
Token Approach for Role Allocation in Extreme Teams: analysis and
experimental evaluation

Paul Scerri
�
, Alessandro Farinelli

�
, Stephen Okamoto

�
and Milind Tambe

��
Carnegie Mellon University�

University of Rome “La Sapienza”�
University of Southern California

pscerri@cs.cmu.edu, Alessandro.Farinelli@dis.uniroma1.it, sokamoto@usc.edu, tambe@usc.edu

Abstract

Open Computational systems comprise physical enti-
ties coordinating their activities in dynamic environments.
Many exciting applications require a large number of such
entities to achieve team coordination in complex missions
execution. To meet the fundamental challenge of role al-
location in such extreme teams, we propose an algorithm
called LA-DCOP, that overcomes the limitations of previ-
ous algorithms by incorporating three key ideas. First, we
represent the role allocation problem as a Distributed Con-
straint Optimization Problem and use tokens representing
roles to minimize constraint violations. Second, we use
probabilistic information about the team to guide the search
quickly towards good solutions Third, we designed the al-
gorithm to manage constrained roles. We show that LA-
DCOP not only meets our requirements in extreme teams,
but also compares favorably against previous role alloca-
tion algorithms. LA-DCOP has allowed an order of mag-
nitude scale-up in extreme teams, with role allocation in a
fully distributed proxy-based teams with up to 200 members.

1 Introduction

Open Computational Systems (OCS), comprise phys-
ical entities that have to achieve a common goal, inter-
acting among them through a networked infrastructure[9].
Team coordination is a key issue for OCS and the rapid
advances obtained in the design of team coordination in-
frastructures enabled in recent years a wide range of excit-
ing applications[10]. Typical domains for OCS involve dis-
tributed health care, manufacturing control, mobile robots
and sensor networks[9, 5]. A key requirement in recent ap-
plications for such domains is to effectively coordinate ex-
treme teams, which are large teams that need (soft) real-time
response given dynamic tasks, and where many resource
limited agents have similar functionality, but possibly var-

ied capability. For instance, when responding to a disaster,
fire fighters and paramedics comprise an extreme team as
they must respond rapidly to dynamic tasks; and fire fight-
ers can all extinguish fires although their capability to ex-
tinguish a particular fire quickly will depend on their initial
distance from that fire. Other examples of extreme teams
include mobile sensor or UAV teams, robot teams for Mars
colonies, as well as large-scale future integrated manufac-
turing and service organizations.

This paper focuses on the critical challenge of role al-
location in extreme teams. In general in teamwork, role
allocation is the problem of assigning roles to agents so
as to maximize overall team utility[7, 12, 14]. Extreme
teams emphasize key additional requirements in role allo-
cation: (i) rapid role allocation as domain dynamics may
cause tasks to disappear; (ii) agents may perform one or
more roles, but within resource limits; (iii) many agents
can fulfill the same role; (iv) inter-role constraints may be
present. This role allocation challenge in extreme teams
will be referred to as E-GAP, as it subsumes the generalized
assignment problem (GAP), which is NP-complete[11].

This paper focuses on Distributed Constraint Optimiza-
tion (DCOP)[6, 1] for role allocation, as DCOP offers the
key advantages of distributedness and a rich representa-
tional language which can consider costs/utilities of tasks.
Despite these advantages, DCOP approaches to role alloca-
tion suffer from three weaknesses. First, complete DCOP
algorithms[6] have exponential run-time complexity and,
thus, fail to meet the response requirements of extreme
teams. One reason for this is that the purely local view of
the team that each agent has, forces the search to explore
many potential solutions that are clearly sub-optimal. How-
ever, teams of agents will often have reasonably accurate es-
timates of both the situation and the state of the team which
can be used to accurately estimate likely solution character-
istics. For example, when a team of fire fighters responds
to a disaster, it is reasonable to assume that they know the
number of fires and number of available fire trucks to within
an order of magnitude, even though they may have very lit-

tle specific knowledge of individual fires or trucks. While
relying on such estimates prevents guarantees of optimal-
ity, they can dramatically reduce the search space. Second,
similar agent functionality within extreme teams results in
dense constraint graphs increasing communication within a
DCOP algorithm. Third, DCOP algorithms do not address
the additional complications of constraints between roles.

