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Emergency responders are faced with a number of significant challenges when managing major
disasters. First, the number of rescue tasks posed is usually larger than the number of responders
(or agents) and the resources available to them. Second, each task is likely to require a different
level of effort in order to be completed by its deadline. Third, new tasks may continually appear or
disappear from the environment, thus requiring the responders to quickly recompute their allocation
of resources. Fourth, forming teams or coalitions of multiple agents from different agencies is vital
since no single agency will have all the resources needed to save victims, unblock roads and extinguish
the fires which might erupt in the disaster space. Given this, coalitions have to be efficiently selected
and scheduled to work across the disaster space so as to maximize the number of lives and the portion
of the infrastructure saved. In particular, it is important that the selection of such coalitions should be
performed in a decentralized fashion in order to avoid a single point of failure in the system. Moreover,
it is critical that responders communicate only locally given they are likely to have limited battery
power or minimal access to long-range communication devices. Against this background, we provide
a novel decentralized solution to the coalition formation process that pervades disaster management.
More specifically, we model the emergency management scenario defined in the RoboCup Rescue
disaster simulation platform as a coalition formation with spatial and temporal constraints (CFST)
problem where agents form coalitions to complete tasks, each with different demands. To design a
decentralized algorithm for CFST, we formulate it as a distributed constraint optimization problem
and show how to solve it using the state-of-the-art Max-Sum algorithm that provides a completely
decentralized message-passing solution. We then provide a novel algorithm (F-Max-Sum) that avoids
sending redundant messages and efficiently adapts to changes in the environment. In empirical
evaluations, our algorithm is shown to generate better solutions than other decentralized algorithms

used for this problem.
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1. INTRODUCTION

Major disasters are characterized by highly dynamic and
uncertain parameters that can pose significant challenges to
emergency responders. For example, during earthquakes or
terrorist attacks, civilians may become trapped under rubble,
fires may start and spread across a city and roads may become
blocked as the disaster unfolds. Moreover, communication
facilities might be significantly reduced by natural phenomena
(e.g. fires taking out communication antennae or smoke

interfering with radio signals) or become overloaded [1].
Against this backdrop, the actors (or agents) in the system are
required to perform a number of tasks (e.g. rescuing civilians
or extinguishing fires) in different parts of the affected area.
Now, each task may require a given level of effort (e.g. digging
civilians with specific drills, fires requiring large amounts of
water) and may have to be performed by a certain deadline
(otherwise, civilians die or the city is devastated). Moreover,
the problem is compounded by the fact that new tasks may
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continuously appear or old tasks may disappear, requiring the
agents to change their plans frequently.

In order to complete as many tasks as possible by their
deadline, it is important that agents attempt the tasks in the right
order at the right time. Since the tasks are spatially distributed,
each agent must be provided with a route plan and a work
schedule in order to visit the maximum number of tasks in the
minimum time possible. They also need to do this while taking
into account the temporal constraints applying over each task to
ensure each task they decide to route to can be completed in time
(i.e. by considering the amount of time it takes to complete the
task and the deadline of the task). More importantly, agents need
to form teams or coalitions of multiple responders from different
agencies. This is because no single agency will have all the
resources needed to save all the victims, unblock the roads and
extinguish the fires. However, by working together in a coalition,
the agents can achieve such tasks more efficiently as a result of
their synergistic abilities. Hence, it is critical that the processes
of coalition formation and management are effectively enacted.

In terms of underpinning technologies, it is important that
such coalitions are chosen in a decentralized fashion (meaning
each agent decides for itself what coalitions to form and join
and that it interacts only with those agents that are nearby). By
so doing, the system has no single point of failure and is more
robust to long-range communication failures (or limited battery
power) caused by the disaster. Moreover, the agents must be
able to disband the existing coalitions and reform new ones
as tasks are completed and new tasks appear in the system.
Thus, the algorithms need to return solutions fast (i.e. within
seconds or minutes) and be able to quickly adapt to changes in
the environment (i.e. when tasks appear or disappear) as any
time wasted can result in significant losses.

