
Self-organising Sensors for Wide Area

Surveillance Using the Max-sum Algorithm

Alex Rogers1, Alessandro Farinelli2, and Nicholas R. Jennings1

1 School of Electronics and Computer Science
University of Southampton, Southampton, SO17 1BJ, UK

{acr,nrj}@ecs.soton.ac.uk
2 Department of Computer Science
University of Verona, Verona, Italy
alessandro.farinelli@univr.it

Abstract. In this paper, we consider the self-organisation of sensors
within a network deployed for wide area surveillance. We present a de-
centralised coordination algorithm based upon the max-sum algorithm
and demonstrate how self-organisation can be achieved within a setting
where sensors are deployed with no a priori information regarding their
local environment. These energy-constrained sensors first learn how their
actions interact with those of neighbouring sensors, and then use the
max-sum algorithm to coordinate their sense/sleep schedules in order to
maximise the effectiveness of the sensor network as a whole. In a simu-
lation we show that this approach yields a 30% reduction in the number
of vehicles that the sensor network fails to detect (compared to an un-
coordinated network), and this performance is close to that achieved by
a benchmark centralised optimisation algorithm (simulated annealing).

1 Introduction

The vision of computational systems composed of multiple autonomous inter-
acting agents has been a research aim for at least two decades now, and is
increasingly being realised in the real-world by the deployment of wireless sen-
sor networks [1]. Such networks have found application in wide-area surveillance,
animal tracking, and for monitoring environmental phenomena in remote loca-
tions, and a fundamental challenge within all such applications arises due to
the fact that the sensors within these networks are often deployed in an ad-
hoc manner (e.g. dropped from an aircraft or ground vehicle within a military
surveillance application). In this case, the local environment of each sensor, and
hence the exact configuration of the network, cannot be determined prior to
deployment, and thus, the sensors themselves must be equipped with capability
to self-organise sometime after deployment once the local environment in which
they (and their neighbours) find themselves has been determined. Examples of
such self-organisation include determining the most energy-efficient communica-
tion paths within the network once the actual reliability of communication links
between individual sensors can be measured in situ, determining the optimal

D. Weyns et al. (Eds.): SOAR 2009, LNCS 6090, pp. 84–100, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Self-organising Sensors Using the Max-sum Algorithm 85

orientation of sensors to track multiple moving targets that move through the
sensor network, and in the application that we consider in detail in this paper,
coordinating the sense/sleep schedules (or duty cycles) of power constrained sen-
sors deployed in a wide-area surveillance task once the degree of overlap of the
sensing fields of nearby sensors has been determined.

A common feature of these self-organisation problems is that the sensors must
typically choose between a small number of possible states (e.g. which neighbour-
ing sensor to transmit data to, or which sense/sleep schedule to adopt), and the
effectiveness of the sensor network as a whole depends not only on the individ-
ual choices of state made by each sensor, but on the joint choices of interacting
sensors. Thus, to maximise the overall effectiveness of the sensor network, the
sensors within the network must typically make coordinated, rather than inde-
pendent, decisions. Furthermore, this coordinated decision must be performed
despite the specific constraints of each individual device (such as limited power,
communication and computational resources), and the fact that each device can
typically only communicate with the few other devices in its local neighbourhood
(due to the use of low-power wireless transceivers, the small form factor of the
device and antenna, and the hostile environments in which they are deployed).
Additional challenges arise through the need to perform such coordination in a
decentralised manner such that there is no central point of failure and no com-
munication bottleneck, and to ensure that the deployed solution scales well as
the number of devices within the network increases.

Problems of this nature are often described within the multi-agent systems
literature as Distributed Constraint Optimisation Problems (DCOPs), and are
often represented by graphs in which the nodes represent the agents (in this case
the sensors), and edges represent real valued constraints that arise between the
agents depending on their combined choice of state. A number of distributed
complete algorithms have been proposed that allow the agents within the graph
to make coordinated decisions over their states (communicating only with other
agents who are connected to themselves through a constraint) such that the sum
over all of the constraints is maximised (or minimised). An example of such an
algorithm is DPOP which preprocess the constraint graph, arranging it into a
Depth First Search (DFS) tree, before exchanging messages over this tree [2].
However, complete algorithms calculate the globally optimal solution, and such
optimality demands that some aspect of the algorithm grows exponential in
size. For example, within DPOP, the size of the messages is exponential in the
width of the tree. Such exponential relationships are simply unacceptable for the
constrained devices deployed within typical sensor networks.