To address these limitations in addressing E-GAP, we
propose a novel DCOP algorithm called LA-DCOP (Low
communication Approximate DCOP). LA-DCOP uses a
representation where agents are variables that can take on
values from a common pool, i.e., the pool of roles to be as-
signed. The mechanism for allocating values to variables
encapsulates three novel ideas. First, LA-DCOP improves
efficiency by not focusing on an exact optimal reward; in-
stead by exploiting the likely characteristics of optimal al-
locations, given the available probabilistic information, it
focuses on maximizing the team’s expected total reward.
In particular, the agents compute a minimum threshold on
the expected capability of the agent that would maximize
expected team performance. If the agent’s capability to
perform a role is less than the threshold capability, it does
not consider taking on the role, channeling the role towards
more capable agents. Second, to reduce the significant com-
munication overheads due to constraint graph denseness, to-
kens are used to regulate access to values. Only the agent
currently holding the token for a particular value can con-
sider assigning that value to its variable. The use of tokens
removes the possibility of several agents taking on the same
role, thus dramatically reducing the need to communicate
about and repair conflicts. Third, to deal with groups of
tightly constrained roles, we introduce the idea of allowing
values to be represented by potential tokens. When groups
of roles must be simultaneously performed, instead of com-
mitting to a role by assigning the value represented by a
token, a team member accepts a potential token. This indi-
cates that it will accept the role only when all simultaneous
roles can be assigned. While team members are being found
to fill the other simultaneous roles, a team member with a
potential token can perform other roles. Only when team
members have been found for all roles will the holders of
the potential tokens actually take on the roles. This tech-
nique frees team members up for other roles when not all
roles in a constrained set can be filled.

Using a mixture of high and low fidelity simulation en-
vironment, we have extensively empirically evaluated the
LA-DCOP algorithm. Experiments on a simplified testbed
illustrate three key points. First, the key features of the algo-
rithm, including thresholds and potential tokens do signifi-
cantly improve its performance. Second, when compared
to other DCOP algorithms on simplified role allocation
problems, � LA-DCOP performed very well, finding better
allocations than other approximate algorithms, while using
up to four orders of magnitude fewer messages. Third, we�

Other DCOP algorithms cannot be easily adapted to E-GAP

illustrate that the algorithm performs well on two realistic
domains, by embedding it in teamwork proxies. Prior re-
search on teamwork proxies had demonstrated teams lim-
ited to 20 agents, partially due to limitations on the role
allocation algorithm. In our work we dramatically escalate
the team size to 200 proxies and illustrate the effective role
allocation performance over these 200 agents.

2 Problem Statement

A GAP problem is defined by team members for per-
forming roles and roles to be assigned[11]. Each team
member, �
	��� , is defined by their capability to perform
roles, ������� ����������� ����� , and their available resources. The
capability of a team member, � 	 , to perform a role, � 	 , is
quantitatively given by: �� �!#"$� 	 � � 	&%(') * ��+�, . Capability
reflects the quality of the output or the speed of task per-
formance or other factors affecting output. Each role re-
quires some resources of the team member in order to be
performed. We write the resource requirements of a team
member �.- for a role ��/ as �0�.1�2
34�
5��
16"7�.- � �8/ % and the avail-
able resources of an agent, � , as � � �.�.1�2
39�.5��.1 .

Following convention, we define a matrix : , where ;	$< /
is value of the = th row and > th column and 6	$< / � + if �
	 is performing � / otherwise ?	@< / � *

Thus, the matrix : defines the allocation of roles to team
members. The goal in GAP is to maximize:A "7: % �CBDFEHG BI�EHJ �� �!#"7� � � %LK D < I

such thatM �N�O BI�EHJ ���
1�2
34�.5��.1P"7� � � %QK D < ISR � � �.�.1�2
39�.5��.1
and M �T�U�VBDFEHG D < I R +
Intuitively this says that we attempt to maximize the ca-

pabilities of the agents assigned to roles, subject to the re-
source constraints of team members, ensuring that at most
one team member is assigned to each role but potentially
more than one role per team member.

Extended GAP
Coordination constraints, W7X , tie groups of roles together.

