-
neous robots, each with the same perception model. Thept&nce
model is based on a decreasing probability of correct deteuwtith
distance, i.e. robots are more likely to obtain correct pla®ns
when closer to the features. The initial distribution ofatshin the
environment is random. Each graph reports values averagad o
10 trials of the same experiment. Each experiments is stionla
over a finite horizon of 100 time steps. When not explicitigtst],
the TTL is set tal /3 of the team size, providing a balance between
communication overhead and performance.



In all the experiments, the reward function was designedto a
sign to situations a reward (and a cost) that is proportitm#heir
depth in the hierarchy. Therefore, in a hierarchy of situatilasses
with depthd, each situation class at deptill receive a rewara if
instantiated for the correct situation, and a edstinstantiated for a
wrong situation. The reward and cost are specified by thevirtig
equationsr = k1 x (i+1)x1/dc = —ka x (i+1) x 1/d. For ex-
ample, leaves will have reward= k; and cost = —k2, the nodes
that are direct sons of the root will receive reward= k; x 1/d
and costc = —k2 x 1/d etc... Using this model for the reward
function allows us to test our approach with different hiehical
structures, (i.e., varying the depth of the hierarchy) e/hileeting
the constraints specified in Section 2. In particular, sineevant
to study the performance of the approach when specifiedisiisa
might be chosen, we set the weights such that£f 1/2 x k1). In
this way, partially specified situations will be frequenrtly the best
choice for the team.

To exchange information about features present in the @mvir
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Figure 6: Performance comparison varying quality of percep
tions

is very close to the one accrued by the centralized policylewh

ment, robots need to share a common reference framework. Tothe single agent policy performs very badly. Varying the loaty-

simplify the experimental setting, we do not explicitly eiter lo-
calization errors. As a matter of fact, standard localoratiech-
niques [3] can be used for our experimental scenario, aral-loc
ization errors can be taken into account in the error modé¢hef
feature extraction process.
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Figure 5: Performance comparison varying world dynamics

namism is intended to test whether our approach is able i rea
to unexpected changes in the environment. In particulambrid
dynamism in this experiment determines how frequentlyufiesst
appear and disappear from the environment. A world charge ra
of z means that at each time step, each feature has a probability o
x to switch its state (i.e., appear in a given part of the emvirent

if it was not present or disappear if it was present). Resefisrted

in Figure 5, show that the approach is able to cope very weH wi
dynamism of the world.

Next, we evaluate how the algorithm behaves when quality of
the perception that robots obtain from the environmentegariAs
mentioned the detection probability is dependent on thtaudie
from the observed feature. The law is a decreasing exp@hemiil
the parameter of the exponential is the decay factor thatamein
this experiments. Results reported in Figure 6 shows whatdrzs
when the decay rate is raised. The approach to situatiossaasat
is able to provide good results even with very noisy peroepti

prew
100

a0
80 \
70
80

50
F N E T

. - - - - Seffish Agents
. R B —a— MAS Policy
" o Centralized
10

0

7
depth of hierachy

Figure 7: Performance comparison varying hierarchy depth

Next, we look at performance as the depth of the situatior hie
archy is raised. Notice that increasing the depth of theahobry

We first evaluate the performance of the approach varying key increases also the number of events that have to be corittere

parameters of the environment, namely the size of the warld i

which robots operate and the dynamism of the world. Varyireg t
world size and keeping the number of robots constant, wéntest
the approach behaves when the robots have less mutual atiserv
of the same features (see Figure 4). Clearly, the performahall
the three compared policies degrade as the world size sesea
however, theM AS_Policy is able to provide performance which

assess a situation. In fact, in the proposed model, the nuaibe
events that compose a completely specified situation isl égtize
depth of the hierarchy. For example, for a hierarchy of depth
completely specified situation i A e1 A —e2 A es. Moreover,
when the situation hierarchy is deeper situations will beaubf-
ficult to distinguish. In fact, when the situations are sanifor
more events, more specific observations are necessarydo aea



agreement among agents. Results reported in Figure 7 tadicat
our policy scales well with the hierarchy depth. In fact, #@
proach has very similar performance to centralized detisiaker.
Conversely, the performance of the selfish agent policy &vihe
affected by the increased complexity of the scenario.
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Figure 8: Performance comparison for different TTL
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Figure 9: Communication comparison for different TTL (num-
ber of messages)

As previously mentioned, a key aspectfAS_Policy is to
minimize the amount of information exchanged among agdrds.

also a smaller communication overhead in terms of message si
In particular, for this team size (70 robots), the commutibcegain

is approximatively one order of magnitude over the certealiap-
proach.
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Figure 10: Number of messages required for each execution of
the protocol