In contrast, a large number of approximate algorithms have also been pro-
posed for solving DCOPs. These algorithms are typically based upon entirely
local computation, whereby each agent updates its state based only on the com-
municated (or observed) states of those local neighbours that influence its utility.
As such, these approaches are well suited for large scale distributed applica-
tions, and in this context, the Distributed Stochastic Algorithm (DSA), is one of
the most promising having been proposed for decentralised coordination within

86 A. Rogers, A. Farinelli, and N.R. Jennings

sensor networks [3]. However, algorithms of this type often converge to poor
quality solutions since the agents do not explicitly communicate their utility for
being in any particular state, but only communicate their preferred state (i.e. the
one that will maximise their own utility) based on the current preferred state of
their neighbours. Furthermore, DSA introduces a parameter (which represents
the probablity that an agent should actually update its state if the states of
its neighbours indicate that this would be approapriate) whose value must be
determined through trial and error prior to deployment of the algorithm.

Thus, against this background, there is a clear need for decentralised coordi-
nation algorithms that make efficient use of the constrained computational and
communication resources found within wireless networks sensor systems, and
yet are able to effectively represent and communicate complex utility relation-
ships between sensors. To address this shortcoming, in this paper, we describe
an approximate decentralised coordination algorithm that can be applied to the
general problem of maximising the overall effectiveness of a sensor network (or
any other decentralised system) in which the utility of any individual sensor is
dependent not only on its own state, but also on the state of a number of inter-
acting neighbours (as is the case in the example applications we have discussed
previously). Our solution is based upon a novel representation of the problem
as a cyclic bipartite factor graph and exploits message passing techniques that
are frequently used in the context of information theory to decompose complex
computations on single processors. We have previously demonstrated the effec-
tiveness of this approach on a number of benchmark graph-colouring problems
[11], and shown that it’s performance is in line with the extensive evidence that
demonstrates that the max-sum algorithm generates good approximate solutions
when applied to cyclic graphs (in the context of approximate inference through
‘loopy’ belief propagation on Bayesian networks [4], iterative decoding of practi-
cal error correcting codes [5], and solving large scale K-SAT problems involving
thousands of variables [6]). This algorithm effectively propagates information
around the network such that it converge to a neighborhood maximum, rather
than a simple local maximum [4].

Hence, having described a generic decentralised coordination algorithm, we
then apply it within a specific problem concerning the self-organisation of sensors
within a wireless network deployed within an urban environment to detect vehicle
movements on a road network. Within this setting, energy management is a key
challenge, and such sensors will typically control their duty cycle (effectively
switching between active sensing modes and low-power sleep modes) in order
to operate in an energy neutral mode, and hence, exhibit an indefinite lifetime
[7]. However, since the sensing ranges of the sensors within the network will
typically overlap with one another, the overall effectiveness of the sensor network
depends not only on the sensors’ individual choice of duty cycles, but also on the
combined choice of neighbouring sensors whose sensing ranges overlap. With an
ad-hoc sensor deployment, these interactions are not known prior to deployment,
and thus, we describe how the sensors may self-organise by first learning the
interactions between their neighbours (i.e. how much their neighbours’ sensing

Self-organising Sensors Using the Max-sum Algorithm 87

fields overlap with their own), and then coordinating their sense/sleep schedules
(using the decentralised coordination algorithm described above) in order to
address the system-wide performance goal of maximising the probability that a
vehicle is detected. We show that by self-organising in this way, we can achieve a
30% reduction in the number of vehicles that the sensor network fails to detect
(compared to an uncoordinated network), and this performance is shown to
be close to that achieved by a benchmark centralised optimisation algorithm
(simulated annealing).

The remainder of this paper is structured as following. In section 2 we present
our factor graph representation and max-sum decentralised coordination algo-
rithm. In section 3 we describe how it can be applied within self-organising
sensors in our wide-area surveillance scenario amd we present our empirical
evaluation. Finally, we conclude and discuss future work in section 4.

2 The Max-sum Approach to Coordination

The max-sum algorithm is a specific instance of a general message passing al-
gorithm that exploits the general distributive law in order to decompose a com-
plex calculation by factorising it (i.e. representing it as the sum or product of
a number of simpler factors) [8]. Such algorithms are frequently used in fields
such as information theory, artificial intelligence and statistics. In our case, they
represent an ideal combination of the best features of optimal algorithms and
approximate stochastic algorithms. They can make efficient use of constrained
computational and communication resources, and yet are able to effectively rep-
resent and communicate complex utility relationships through the network and
attain close to optimal solutions. In the following, we first provide a formal de-
scription of the generic coordination problem we address in this paper, and then
detail the max-sum algorithm itself.