Although one can imagine a wide range of constraint types,
here we specifically discuss only one type: :ZY\[con-
straints. When a set of roles are :ZY][constrained the team
only receives value if all the constrained roles are simultane-
ously being executed. We write :ZY\[constrained roles as:ZY\[�^��� �����_�`�_� �
-6� . Thus, W&X6�^�
:ZY\[O� ��������� :SY\[� � .
When � 	 �a:SY\[/ , the value of � 	 to the team depends on
whether other roles in :SY\[/ are allocated. That is,bdcHe&f@g�h&ikj�hlinmporqds�tvuxwy z6{ c�|�f@g�h&i}j�h$t�~7������
� ����
������� c ��� � u�� mporq s ��

otherwise

Notice that if the role is unconstrained, � :SY\[/ �p� + ,
and this degenerates to �� �!#"7� � � %QK D < I , as above.

To introduce the dynamics of extreme teams into GAP
we make � , , �� �! and ���
1�2
34�.5��.1 functions of time. The
most important consequence of this is that we no longer
need a single allocation : , but a sequence of allocations,:S� , one for each discrete time step. A delay cost function,[��r"@� 	 ��� % , captures the cost of not performing � 	 at time � .
Thus, the objective of the E-GAP problem is to maximize:A "7: � % � B?��BD�EHG BI�EHJ "&�� ?�n"7� � � � W&X ��� %pK D < I < � %� B � BI�EHJ " + � BDFEHG D < I < � %QK [��r"@� ��� %

such thatM �N�� BI�EHJ ���.1�2
39�.5��.16"$� � � %LK D < I < � R � � �.�.1�2
39�.5��.1
and M �T�U� BDFEHG D < I < � R +
Thus, extreme teams must allocate roles rapidly to ac-

crue rewards, or else incur delay costs at each time step.

3 LA-DCOP

Given the response requirements for agents in extreme
teams, they must solve E-GAP in an approximate fashion.
We propose LA-DCOP, a DCOP algorithm for addressing
E-GAP in a distributed fashion, which exploits key proper-
ties of extreme teams that arise due to large-scale and simi-
larity of agent functionality (e.g., using probability distribu-
tions), and simultaneously, guards against special role allo-
cation challenges of extreme teams (e.g., inability of strong
decomposition into smaller subproblems.) In DCOP, each
agent is provided with one or more variables and must as-
sign values to variables[1, 15, 6]. LA-DCOP maps team
members to variables and roles to values, as shown in Al-
gorithm 1. Thus, a variable taking on a value corresponds
to a team member taking on a role. Since team members
can take on multiple roles, the variable can take on multiple
values, as in graph multi-coloring, simultaneously.

In E-GAP, a central constraint is that each role should be
assigned to only one team member, corresponding to each
value being assigned by only one variable. In DCOP, this
requires having a complete graph of not equals constraints
between variables (or at least a dense graph, if not strictly
E-GAP) – the complete graph arises because agents in ex-
treme teams have similar functionality. Dense graphs are
problematic for DCOP algorithms[6, 1], so a novel tech-
nique is required. For each value, we create a token. Only
the team member currently holding a token representing a
value can assign that value to its variable. If the team mem-
ber does not assign the value to its variable, it passes the
token to a team mate who then has the opportunity to as-
sign the value represented by the token. Essentially, tokens

deliberately reduce DCOP parallelism in a controlled man-
ner. Thus, the agents do not need to communicate to resolve
conflicts.

Given the token-based access to values, the decision for
the agent becomes whether to assign values represented by
tokens it currently has to its variable or to pass the tokens
on. First the agent must check whether the value can be as-
signed while respecting its local resource constraints (Alg.
1, line 15). If the value cannot be assigned within the re-
source constraints of the team member, it must choose a
value(s) to reject and pass on to other team mates in the
form of a token(s) (Alg. 1, lines 20 and 22). The agent
keeps values that maximize the use of its capabilities (per-
formed in the MAXCAP function, Alg. 1, line 16). Notice
that changing values corresponds to changing roles and may
not be without cost. Also notice that the agent is “greedy”
in that it performs the roles it is best at.