To date, the problem of forming task-achieving teams of
agents in a geographical area has mainly been studied in the
multi-robot routing domain (see Section 2 for more details).
However, this work typically assumes that the agents have no
synergies in coalitions (i.e. their abilities are simply additive) or
that they each have distinct capabilities (i.e. they are perfectly
substitutable). On the other hand, research in the coalition
formation area has grown significantly in recent years [2–5].
However, to date, most approaches are typically centralized and
usually focus on either the coalition value calculation problem
(i.e. finding how effective each coalition is) or the coalition
structure generation problem (i.e. selecting the best coalitions to
be implemented) (see Section 2 for more details). In particular,
most of this work ignores the fact that coalitions may need
to be dynamically formed over time and that agents need to
perform very complex tasks (i.e. spatially distributed and having
a deadline).

Against this background, we model the coalition formation
problem posed in disasters and provide a novel decentralized
algorithm for it. Moreover, our algorithm is also able to
efficiently adapt to new tasks arriving or existing tasks being
removed from the environment. More specifically, we consider

a sub-part of the disaster management problem defined by
the RoboCup Rescue (RCR) disaster simulation platform [6].
Thus, we formulate the problem as a coalition formation with
spatial and temporal constraints (CFST) problem and provide
a distributed constraint optimization (DCOP) formulation for
it in order to show how the optimization problem can be
decomposed. Given this, we solve it using a new decentralized
algorithm that is able recompute solutions efficiently when the
allocation needs to be changed to accommodate different sets
of tasks.

In more detail, this paper advances the state of the art in the
following ways:

(i) We introduce CFST as a general model for the task
allocation problem faced by ambulances and fire
brigades in RCR and in disaster management at large.
Thus, our model captures most task allocation problems
that involve some form of temporal (i.e. deadline and
time to complete a task) and spatial constraints (i.e.
positions of agents and tasks) such as those existing
in logistics planning or crew scheduling [7]. Given this,
we define both optimal and approximate solutions for
the problem.

(ii) We develop a new DCOP formulation for the
approximate solution to the CFST problem and solve
it using a novel decentralized algorithm based on the
state-of-the-art Max-Sum algorithm [8].

(iii) We show that our algorithm can complete 10% more
tasks than the current best decentralized algorithm for
this problem (on average) and requires up to 91% fewer
messages and 99% less computation than the standard
Max-Sum algorithm in order to converge to a solution.

The rest of the paper is organized as follows. In Section 2,
we describe related work in the area of multi-robot routing
and coalition formation in general. Then, in Section 3, we
describe the task allocation problem posed by RCR. Given this,
Section 4 describes our representation for the CFST problem
and provides both optimal and approximate solutions for it.
Building on this, we provide a DCOP formulation of the
problem and show how to apply the Max-Sum algorithm to solve
CFST in a decentralized fashion in Section 5. In Section 6, we
provide a novel algorithm that builds upon Max-Sum to adapt
to disruptions more effectively and in Section 7 we empirically
evaluate it. Finally, Section 8 concludes.

2. RELATED WORK

To date, the disaster management problems as simulated by the
RCR platform (which we discuss in the next section) have only
been attempted by the RoboCup competition entrants (since
it started in 2001). Unfortunately, the problems posed by the
simulator and solutions to these have rarely, if at all, been
defined, formalized and solved. This is because the entries to
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Decentralized Coordination in RCR 3

the competition were mainly designed to win the competition
rather than solve the general task allocation problems posed
by RCR. Thus, these entries mainly involved ad-hoc solutions
to (approximations of) the task allocation problems1 in RCR
that exploited bugs or were tailored to the scenarios generated
by the platform2 and hence not generalizable across most
problems. However, a number of grounded approaches to the
task allocation problems similar to those in RCR do exist.3 We
divide these into two groups: centralized and decentralized. In
the next subsections, we discuss each of these approaches and
also survey the general area of coalition formation.