2.1 Problem Description

We initially consider the general case in which there are M sensors, and the state
of each sensor may be described by a discrete variable xm. Each sensor interacts
locally with a number of other sensors such that the utility of an individual
sensor, Um(xm), is dependent on its own state and the states of these other
sensors (defined by the set xm). For example, in the wide area surveillance
problem that we consider in this paper, the state of the sensor represents the
sense/sleep schedule that it has adopted, the interacting sensors are those whose
sensing areas overlap with its own, and the utility describes the probability of
detecting an event within the sensor’s sensing range. However, our approach at
this stage is generic, and thus, we make no specific assumptions regarding the
structure of the individual utility functions.

Within this setting, we wish to find the state of each sensor, x∗, such that the
sum of the individual sensors’ utilities (commonly referred to as social welfare
within the multi-agent systems literature) is maximised:

88 A. Rogers, A. Farinelli, and N.R. Jennings

S1

S2

S3

S1 S3

S2 S1

S2

S3

x1

x2

x3

U2

U1 U3

(a) (b) (c)

Fig. 1. Diagram showing (a) the position of three sensors in the environment whose
sensing ranges overlap, and (b) the resulting factor graph with sensors decomposed
into function and variable nodes

x∗ = argmax
x

M∑

i=1

Ui(xi) (1)

Furthermore, in order to enforce a truly decentralised solution, we assume that
each sensor only has knowledge of, and can directly communicate with, the
few neighbouring agents on whose state its own utility depends. In this way,
the complexity of the calculation that the sensor performs depends only on the
number of neighbours that it has (and not the total size of the network), and
thus, we can achieve solutions that scale well.

2.2 Factor Graph Representation

In order to apply the max-sum algorithm, we represent the optimisation problem
described in equation 1 above, as a bipartite factor graph. To this end, we de-
compose each sensor into a variable node that represents its state, and a function
node that represents its utility. The function node of each sensor is connected to
its own variable node (since its utility depends on its own state), and also to the
variable nodes of other sensors whose states its utility depends on. For example,
we show in figure 1a an example in which three sensors, {S1, S2, S3}, interact
with their immediate neighbours through the overlap of their sensing areas. In
figure 1b we show the resulting constraint graph often used within the optimal
algorithms, such as DPOP, discussed earlier. In figure 1c we show the resulting
bipartite factor graph in which the sensors are decomposed into function nodes,
{U1, U2, U3}, and variable node, {x1, x2, x3}. The overall function represented
by this factor graph is given by U = U1(x1, x2) + U2(x1, x2, x3) + U3(x2, x3).

2.3 Message Content of the Max-sum Algorithm

The max-sum algorithm operates directly on the factor graph representation
described above. When this graph is cycle free, the algorithm is guaranteed to
converge to the global optimal solution such that it finds the combination of
states that maximises the sum of the sensors’ utilities. When applied to cyclic

Self-organising Sensors Using the Max-sum Algorithm 89

graphs (as is the case here), there is no guarantee of convergence but extensive
empirical evidence demonstrates that such family of algorithms generate good
approximate solutions [9,10].

The max-sum algorithm solves this problem in a decentralised manner by
specifying messages that should be passed from variable to function nodes, and
from function nodes to variable nodes. These messages are defined as:

– From variable to function

qi→j(xi) = αij +
∑

k∈Mi\j

rk→i(xi) (2)

where Mi is a vector of function indexes, indicating which function nodes are
connected to variable node i, and αij is a scaler chosen such that∑

xi
qi→j(xi) = 0, in order to normalise the message and prevent them in-

creasing endless in the cyclic graphs.

– From function to variable

rj→i(xi) = max
xj\i

⎡

⎣Uj(xj) +
∑

k∈Nj\i

qk→j(xk)

⎤

⎦ (3)

where, Nj is a vector of variable indexes, indicating which variable nodes are
connected to function node j and xj\i ≡ {xk : k ∈ Nj \ i}.

Note that these message definitions are somewhat cyclic, and reflect the iterative
way in which the messages are updated. The messages flowing into and out of
the variable nodes within the factor graph are functions that represent the total
utility of the network for each of the possible states of the variable. At any
time during the propagation of these messages, sensor i is able to determine
which state it should adopt such that the sum over all the sensors’ utilities is
maximised. This is done by locally calculating the function, zi(xi), from the
messages flowing into i’s variable node:

zi(xi) =
∑

j∈Ni

rj→i(xi) (4)

and hence finding argmaxxi zi(xi).
Previous applications of the max-sum algorithm have applied it as an efficient

iterative algorithm for centralised problems such as decoding error correcting
codes [5]. Here, the factor graph is actually physically divided among the sen-
sors within the network, and thus the computation of the system-wide global
utility function is now carried out through a distributed computation involving
message passing between sensors. Thus although the max-sum algorithm is ap-
proximating the solution to a global optimisation problem it involves only local
communication and computation.