ALGORITHM 1: VARMONITOR(�� �¡ < JvD}¢}£�¤
IF¥kDn¢)
(1) ¦�§�¨ <7© ¦ª§�¨
(2) while true
(3) « ¢l¬ § ¬�D �$ ¢l¬�®`¯
(4) if msg is token
(5)

� £ - D � §�« ¢l¬
(6) if

� £ - D �?° �$± I�D}¢ ± £}²_³µ´·¶d¸�¹�¹
(7) token.threshold = COMPUTETHRESHOLD(token)
(8) if

� £ - D �?° �$± I�D}¢ ± £}²_³pº �# �¡ ® � £ - D �?° » ²¼¤.Dk¯
(9) if

� £ - D �?° ¡ £ � D � � 	 ²
(10) © ¦�§ © ¦¾½ � £ - D �?° » ²¼¤.D
(11) SENDMSG(

� £ - D �?° £�¿ � DkI , “retained”)
(12) else
(13) ¦(§À¦¾½ � £ - D �?° » ²¼¤.D
(15) if Á·Â�Ã�Ä JvDn¢}£n¤
I�¥kD}¢F® » ¯�Å ¬�D � � ° I�D}¢}£�¤
IF¥kD}¢
(16) £n¤ � §�¦ÇÆ MAXCAP(Values)
(17) foreach » EZ£n¤ �
(18) if v.potential
(19) SENDMSG(¡ »�° £�¿ � DkI , “released”)
(20) PASSON(new token(pv, potential))
(21) else
(22) PASSON(new token(v))
(23) ¦� ²¼¤.D}¢ §�¦# ²¼¤.D}¢ Æ £n¤ �
(25) else
(26) PASSON(token) /* Cap º threshold */
(27) else if msg is “lock » �È ”
(28) if » E © ¦
(29) © ¦ª§ © ¦(Æ »
(30) ¦(§�¦·½ »
(31) else
(32) É. E �È SENDMSG(, “release”)
(33) else if msg is “release » ”
(34) © ¦ª§ © ¦ÊÆ »

Secondly, a team member must decide whether it is in
the best interests of the team for it to assign the value rep-
resented by a token to its variable (Alg 1, line 8). The key
question is whether passing the token on will lead to a more
capable team member taking on the role. Using probabilis-
tic models of the members of the team and the roles that
need to be assigned, the team member can choose the mini-
mum capability the agent should have in order to assign the
value. Notice that it is the similar functionality of the agents
in extreme teams, and their large numbers that allows us to
apply probabilistic models. Intuitively, the agent estimates
the likely capability of an agent performing this role in a
good allocation. We refer to this minimum capability as

the threshold. The threshold is calculated once (Alg 1, line
7), and attached to the token as it moves around the team.
Thus, the agents must simply circulate tokens until each to-
ken is held by an agent with capability above threshold for
the role and within resource constraints. (To avoid agents
passing tokens back and forth, each token maintains the list
of agents it has visited; if all agents have been visited, the
token can revisit agents, but only after a small delay.)

AND Constrained Roles
When there are :ZY][constraints between roles there is

the potential for deadlocks or, at best, severe inefficiencies.
Consider a plan that requires two roles, ��/ and �
- , to be si-
multaneously performed. When a team member, , accepts
role � / , it may reject other roles that it could potentially
perform. If there is no team member currently available to
perform role �
- , must simply wait.

ALGORITHM 2: ANDMONITOR(¦)
(1) foreach » E ¦
(2) for 1 to No. Potential Values
(3) PASSON(new token(v,potential))

(5) /* Wait to accept potential tokens */
(6) while Ë Â8Ã�ÄÍÌ JvD � 	 � D}³�Î »FÏ@Ì ´rÐ
(7) « ¢l¬ § ¬8D �$ ¢k¬�®_¯
(8) if msg is “retained » ”
(9) JvD � 	 � D}³�Î »FÏ § JvD � 	 � D}³�Î »FÏ ½Ñ« ¢l¬ ° ¢}D � ³8D}I
(10) else if msg is “release » ”
(11) JvD � 	 � D}³�Î »FÏ § JvD � 	 � D}³�Î »FÏ Æ�« ¢k¬ ° ¢nD � ³8DkI
(13) /* Send real tokens */
(14) foreach » E ¦
(15) �È ´ É. EdJvD � 	 � D}³�Î »FÏ �� �¡ ® �È < » ¯4Ò �� �¡ ® < » ¯
(16) foreach E �È
(17) SENDMSG(, Ó “lock » ”, �È�Ô)
(18) foreach EQJvD � 	 � Dn³�Î »FÏ Æ� �È
(19) SENDMSG(, “release » ”)