2.1. Centralized algorithms

Here, we note the work of Zheng and Koenig [10] who consider
a problem where only a specific number of agents can perform
a certain task. This means that the problem is agnostic to the
actual coalition serving a given task and that their algorithm
considers a much smaller search space than ours since in our
case more than one set of agents (of any number) can complete
a given task. They also assume a central planner that allocates
tasks to agents. Similarly, Gelenbe and Timotheou [9] use a
centralized mechanism based on random neural networks to
allocate responders to perform a number of rescue tasks.

2.2. Decentralized algorithms

Works by Scerri et al. [11] and Ferreira et al. [12] have
applied DCOP and other decentralized heuristics to the general
assignment problem. Now, while these approaches do consider
heterogeneous agents (i.e. agents with different capabilities)
and execution constraints for tasks (e.g. two tasks that must be
executed at the same time), they ignore the benefit of forming
coalitions of agents (i.e. with synergistic capabilities) to work
on the same task.

In a different vein, Maheswaran et al. consider completely
decentralized solutions to an allocation problem which
considers teams of agents but ignores the spatial constraints
of the CFST and show how different DCOP formulations
of the problem result in different degrees of computational
and communication efficiency when used with typical DCOP
algorithms such as ADOPT [13] or DPOP [14]. In our work,
we adopt a similar approach to theirs in building our DCOP

1For example, the allocation of ambulances to victims in the simulation can
be approximated by arbitrarily choosing one set of routes through all victims.

2For example, some buildings had pre-determined properties that teams
could exploit to extinguish fires faster or victims’ health decay could be
accurately modelled. In the new version of the simulator, developed by the
ALADDIN project, these bugs have been corrected and less information is now
available for teams to design scenario specific algorithms.

3It is not our intention here to elaborate on all possible algorithms or
techniques that have been developed for disaster management (e.g. see [1, 9]).
Instead, we focus on those that are clearly relevant to the problem of allocating
coalitions of agents to multiple tasks.

formulation for the CFST, but solve it using the more scalable
and general Max-Sum algorithm [8].

Approximate algorithms such as Max-Sum or the dis-
tributed stochastic algorithm (DSA) require very little local
(re)computation and communication, and are, as such, well
suited for large scale distributed applications in which the opti-
mality of the solution can be sacrificed in favour of compu-
tational and communication efficiency [15, 16]. However, the
quality of provided solutions heavily depends on the specific
application domain and thus these approaches can often result
in solutions of varying quality. This limits their applicability in
many application domains (particularly safety critical ones) and
hence it is important to evaluate such algorithms empirically (as
we do in Section 7).

In this paper, we opt for the Max-Sum algorithm for two main
reasons:

(i) Max-Sum does not incur the exponential coordination
overhead typical of complete techniques and, moreover,
it does not need the agents to organize themselves into
a DFS tree as most other complete DCOP algorithms
do (e.g. ADOPT, OptAPO [17] and DPOP). This means
that agents do not need to hold the connectivity graph
in memory and update it as connections are made or
broken. Hence, the Max-Sum algorithm is more robust
and appropriate for the context we study where there is
high uncertainty in the environment in which the agents
are operating.

(ii) Max-Sum, contrary to most other DCOP algorithms,
naturally works with n-ary constraints. That is, the
algorithm is able to find a solution when variables
are constrained with more than one other variable. In
the domain we study, the agents (acting as variables)
are naturally constrained by more than one other agent
(e.g. an agent can possibly reach multiple tasks but can
only complete them if it forms coalitions with some
other agents).