90 A. Rogers, A. Farinelli, and N.R. Jennings

2.4 Convergence and Performance

The messages described above may be randomly initialised, and then updated
whenever a sensor receives an updated message from a neighbouring sensor; there
is no need for a strict ordering or synchronisation of the messages. In addition,
the calculation of the marginal function shown in equation 4 can be performed
at any time (using the most recent messages received), and thus, sensors have
a continuously updated estimate of their optimum state. When the underlying
factor graph contains cycles there is no guarantee that the max-sum algorithm
will converge; nor that if it does converge it will find the optimal solution. How-
ever, extensive empirical evaluation on a number of benchmark coordination
problems, including graph colouring, indicates that it does in fact produce bet-
ter quality solutions than other state of the art approximate algorithms such as
DSA, but at significantly lower computation and communication cost compared
to complete algorithms such as DPOP [11].

2.5 Architecture

Note that the formulation of the problem as a factor graph does not actually
limit where any of the computation is actually performed. At its most decen-
tralised, each factor may reside on a single agent, and this agent may reside on
a separate sensor. In this case, messages between factors and variables (and be-
tween variables and factors), represent messages exchanged between the sensors,
across the communication network. However, it is also possible to use exactly
the same factor graph representation as a computationally efficient means to
perform the coordination even within a system where the elements are not ac-
tually distributed across different computational entities. Indeed, it is exactly
this approach that is employed in the context of approximate inference through
‘loopy’ belief propagation on Bayesian networks [4], iterative decoding of prac-
tical error correcting codes [5], and when solving large scale K-SAT problems
involving thousands of variables [6].

3 Wide Area Surveillance Problem

Having presented our max-sum coordination algorithm we now focus on its ap-
plication within the self-organisation of a sensor network deployed for a wide
area surveillance task. To this end, we consider a wide area surveillance problem
based upon a simulation of an urban settings (using the Robocup Rescue Sim-
ulation Environment — see http://www.robocuprescue.org/). We assume that
multiple wireless sensors are randomly deployed within the environment, and
these sensors are tasked with detecting vehicles that travel along the roads. We
assume that the sensors have no a priori knowledge of the road network, and do
not know their own location within it. The sensors detect seismic or acoustic sig-
nals in order to indicate the binary presence, or absence, of vehicles within their
sensing fields. We make no assumptions regarding the shape or range of these

Self-organising Sensors Using the Max-sum Algorithm 91

Fig. 2. Simulation of a wide area surveillance scenario (based on the Robocup Rescue
Simulation Environment)

sensing fields (although for ease of simulating the setting, within our simulation
we model these as circular fields with randomly assigned radii). Figure 2 shows
this simulation environment in operation. The area sensed by active sensors is
shown in red, and moving vehicles are shown as white markers on the roads.

We assume that the sensors are able to harvest energy from their local environ-
ment, but at a rate that is insufficient to allow them to be powered continually.
Thus at any time a sensor can be in one of two states: either sensing or sleeping.
In the sensing state the sensor consumes energy at a constant rate, and is able
to interact with the surrounding environment (e.g. it can detect events within
its sensing field and communicate with other sensors)1. In the sleep state the
sensor can not interact with the environment but it consumes negligible energy.
To maintain energy-neutral operation, and thus exhibit an indefinite lifetime,
sensors adopt a duty cycle whereby within discrete time slots they switch be-
tween these two states according to a fixed schedule of length L. We denote
the schedule of sensor i by a vector si = {si

0, . . . , s
i
L−1} where si

k ∈ {0, 1}, and
si

k = 1 indicates that sensor i is in its active sensing state during time slot k (and
conversely, it is sleeping when si

k = 0). We assume that this schedule is repeated
indefinitely, and in this paper, we specifically consider schedules in which the
sensor is in its sense state for one time slot, and in a sleep state for all L − 1

1 Note that we assume that the energy consumed by activating the sensor is much
more significant than that used in communication. This is generally true for sensors
that require continuous signal processing such as the acoustic or seismic sensors
considered here.

92 A. Rogers, A. Farinelli, and N.R. Jennings

other time slots (i.e.
∑L−1

k=0 si
k = 1). This represents the simplest description of

a power constrained sensing schedule, however, we note that the max-sum co-
ordination algorithm that we have presented in the last section, can be applied
for any discrete schedule.

3.1 The Coordination Problem

Figure 3 illustrates the coordination problem that results from this scenario.
In this specific example, three sensors, {S1, S2, S3}, are randomly deployed and
exhibit overlapping sensing fields. In order to maintain energy neutral operation,
each sensor can only actively sense for half of the time (i.e. L = 2), and thus,
each sensor has a choice from two sensing schedules: either {1, 0} or {0, 1}.