To avoid such problems we introduce the idea of poten-
tial values. A second algorithm, shown in Algorithm 2, runs
alongside Algorithm 1 and works as follows. The tokens for
all roles in an :ZY][constrained set are given to one team
member. For each of the tokens the team member sends
out a small number of potential tokens (Alg 2, line 3). The
potential tokens work in exactly the same way as normal
tokens except that when a team member accepts a potential
token it agrees to accept the role represented by the token
(Alg 1, line 10), only if a potential token for each of the
other real tokens is accepted and may perform other roles in
the meantime.

When the team member holding the real tokens is in-
formed that at least one potential token for each real token
has been accepted by a team member it locks the group by
selecting the holder of one potential token for each real to-
ken and sending them the real token (Alg 2, line 15). A
list of agents accepting the other real tokens is also sent.
Note that this mechanism guards against deadlocks. For
instance, in case an agent send a “Release” message first
and then receives a “Lock” message, the entire team will not
deadlock; and is now responsible for sending messages to
other receivers of the “Lock” message to also release (Alg
1, lin 32). Holders of potential tokens that are not replaced

with real tokens are released (Alg 2, line 19).

4 Experiments and Results

We have tested LA-DCOP extensively in three environ-
ments. The first is an abstract simulator that allows us to
run many experiments with very large numbers of agents[8].
In the simulator, agents are randomly given capabilities for
each type of role with some percentage being given zero ca-
pability. Given many agents with overlapping capabilities
for role types, dense constraint graphs result, where a con-
straint ensures two agents do not take the same role. For
each time step that the agent has the role, the team receives
ongoing reward based on the agent’s capability. Message
passing is simulated as taking one time step and messages
always get through. New roles appear spontaneously and
the corresponding tokens are distributed randomly. The new
roles appear at the same rate that old roles disappear, hence
keeping the total number of roles constant. Each data point
represents the average from 20 runs.

Our first experiments tests LA-DCOP against three com-
petitors. The first is DSA, which is shown to outperform
other approximate DCOP algorithms in a range of settings
[6, 1]; we choose optimal parameters for DSA [15]. DSA
does not easily allow multiple roles to be assigned to a sin-
gle agent so our comparison focuses on the case where each
agent can take only one role. As a baseline we also compare
against a centralized algorithm that uses a “greedy” assign-
ment (similar to the one presented in [14]) and against a
random assignment. Figure 1(a) shows the relative perfor-
mance of each algorithm. The experiment used 2000 roles
over 1000 time steps. The y-axis shows the total reward per
agent, while the x-axis shows the number of agents. Not
surprisingly, the centralized algorithm performs best and
the random algorithm performs worst. LA-DCOP is sta-
tistically better than DSA. However, the key is the amount
of communication used, as shown in Figure 1(b). Notice
that the y-axis is a logarithmic scale, thus LA-DCOP uses
approximately three orders of magnitude fewer messages
than the greedy algorithm and four orders of magnitude
less messages than DSA. Thus, LA-DCOP performs better
than DSA despite using far less communication and only
marginally worse than a centralized approach, despite using
only a tiny fraction of the number of messages.

A key feature of extreme teams domains is that the roles
to be assigned change rapidly and unpredictably. In Fig-
ure 2a, we show that LA-DCOP performs well even when
the change is very rapid. The four lines represent differ-
ent rates of change, with 0.01 meaning that every time step
(i.e., the time it takes to send one message) 1% of all roles
are replaced with roles requiring a different capability. At
middling capability (50%), with a 1% dynamics, LA-DCOP
loses 10% of reward/agent on average, but complete DCOP
algorithms today cannot even handle dynamics.