In general, the closest work to ours is that of Chapman
et al. [18] (a longer version of which is included in this special
issue) who develop a game theoretic framework and apply an
approximate algorithm to solve the task allocation problem in
the RCR scenario. Similar to our approach, they consider an
approximation of the optimal solution to a simplified version
of the CFST (where agents’ abilities are simply additive).
However, since their algorithm is an extension of DSA, they
find only a local maximum (as opposed to the global optimum)
of the function (which also approximates the optimal solution)
they try to optimize. Moreover, Chapman et al. assume that
the assignment is static; that is, tasks do not change within
the current allocation. If they did change, the agents would
have to recompute the whole allocation. Finally, their allocation
mechanism ignores how different coalitions form based on
when the agents arrive at a task (i.e. synergistic effect). In our
model, we find the optimum value of the objective and can adapt,
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FIGURE 1. Part of London map in RCR.

with minimal recomputation, to re-assign coalitions to new tasks
coming into the environment or old tasks being cancelled in such
a way that more tasks are completed.

2.3. Coalition formation

Our work also targets the area of coalition formation in gen-
eral. In particular, we note that most of the coalition formation
techniques are typically centralized [2, 5]. An exception to this
is [3, 4], for example, who provide algorithms to distribute the
coalition value calculation problem. In general, however, these
algorithms assume that all coalitions are actually feasible and
ignore the fact that the task allocation problem dictates the set
of coalitions that can be formed (e.g. some tasks might require
coalitions of at least three agents to be completed by their dead-
line or some tasks might require one ambulance and two fire
brigade agents to be completed). In our algorithm, we do take
into account the domain and therefore distribute the computa-
tion accordingly. Finally, our contribution can also be seen as
the first attempt to distribute, in a practical domain, the coalition
structure generation problem which involves selecting the best
coalitions to be enacted [2, 5]. To date, there exists no other algo-
rithm which provides a decentralized solution to this problem.

3. TASK ALLOCATION IN RCR

The RCR simulation project was set up after the great Hanshin-
Awaji earthquake in Japan, as a competition to stimulate
research into multi-agent systems to aid in disaster rescue [6].
The simulation platform is currently maintained by researchers
working within the ALADDIN project4 and is continuously
being extended and improved to create high fidelity simulations
of fire spreading in a city, traffic congestion and perception and
communication abilities of agents.5

In more detail, the project is based on the development
of a disaster simulation platform that attempts to reproduce
the conditions prevailing in real disasters so as to test
coordination strategies that emergency responders might use
in such situations. The platform is completely distributed (i.e.
the simulators and agents can be run on multiple machines)
and simulates the aftermath of an earthquake in a city. Fires

4http://www.aladdinproject.org.
5The ALADDIN project has also developed a building evacuation simulator

(BES) [19, 20] that is complementary to the RCR.As opposed to the RCR which
considers events in an open space requiring large-scale rescue operations, the
BES considers the simulation of disasters in enclosed spaces such as buildings
or ships. Hence, the basic elements of the task allocation problem we solve in
this paper could also be simulated in the BES on a smaller scale.
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erupt in different parts of the city, buildings have collapsed and
civilians are trapped in them, and some roads are blocked. The
simulation starts with a number of emergency response agents
spread across the city and these agents must be designed to
complete a number of tasks, including: (i) extinguishing the
fires (by fire fighting agents), (ii) digging out the civilians (by
ambulance agents) and (iii) unblocking the roads (by police
agents). Figure 1 shows a 2D map of London used by the
simulation platform with 70 ciivilians (black dot), 11 fire
brigade agents (grey dot), 9 ambulance agents (white dot with
black border) and 11 police agents (white square with black
border). At the start of the simulation, the agents only have
knowledge of the map and have to search the city to find fires,
civilians and blocked roads.

In this work, we model, generalize and solve the task
allocation problems faced by the ambulance and fire brigade
agents which is to find and rescue the civilians buried in
buildings and extinguish fires, respectively. In such allocation
problems, agents have to first search for the victims and fires
(which are unknown at the start of the simulation—only the map
of the disaster space is known). As the positions of the tasks (i.e.
victims or fires) become known, the agents need to decide and
continuously update the sequence of the tasks they will attempt.
This sequence needs to take into account both the spatial and
temporal features that constrain the set of possible solutions as
follows. First, given each task is located in a different part of the
disaster space, the agents need to compute the most efficient tour
of feasible tasks while minimizing the time they spend travelling
(in case new tasks appear). Second, given the tasks’deadline and
the level of effort required to complete them, the agents need
to choose the best time to arrive and complete each task (i.e.
by its deadline) in order to be able to reach other tasks before
their deadline.