The system-wide goal is to maximise the probability that events are detected
by the sensor network as a whole. This is achieved by ensuring that the area
covered by the three sensors is actively sensed by at least one sensor at any time.
However, with the sensing schedules available, it is clearly not possible to ensure
that area S1∩S2, area S2∩S3 and area S1 ∩S3 are all sensed continually. Thus,
the sensors must coordinate to ensure that the minimal area possible exhibits the
minimal periods during which no sensor is actively sensing it. In this case, the
optimal solution is the one shown where s1 = {0, 1}, s2 = {1, 0} and s3 = {0, 1}.
Note that this leads to areas A{1,2}, A{2,3} and A{1,2,3} being sensed continually,
and the smallest area, A{1,3}, and of course the three non-overlapping areas,
exhibiting intermittent sensing.

In a larger sensor deployment, each of these three sensors is also likely to
overlap with other sensors. Thus, finding the appropriate sensing schedule of
each sensors, such that probability of detecting an event is maximised, is a
combinatorial optimisation problem. As such, this problem is similar to the graph
colouring benchmark used in the evaluation of the max-sum algorithm described
earlier [11]. However, an important difference is that in our sensor scheduling
problem we can have interactions between multiple sensors (as is the case in the
example shown in figure 3), rather than interaction between just pairs of sensors
(as is the case in the standard graph colouring problem).

3.2 Applying the Max-sum Algorithm

To apply the max-sum coordination algorithm to this problem it is necessary
to first decompose the system-wide goal that we face (that of maximising the
probability that an event is detected) into individual sensor utility functions.
As shown above, the utility of each sensor is determined by its own sense/sleep
schedule, and by those of sensors whose sensing fields overlap with its own. Thus,
we define Ni to be a set of indexes indicating which other sensors’ sensing fields
overlap with that of sensor i and k is any subset of Ni (including the empty set).
A{i}∪k is the area that is overlapped only by sensor i and those sensors in k. For
example, with respect to figure 3, the area A{1,2} is the area that is sensed only
by sensors 1 and 2. In a slight abuse of notation, we represent the entire sensing
area of sensor S1 as S1, and thus, note that the area A{1,2} is different from

Self-organising Sensors Using the Max-sum Algorithm 93

A{1,3}
A{1,2,3}

A{1}

A{1,2}
A{2}

A{2,3}

A{3}

S1

S2

S3

s2 = {1, 0}
s1 = {0, 1}

s3 = {0, 1}

Fig. 3. Example coordination problem in which three sensors, {S1, S2, S3}, have sensing
fields that overlap

S1 ∩ S2 because the area S1 ∩ S2 would include also the sub area S1 ∩ S2 ∩ S3.
In general, we have:

A{i}∪k =
⋂

j∈({i}∪k)

Sj \
⋃

l �∈({i}∪k)

Sl

We define a function G : 2X → S and G(x{i}∪k) is the combined sensing sched-
ule of sensor i and those sensors in k (calculated through the logical ‘OR’ of
each individual schedule). Now, assuming that events occur uniformly over the
environment, then the utility of sensor i is given by:

Ui(xi) =
∑

k⊆Ni

A{i}∪k

|{i} ∪ k| × P (detection|λd, G(x{i}∪k)) (5)

where P (detection|λd, G(x{i}∪k)) is the probability of detecting an event given
the combined sensing schedules of the overlapping sensors and a parameter, λd,
that describes the typical duration of an event. We model this duration as a
Poisson process such that the probability of an event lasting time t is given by
λde−λdt. Note, that we scale the area by the number of sensors who can sense it
to avoid double-counting areas which are represented by multiple sensors. Also,
note that when the set k is empty we consider the area covered only by the single
sensor. For example, the utility of sensor S2 shown in figure 3, is calculated by
considering the areas A{2}, A{1,2}, A{2,3} and A{1,2,3}.

3.3 Learning the Mutual Interaction of Sensing Fields

The utility function presented in equation 5 assumes that the sensors are able
to determine the area of overlap of their own and neighbouring sensors’ sensing
fields, and that they know the parameter λd that describes the detectable dura-
tion of events. In reality, sensors may have highly irregular and obscured sensing

94 A. Rogers, A. Farinelli, and N.R. Jennings

R1

R2

S1

S2

S3

Fig. 4. Example showing the paths of two vehicles on roads, {R1, R2}, crossing the
sensing fields of three overlapping sensors S1, S2 and S3

areas, they may not be able to determine the exact position of themselves, let
alone neighbouring sensors, and events may be known to be more likely to occur
in some areas than others. Thus, we now relax these constraints, and describe
how the sensors may learn these relationships in order to make a coordinated
decision regarding their sense/sleep schedules. In more detail, we implement the
following scheme:

Calibration Phase
We assume that after deployment, all sensors initially select the same sensing
schedule, and thus, the sensors are all active and sense simultaneously2. At
regular intervals during this phase sensors exchange information regarding the
events that they have detected, and they keep track of (i) the number of events
that they observe individually, Oi, and (ii) the number of events that are both
detected by themselves and a subset of their neighbours, O{i}∪k. The exact form
that this exchange of information takes depends on the nature of the sensors
used, and the events that they are detecting. Within our wide area surveillance
scenario, we assume that sensors are able to time stamp the appearance and
disappearance of vehicles within their sensing fields. Comparison of the time
stamps of observations of other sensors then allow the sensor to identify whether
vehicles are detected by multiple sensors as they cross its own sensing field.

For example, consider figure 4 in which the two vehicles crossing three over-
lapping sensing fields, and assume that sensor S1 time stamps the appearance
and disappearance of a vehicle at times 09:02:12 and 09:02:21 respectively, sensor
S2 time stamps the appearance and disappearance of a vehicle at times 09:02:15
and 09:02:24 respectively, and finally, sensor S3 time stamps the appearance and
disappearance of a vehicle at times 09:02:27 and 09:02:33 respectively. In this
case, the intersection of the time stamps of sensors S1 and S2 lead these two

2 Note that the performance of the network is somewhat degraded throughout this
calibration phase since all the sensors select the same sensing schedule and are syn-
chronised. We intend to address this within future work (see section 4).

Self-organising Sensors Using the Max-sum Algorithm 95

sensors to conclude that O{1} = 1, O{1,2} = 1, O{2} = 1, while the non-
intersection of the time stamps of sensor S3 leads it to conclude that O{3} = 1.
Note that in general, more complex techniques may be required to differentiate
events when they occur concurrently. This will typically require some additional
information such as the position of the event, or some recognisable characteristic
of the event, and within the data fusion and tracking literature, this problem is
commonly known as data or track association. Here, we assume that events are
uniquely identified, since data association is not the focus of this paper. However,
we note that this data association need not be error-free and the performance
of the network degrades slowly if errors do occur.

Finally, the duration of the events is used to calculate an estimate of λd. This
is easily done, since the maximum likelihood estimate of λd is simply the mean
of the observed event durations.

Coordination Phase
The numbers of events observed in the calibration phase now acts as a proxy
for the unknown areas of overlap between neighbouring sensors. Furthermore,
it also captures the fact that events will not occur evenly over the entire area,
but are restricted to certain areas (i.e. the roads in our case). Hence, the sensors
now calculate their utility based on a modification of equation 5 given by:

Ui(xi) =
∑

k⊆Ni

O{i}∪k

|{i} ∪ k| × P (detection|λd, G(x{i}∪k)) (6)

The sensors can now use the max-sum coordination algorithm presented ear-
lier to coordinate their choice of sense/sleep schedule such that the utility of
the overall sensor network is maximised, and hence, the probability of detection
of a vehicle traveling within the area covered by the sensor network is maximised.

Operational Phase
Finally, the operational phase proceeds as before, sensors simply follow the
sense/sleep schedule determined in the previous coordination phase. If during
this phase a sensor fails, then the coordination algorithm above may simply be
re-run to coordinate over the smaller sensor network. Likewise, should the posi-
tion of sensors change, or new sensors be added, both the calibration phase and
the coordination phase can be re-run to coordinate over the new environment in
which the sensors find themselves. In section 4 we shall describe our future work
developing a more principled approach that allows for continuous self-adaption
of the sensor network as the state of the environment, or the sensors themselves,
changes over time.

To validate this approach we now perform an empirical evaluation within our
simulation environment.

3.4 Empirical Evaluation

To this end, we simulated the above three phases using random deployments of
the sensors whose sensing ranges are assumed to be circular discs with radius

96 A. Rogers, A. Farinelli, and N.R. Jennings

drawn uniformly between 0.05d and 0.15d (where d is the maximum dimension
of the area in which the sensors are deployed). During the calibration phase we
simulated the movement of 500 vehicles between random start and end points,
and the sensors exchanged observations with one another regarding their ob-
servations during this time. During the coordination phase, the sensors use the
max-sum algorithm over a fixed number of cycles, in order to coordinate their
sensing schedules. Finally, during the operational phase the sensors use the sens-
ing schedules determined in the negotiation phase, and we again simulate the
movement of 500 vehicles between random start and end points.