Finally, Figure 2b shows the utility of the use of poten-

(a) (b)

Figure 1. (a) comparing the average output per agent ver-
sus the number of agents. (b) the number of messages sent
versus the number of agents

tial tokens when groups of roles are AND constrained. In
the figure, 60% of all roles (900 roles) are AND constrained
into groups of five roles. Unless an agent with non-zero ca-
pability is assigned to each role in the group, the team re-
ceives no reward. It is clear that potential tokens help since
the lowest output is received without the potential tokens
(labeled “None”). Moreover, allowing agents to have up
to five potential tokens (labeled “Retain 5”) leads to better
performance than allowing them to have only one potential
token (labeled “Retain 1”). The effect is most pronounced
when about 40% of agents have non-zero capability because
this is the case when most deadlocks and idleness occur.

(a) (b)

Figure 2. (a) shows the effects of different proportions
of roles changing each step. The y-axis shows the output,
x-axis shows the percentage of agents with capability Õ � .
(b) shows the effect of retainers, with the lines representing
no retainers, one retained role per agent and five retained
roles per agent.

In our second set of experiments, we used 200 LA-
DCOP enhanced versions of Machinetta proxies[10], dis-
tributed over a network, executing plans in two simple sim-
ulation environments. To the best of our knowledge, this
is larger than any published report on complex multiagent
teams, certainly an order of magnitude jump over the last
published reports of teamwork based on proxies [10]. The
first environment is a version of a disaster response do-
main where fire trucks must fight fires. Capability in this
case is the distance of the truck from the fire, since this af-

(a) (b)

Figure 3. (a) shows the number of fires extinguished by
200 fire trucks versus threshold (b) shows the number of
targets hit by UAVs versus threshold.

fects the time until the fire is extinguished. Hence, in this
case, the threshold corresponds to the maximum distance
the truck will travel to a fire. Figure 4(a) shows the num-
ber of fires extinguished by the team versus threshold. In-
creasing thresholds initially improves the number of fires
extinguished, but too high a threshold results in a lack of
trucks accepting roles and a decrease in performance. In
the second domain, 200 simulated unmanned aerial vehicles
(UAVs) explored a battle space, destroying targets of inter-
est. While in this domain LA-DCOP effectively allocates
roles across a large team, thresholds are of no benefit. The
key point of these experiments is to show that LA-DCOP
can work effectively, in a fully distributed environment with
realistic domains and large teams.

RoboCup Rescue Experiments
We also tested our approach in the RoboCup rescue en-

vironment [3]. RoboCup Rescue provides an ideal, realistic
testing ground for LA-DCOP in allocating roles to an ex-
treme team comprised of fire engines.

Figure 4. LA-DCOP fights fires twice as fast
as SD

In previous work, researchers have documented the
failure of auction based algorithms for role allocation in
RoboCup Rescue[7], due to the high communication re-
quirements. To test whether LA-DCOP can allocate roles
within the communication and time limitation of RoboCup
Rescue we compared against a shortest distance based strat-
egy, which exploits domain characteristics, similar to top-
performing RoboCup Rescue teams. We tested the LA-

DCOP with and without the use of thresholds. Agents ca-
pabilities are computed considering whether the agent is
blocked or not and its current distance from the fire.

We compared the strategies on three different initial sit-
uations: i) situation 1 has 10 agents and 18 ignition points
uniformly distributed. ii) situation 2 has 10 agents and 18
ignition points but fire brigades are concentrated in two re-
gions of the map and fires are concentrated in a third region.
iii) situation 3 has 15 agents and 27 ignition points, fires are
concentrated in two regions of the map while agents are po-
sitioned in other three regions. Notice that situation 2 and
situation 3 are quite realistic.

The results are shown in Figure 4. The x-axis shows the
different situations; in the fourth case we have lowered the
extinguishing power of each truck. The y-axis shows the ex-
tinguish time for LA-DCOP without using threshold, using
threshold LA-DCOP-TH (threshold is set to 300 meters),
and shortest distance strategy SD. The graph shows that
for the first situation when fires and fire brigades are nicely
spread all over the city map, the SD allocation have similar
performance with respect to LA-DCOP and LA-DCOP-TH.
However, In the other two scenarios, where fires and fire
fighters are not uniformly spread, the LA-DCOP and LA-
DCOP-TH are at least twice as fast in extinguishing fires;
and when extinguishing power is diminished, LA-DCOP is
10 times faster.