Now, it is also critical for agents to coordinate to form
coalitions at each task since the demands of each rescue or
extinguishing task cannot be met by one single agent. Hence,
the agents need to coordinate their arrival time at each task in
order to form the coalition that can complete the task (i.e. a
coalition only exists if all agents in the coalition are present
at the same time at the task). Moreover, since the number of
victims or fires is likely to be much larger than the number
of ambulances and fire fighters, it is important that the best
agents (e.g. fire brigades with more water, ambulances with
more capabilities) are allocated to the most demanding tasks
to guarantee that as many tasks as possible are completed.
Finally, since the environment is very dynamic and new tasks
can appear in the system, it is important that the solution chosen
by the agents can quickly be adapted to incorporate new tasks
or changes to the existing tasks. However, performing this
operation optimally is not trivial as it involves providing a route
plan for each agent to ensure that the best coalitions are formed
at the right place at the right time. Now, due to the nature of
disasters, computational units in the system might be damaged
and communication with them may severely be impaired. Power

systems may be down, and responders may have limited battery
power to transmit and receive data over long ranges. Hence,
shorter range peer-to-peer approaches to coordination are more
useful in such domains.

To this end, in the next section, we first provide the basic
definitions required to model the problem as a coalition
formation problem with spatial and temporal constraints. Then,
in Section 5, we provide a fully decentralized solution for it that
can quickly adapt to changes in the problem structure.

3.1. Basic definitions

Agents are noted as a1, . . . , an ∈ A that have to complete a
number of tasks v1, . . . , vm ∈ V that are located in different
parts of a city (though more than one task may be located in
the same place). The time taken for an agent to travel from one
location to another is given by a function ρ : (L ∪ V ) × V →
[0, ∞] (assuming all agents can move at the same speed)
where L is the set of all possible initial agent locations in
the environment. Each task v ∈ V has a demand consisting
of two parameters as follows: deadline, dv ∈ [0, ∞] (e.g.
representing time until which the victim will survive without
being rescued or the time until which fire can be controlled), and
workload, wv ∈ [0, ∞] (e.g. denoting the amount of work (in
time units), that has to be done to extract the victim or extinguish
the fire). We will denote dmax as the latest deadline, that is,
dmax = maxv∈V dv . Moreover, we assume that time is discrete
such that agents travel or perform tasks in measurable time units
(e.g. seconds, minutes or hours) starting at time equals zero.

3.2. Coalitions

Agents may form coalitions for several reasons. First, the
workload for a given task may be too high for a single agent
to perform by the deadline of that task. For example, a fire can
be extinguished before it burns down the whole building if a
number of fire brigades extinguish it on multiple sides rather
than one fire brigade on one side. Secondly, even if all tasks
have workloads that are manageable by a single agent (i.e. an
agent can complete tasks by their deadline), the completion
time of each task may be too late for the agents to have enough
time to attempt other tasks (whose deadline may have passed).
Following from the same fire example, the fire brigade might
be able to extinguish one fire but by that time another major
building might have been burnt down completely. Third, the
distance to be travelled by each agent to any task may be too
long to reach the task in time to complete it by its deadline.