We measure the operational effectiveness of the sensor network by calculating
the percentage of vehicles that are missed by the sensor network (i.e. vehicles that
move between their start and end point without ever being within the sensing
field of an actively sensing sensor) and for those vehicles that are detected, we
measure the time taken for the first detection (i.e. the time at which the network
first becomes aware of the presence of the vehicle after it leaves its start point).
We repeat the experiments 100 times for three different length sensing schedules
(L = 2, 3 and 4) and we investigate three different ranges of sensor number such
that the effective number of sensors (given by N/L) remained constant. In this
way, each deployment had the same effective sensing capability. We compare
results for four different coordination mechanisms:

1. Randomly Coordinated Sensors
As before, the choice of each sensors’ sense/sleep schedule is made randomly
by each individual sensor with no coordination.

2. DSA Coordinated Sensors
Using the results of the calibration phase, the sensors use the DSA algorithm
(as discussed earlier) to coordinate their sense/sleep schedules. The proba-
bility that any agent actually updates its preferred state is 0.4 (determined
through empirical optimisation).

3. Max-sum Coordinated Sensors
Using the results of the calibration phase, the sensors use the max-sum al-
gorithm to coordinate their sense/sleep schedules.

4. Simulated Annealing Coordinated Sensors
We use an offline centralised optimisation algorithm to calculate an upper
bound on the performance that we can expect from our decentralised max-
sum approach. This solution cannot be used in practice to coordinate the
sense/sleep schedules of the real sensors since it is centralised and assumes
full knowledge of the topology of the network, however, it provides an upper
bound on the performance of a coordinated solution.

The results of these experiments are shown in figures 5 and 6, where the error
bars represent the standard error of the mean in the repeated experiments. In
more detail, figure 5 shows the percentage of vehicles that fail to be detected by

Self-organising Sensors Using the Max-sum Algorithm 97

20 30 40 50 60
0

10

20

30

40

50

60
Percentage of Vehicles Missed − L=2

Number of Sensors (N)

Pe
rc

en
ta

ge
 (

%
)

30 45 60 75 90
0

10

20

30

40

50
Percentage of Vehicles Missed − L=3

Number of Sensors (N)

Pe
rc

en
ta

ge
 (

%
)

40 60 80 100 120
0

10

20

30

40
Percentage of Vehicles Missed − L=4

Number of Sensors (N)

Pe
rc

en
ta

ge
 (

%
)

random DSA max−sum simulated annealing

Fig. 5. Comparison of simulation results reporting the percentage of missed vehicles,
for a sensor network using random, DSA, max-sum, and centralised simulated annealing
coordination algorithms plotted against the number of deployed sensors

the sensor network; our main metric for the performance of the network. Figure
6 shows the time that it took the sensor network to first detect each vehicle;
a metric that we do not actively seek to minimise. Note that in all cases, the
randomly coordinated sensor network performs the worst (failing to detect more
vehicles and taking a longer time to detect them), and that the centralised
simulated annealing approach provides the best solutions. In each case, the
max-sum approach out performs the DSA algorithm, and does so without the
need to empirically tune a parameter. The difference between the algorithms
increases as both the number of sensors within the network and the length of

98 A. Rogers, A. Farinelli, and N.R. Jennings

20 30 40 50 60
0

0.05

0.1

0.15
Time to Detect Vehicle (Cycles) − L=2

Number of Sensors (N)

T
im

e
(C

yc
le

s)

30 45 60 75 90
0

0.05

0.1

0.15
Time to Detect Vehicle (Cycles) − L=3

Number of Sensors (N)

T
im

e
(C

yc
le

s)

40 60 80 100 120
0

0.05

0.1

0.15
Time to Detect Vehicle (Cycles) − L=4

Number of Sensors (N)

T
im

e
(C

yc
le

s)

random DSA max−sum simulated annealing

Fig. 6. Comparison of simulation results reporting the mean time to first detect a
vehicle, for a sensor network using random, DSA, max-sum, and centralised simulated
annealing coordination algorithms plotted against the number of deployed sensors

sensing schedules increase. This trend is expected as the combinatorial coordi-
nation problem becomes harder as both these factors increase.

Table 1 shows the results for both of these metrics for the case when L = 4 and
N = 120. In this case, by using our approach, we achieve a 30% reduction in the
number of missed vehicles (compared to the uncoordinated network), and this
performance is shown to be close to that achieved by the benchmark centralised
optimisation algorithm (simulated annealing) and significantly better than DSA
(a state of the art decentralised approach).