5 Summary and Related Work

Coordination for extreme teams in OCS domains poses
novel and challenging issues. In particular, the system
should be able to adapt to the continuous changing environ-
mental conditions and to work with a dynamic network in-
frastructure while ensuring global coherence of the mission
to be achieved. In this paper, we have described a novel and
flexible approach to role allocation in extreme teams that
can successfully operate in OCS domains. Our DCOP based
approach was shown to substantially out-perform other ap-
proximate DCOP algorithms, reducing the number of mes-
sages by up to four orders of magnitude, while handling ad-
ditional challenges of extreme team. We showed the effec-
tiveness of LA-DCOP by testing it in three distinct domains
with teams an order of magnitude bigger than previously
published. An important key to the algorithm was the use
of probabilistic models about the state of the team.

Role allocation is an extensively studied area with work
ranging from high complexity, forward looking optimal
models[7] to symbolic matching that ignores cost[12] to
centralized auctions[2]. However, none of these approaches
deal with full range of issues seen in E-GAP.

A number of approaches have been developed specifi-
cally for dynamic teams: SPAM allocates resources to tasks
using a heuristic DCOP algorithm[4]. When applied to dis-
tributed sensor nets, SPAM has been shown to be effec-
tive in sparse constraint graphs. It thus compliments our

work, which focuses on more dense graphs. The work [13]
presents a token based approach for coordination of an air-
craft repair service; The approach shows interesting similar-
ities with our method; however, the authors focus on a small
number of agents with different capabilities thus addressing
a slightly different aspect of the coordination problem.

As future works, an important step would be to test how
our approach behaves when the team connection topology
changes dynamically during mission execution and when
messages can get lost due to communication errors.

References

[1] S. Fitzpatrick and L. Meertens. Stochastic Algorithms:
Foundations and Applications, Proceedings SAGA 2001,
volume LNCS 2264, chapter An Experimental Assessment
of a Stochastic, Anytime, Decentralized, Soft Colourer for
Sparse Graphs, pages 49–64. Springer-Verlag, 2001.

[2] L. Hunsberger and B. Grosz. A combinatorial auction for
collaborative planning, 2000.

[3] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, , and
H. Matsubara. RoboCup: A challenge problem for AI. AI
Magazine, 18(1):73–85, Spring 1997.

[4] R. Mailler, V. Lesser, and B. Horling. Cooperative nego-
tiation for soft real-time distributed resource allocation. In
Proceedings of AAMAS’03, 2003.

[5] M. Mamei, F. Zambonelli, and L. Leonardi. Developing
adaptive and context-aware applications in dynamic net-
work. In Proceedings of WET ICE 2003, pages 401–406,
June 2003.

[6] P. J. Modi, W. Shen, and M. Tambe. Distributed con-
straint optimization and its application. Technical Report
ISI-TR-509, University of Southern California/Information
Sciences Institute, 2002.

[7] R. Nair, T. Ito, M. Tambe, and S. Marsella. Task allocation
in robocup rescue simulation domain. In Proceedings of the
International Symposium on RoboCup, 2002.

[8] S. Okamoto. Dcop in la: Relaxed. Master’s thesis, Univer-
sity of Southern California, 2003.

[9] A. Ricci and A. Omicini. Supporting coordination in open
computational systems with tucson. In Proceedings of WET
ICE 2003, pages 365– 370, June 2003.

[10] P. Scerri, D. V. Pynadath, L. Johnson, R. P., N. Schurr, M. Si,
and M. Tambe. A prototype infrastructure for distributed
robot-agent-person teams. In In Proceedings of AAMAS,
2003.

[11] D. Shmoys and E. Tardos. An approximation algorithm for
the generalized assignment problem. Mathematical Pro-
gramming, 62:461–474, 1993.

[12] G. Tidhar, A. Rao, and E. Sonenberg. Guided team selection.
In Proceedings of the Second International Conference on
Multi-Agent Systems, 1996.

[13] T. Wagner, V. Guralnik, and J. Phelps. A key-based coor-
dination algorithm for dynamic readiness and repair service
coordination. In AAMAS 2003, pages 757–764, 2003.

[14] B. B. Werger and M. J. Mataric. Broadcast of local eligibility
for multi-target observation. In Proc. of 5th Int. Symposium
on Distributed Autonomous Robotic Systems (DARS), 2000.

[15] W. Zhang and L. Wittenburg. Distributed breakout revisited.
In Proceedings of AAAI’02, 2002.