In the remainder of this section, we elaborate on how agents
form coalitions and the effect these coalitions have on task
completion. We define what it means for an agent to ‘work’
on a task in later parts of this section. First, however, we denote
the fact that an agent a works on a task v at a given time t by
τ a→v
t . We define T = {τ a→v

t }a∈A,v∈V,t∈{0,··· ,dmax} as the set of all
possible allocations of agents to tasks. When one or more agents
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work together on the same task, they work as a coalition, C ∈
2A; in a similar way, we denote by τC→v

t the fact that a coalition
C works on task v at time t . In effect, the coalition captures the
synergistic effect of the agents’ capabilities which helps them
complete tasks faster than they would if they worked separately
(at different points in time) on the same task. Now, given an
agent allocation T ′ ⊆ T and a time horizon t ′ ∈ {0, . . . , dmax}
within which we want to explore the coalitions that could exist,6

we define the corresponding (feasible) allocation of coalitions,
�(T ′, t ′), over a given time period, as follows:

�(T ′, t ′) = {
τC→v
t | C = {a | τ a→v

t ∈ T ′}, v ∈ V, t ≤ t ′
}
.

(1)
The above definition basically means that a coalition C exists
at task v at time t if all agents a ∈ C work on task v at time t .
This also means that only one coalition exists at a given task at
any one time. Given this, we denote by � = {�(T , dmax)} the
set of all (maximal) coalition assignments generated by T .

Obviously, physically embodied agents cannot be allocated to
all tasks at all times and, therefore, the solution to the allocation
problem will involve agents working only on some tasks at some
points in time. More precisely, we will say that an allocation of
agents is feasible if it assigns an agent to two different tasks
only in time points whose difference is greater than the travel
time between the corresponding tasks. Given this, note that
if T ′ ⊆ T is a feasible agent allocation, then it generates a
feasible coalition allocation, �(T ′, t ′), over any time period
[0, t ′], t ′ ≤ dmax. This, in particular, means that coalitions that
exist at different locations at the same time do not overlap.

The work that a coalition performs at a task in each time unit
(or, step) decreases the workload of that task.7 The extent to
which the workload decreases is dependent on the value of the
coalition, given by the function u : 2A → N+. The function u(·)
basically expresses how well the agents involved in the coalition
work together and how their capabilities match. For example,
if agents a1 and a2 have a coalition value of u({a1}) = 1 and
u({a2}) = 1, then, if they work together they may generate a
value u({a1, a2}) = 3, if their capabilities are synergistic. We
will assume for now that coalition values are independent of
the task the agents work on and that coalitions of more agents
are usually better or equal to coalitions of smaller numbers of
agents, that is u(C ∪ {a}) ≥ u(C).8 Moreover, we will assume
tasks are, in turn, homogeneous. Since tasks are considered to
be atomic, only one coalition can perform one task at a time.

Given the above definitions, in the next section, we define the
problem that this setup generates and the associated constraints.

6This will become useful when we discuss the algorithms to generate a
solution.

7Note that we here assume that the work done does not affect the deadline
of the task in any way. For example, the depth at which a victim is trapped
does not determine how long he/she will live. In future work, we will consider
removing such an assumption.

8This is typically true in the settings where larger teams of responders can
extinguish fires and rescue civilians faster.

4. COALITION FORMATION WITH SPATIAL AND
TEMPORAL CONSTRAINTS

The goal of the CFST is to maximize the number of tasks
completed given all possible allocations of agents to tasks. The
allocation of agents needs to take into account a number of
constraints. These can be grouped broadly into two classes:
spatial and temporal. The former restrict the movement of agents
around the tasks given the time available to them, while the
latter take care of the restrictions with respect to the time taken
by agents to finish a task. In what follows, we first detail the
constraints and then move onto the objective function(s) we try
to maximize. We will assume that the solution should contain
some allocation of agents to victims as the set T ′ ⊆ T .