Self-organising Sensors Using the Max-sum Algorithm 99

Table 1. Comparison of percentage of vehicles missed and time to detect vehicles for
each coordination algorithm when L = 4 and N = 120

Coordination Percentage of Time to Detect
Algorithm Vehicles Missed (%) Vehicle (Cycles)

random 4.0±[0.4] 0.033±[0.002]

DSA 3.2±[0.2] 0.030±[0.002]

max-sum 2.7±[0.2] 0.028±[0.002]

simulated annealing 2.2±[0.2] 0.025±[0.002]

4 Conclusions

In this paper, we have considered the self-organisation of sensors within a net-
work deployed for wide area surveillance. We have presented a decentralised
coordination algorithm based upon the max-sum algorithm and demonstrated
how self-organisation can be achieved within a setting where sensors are deployed
with no a priori information regarding their local environment. We showed the
sensors can learn how their actions interact with those of neighbouring sensors,
and then use the max-sum algorithm to coordinate their sense/sleep schedules
in order to maximise the effectiveness of the sensor network as a whole. In a soft-
ware simulation we showed that this approach yields significant improvements in
performance over the case of random coordination, and closely approaches that
of a benchmark centralised optimisation algorithm.

Our future work consists of extending these results in order to relax the re-
quirement of a separate calibration phase prior to the negotiation phase. The
synchronised schedules of the sensors during the calibration phase corresponds
to a period of poor system-wide performance that is offset by improved system-
wide performance during the operational phase. However, it is also possible to
learn about the occurrence of events, and hence the overlap of sensors’ sensing
fields, during this operational phase. Thus, we would like to investigate online al-
gorithms that can trade-off between exploratory behaviour (synchronising with
neighbouring sensors to learn about the occurrence of events), and exploita-
tive behaviour (using relationships already learnt to coordinate the sensors).
Principled Bayesian heuristics exist for performing such trade-offs [12], and ap-
plying these approaches within this setting would remove the requirement for
three distinct phases. Rather, the sensors would continuously self-organise and
self-adapt, changing sense/sleep schedules continuously to trade-off between ex-
ploration and exploitation. Such an approach would also naturally apply within
dynamic settings where sensors’ utilities may change at any time, sensors may
fail, or additional sensors may be deployed. The max-sum coordination algo-
rithm used in this paper already supports this continual behaviour since utility
messages can be communicated, and sensors can estimate their optimal state, at
anytime, and thus, it would appear to be a solid base on which to develop this
more advanced self-organising behaviour.

100 A. Rogers, A. Farinelli, and N.R. Jennings

References

1. Rogers, A., Corkill, D.D., Jennings, N.R.: Agent technologies for sensor networks.
IEEE Intelligent Systems 24(2), 13–17 (2009)

2. Petcu, A., Faltings, B.: DPOP: A scalable method for multiagent constraint opti-
mization. In: Proceedings of the 19th International Joint Conference on Artificial
Intelligence, pp. 266–271 (2005)

3. Fitzpatrick, S., Meetrens, L.: Distributed Coordination through Anarchic Opti-
mization. In: Distributed Sensor Networks A Multiagent Perspective, pp. 257–293.
Kluwer Academic, Dordrecht (2003)

4. Weiss, Y., Freeman, W.T.: On the optimality of solutions of the max-product be-
lief propagation algorithm in arbitrary graphs. IEEE Transactions on Information
Theory 47(2), 723–735 (2001)

5. MacKay, D.: Good error-correcting codes based on very sparse matrices. IEEE
Transactions on Information Theory 45(2), 399–431 (1999)

6. Mezard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random
satisfiability problems. Science 297(5582), 812–815 (2002)

7. Kansal, A., Hsu, J., Zahedi, S., Srivastava, M.B.: Power management in energy har-
vesting sensor networks. ACM Transactions on Embedded Computing Systems 6(4)
(2007)

8. Aji, S., McEliece, R.: The generalized distributive law. IEEE Transactions on In-
formation Theory 46(2), 325–343 (2000)

9. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory 42(2), 498–519 (2001)

10. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, Cambridge (2003)

11. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination
of low-power embedded devices using the max-sum algorithm. In: Proceedings of
the 7th International Conference on Autonomous Agents and Multiagent Systems,
pp. 639–646 (2008)

12. Dearden, R., Friedman, N., Andre, D.: Model based Bayesian Exploration.
In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence,
pp. 150–159 (1999)

	Self-organising Sensors for Wide Area Surveillance Using the Max-sum Algorithm
	Introduction
	The Max-sum Approach to Coordination
	Problem Description
	Factor Graph Representation
	Message Content of the Max-sum Algorithm
	Convergence and Performance
	Architecture

	Wide Area Surveillance Problem
	The Coordination Problem
	Applying the Max-sum Algorithm
	Learning the Mutual Interaction of Sensing Fields
	Empirical Evaluation

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