Finally, Figure 10 reports the total number of messagesimedu
for each execution of our algorithm, varying the TTL. In pautar,
we report the number of messages exchanged divided by the num
ber of instantiated plans and the number of messages exathang
divided by the number of created plans. The first measureawhe
erage number of messages required for plans that are iiagéaht
while the second measures the average number of messages ex-
changed by every execution of the algorithm. In Section 32 w
claimed that the number of messages required by the protocol
the worst case is quadratic with respect to TTL. Figure 16ysh
that this worst case scenario is very unlikely to happen actice.
Results indicate that the average number of messageseddair
a generic execution of the protocol is in fact less than TEEelft

5. RELATED WORK

Coordination in multi-robot systems has been successadly
dressed using frameworks based on Belief Desire Intenticimi-a
tecture and Joint Intention theory [18, 6]. In particulag STEAM
framework is based on the concept of Team Oriented Plan [18],
which are activities that need to be jointly carried out by #yent
team. Team Oriented Plans are decomposed into specificsitiias
called roles that individual robots can perform. Our concéjplan
is related to the concept of Team Oriented Plans and ourrblgra
of situations resemble the one used in STEAM. However, véth r

evaluate this we measured the amount and size of messages exspect to the STEAM architecture, our approach is specifidal

changed, as TTL was varied. The TTL is the key parameterithat i
fluences the amount of communication transmitted amongtspbo
since more agents are required to agree on a plan and moweeob
is the occurrence of a challenge.

Figure 8 and 9 report the results of our method varying the. TTL
In particular, Figure 8 show how the-ew measure changes with
increasing TTL values. We varied the TTL between 51¢ of the
total number of agents) and 35/@ of the total number of agents).
When TTL s very low, the results become very similar to tHéste
agent policy, because robots share very few observationsthais
make wrong plan instantiation. High TTL values provide t&su
similar to the centralized strategy.

Figure 9 reports on the left axis, the number of messages per
agents per time step, and on the righaixis the communication

cused to address the impact that noisy perception have amote
dination process. Noisy perception results in misalig@ed, pos-
sible conflicting agents’ knowledge, and is likely to be aa$
poor system performance. Cooperative perception techaigan
be used to address this problem.

Several approaches use cooperative perception to deapwiith
ception limitation of the single robot [13, 1, 17]. The gealédea is
to exchange sensor readings and aggregate them using@diffiy
tering techniques (e.g. Kalman filters [1, 17] or particleefi [13]).
These approaches attempt to reduce the uncertainty befoidirtg
how to act, by exploiting passive noise filtering techniqu@sher
techniques, explicitly deal with the uncertainty when cing a
course of actions, for example COM-MTDPs [12]. However,hsuc
approaches often require to exchange large amounts of whataca

load per agent per time steps (bytes). Each sensor readisag wa robots. A key reason for this is that, typically, each robt¢rapts
modeled as having 100 bytes. Results show that the prop@sed a to maintain an accurate model of the complete state whemainr p

proach, not only requires a lower number of messages, butens

tice, only a small part of the overall state might be relevarits



activities. Some works exist which explore this possipilit4], but
current results are still limited to small number of agents.

Recently, increasing attention has been devoted to theepbnc
of situation assessment. However, the concept has beerdymain
investigated in centralized settings [10]. While sevepraaches
are now able to integrate information at data |&eghong different
robots [9], limited attention has been devoted to the probéd
situation assessment in a distributed setting.

Finally, our approach is inspired by ideas taken from argutatéon-
based negotiation [8]. Specifically, as in negotiation, approach
is based on a sequence of one-to- one interaction. Diffigréren
argumentation, however, agents are not self interestedotRare
willing to be totally cooperative with their team mates. largic-
ular, our approach uses ideas from argumentation as a mean to
strict the amount of communication needed and thus avogéngd-
ing irrelevant information when possible. Moreover, rabstipport
their plan proposal and plan challenges, using argumetishvin
our case are observations.

6. CONCLUSIONS

This paper represents an important first step towards éxlittd
approach to situation assessment in uncertain envirorsneaire-
over, to the best of our knowledge this is the first attemptetine
a distributed approach that cooperatively deals with tleertainty
of team plan initiation. The approach explicitly and coaimely
addresses the uncertainty that robots have due to noisyvabse
tions and gains its efficiently by ensuring only useful okatons
are shared.

We presented an extensive evaluation of the algorithm a@os
wide set of interesting operational conditions. In pafacuwe
compared the approach to a centralized and individual agpes.
The approach presented in this paper performed almost assvel
the centralized approach while using an order of magniteds |
communication. It far out-performed the individual apmioa

Future work will look at a range of issues to make the approach
more relevant and more efficient for real robot teams. An imme
diate point of interest is whether TTL can be dynamicallyuatkd
to account for the amount of agreement or disagreement batwe
agents. Another area of interest is whether plan decowificigo-
rithms can be combined with this algorithm, potentially glifying
overall coordination and improving efficiency in one step.
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