4.1. Spatial constraints

The fact that tasks are spatially distributed implies that there is a
cost to switching from one task to another. This cost is captured
by the time spent by coalitions in travelling from task to task
(captured by the function ρ), or the delay for a coalition to be
formed when several agents need to meet to work on a task
(i.e. some agents have to wait for other agents). These spatial
constraints therefore apply over the existence of coalitions. If
agent a is routing to location v from location l ∈ L (which is
either its initial location or another task) at a given time t , the
starting time sv

a ∈ [0, ∞] at which agent a starts working on
the task v must satisfy the following:

sv
a ≥ t + ρ(l, v). (2)

Note that given the condition in (2), coupled with the fact that
tasks cannot be attempted after their deadline (we elaborate on
this in the next subsection), and assuming that travel times are
proportional to distances among the locations (and hence satisfy
the triangle inequality), we can restrict all possible assignments
to the following:

T = {{τ a→v
t }t∈{ρ(la,v),··· ,dv}}a∈A,v∈V

}
,

where la ∈ L is the initial location of agent a.
Similarly, at a given time t ′, if we knew the solution up to

this point, we could replace the initial location of agent a with
its current location, lat ′ . Thus, at each time t ′, given a specific
victim v and a subset of agents A′ ⊆ A, we can specialize the
set of allocations to:

T (A′, v, t ′) =
{
{τ a→v

t }t∈{ρ(la
t ′ ,v),··· ,dv}}a∈A′

}
. (3)

Now, depending on where the agent is routing from, its
starting time at a particular location is restricted in two ways.
First, if agent a arrives at v from its initial location la ∈ L, then:

sv
a ≥ ρ(la, v). (4)

Second, if within the assignment T ′, agent a moves to v from
another task v′, then:

sv
a ≥ sv′

a + | ∪t∈{ρ(la,v′),··· ,dv′ }τ a→v′
t | +ρ(v′, v). (5)
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Decentralized Coordination in RCR 7

Similar to (4), the above condition requires that an agent will not
start working on a task before reaching it. Here, the second term
in the right-hand side represents the amount of time that agent
a spends in total on task v′—the sum of this and the starting
time of a on v′ gives the earliest time agent a can leave task v′;
by adding to this the travel time between v′ and v we get the
earliest time by which task v can be reached by agent a.

4.2. Temporal constraints

Having defined the constraints that determine where an agent
can route to at what time, we now define constraints that
determine what the assignments that will result in tasks being
completed. Thus, we define a binary-valued function W :
V × � → {0, 1} as follows:

W(v, �) =
{

1, wv − ∑
τC→v
t ∈� u(C) ≤ 0

0, otherwise.
(6)

Thus, W(·) expresses the fact that a task can only be completed
if all the work done on the task by all coalitions equals or is
greater than the workload of that task. However, the coalitions
can only be effective up to the deadline of the task, after which
the task is deemed to have failed. To express the success or
failure of a task, we define the function � : V × � → {0, 1} as
follows:

�(v, �) =
{

1, maxτC→v
t ∈� t ≤ dv ∧ W(v, �) = 1

0, otherwise.
(7)

Thus, �(·) returns 1 only if the given task can be completed as
per the schedule of agent assignments specified.

Note that, given the above temporal and spatial constraints,
the routing of agents to tasks in T may not actually be feasible
(e.g. an agent being assigned to tasks it cannot reach before their
deadline or joining a coalition to complete a task too early or
too late) and one of the challenges is to find those routes that
are consistent. We note that finding such an assignment is very
similar to solving a vehicle routing problem [21]. In particular,
to find an assignment that is consistent with the constraints
defined in Section 4.2 is, in turn, equivalent to finding a feasible
schedule for the tasks [22]. Thus, the problem is a complex
combination of both routing and scheduling that generates a
search space that grows exponentially in the number of tasks
and agents. We next define the objective of the CFST problem
and explain how we may approximate this objective in order to
avoid searching through the whole search space.

4.3. Objective functions

Given the size of the problem that the CFST generates, there
could be a number of ways in which the objective is specified to
try to approximate the exact objective function. In what follows,
we first express the exact objective function and then go on to

define a myopic approximation of it. Given this, we show how
our myopic approximation is sound (i.e. does not return invalid
solutions).

4.3.1. Optimal solution
The main objective of the CFST problem remains to maximize
the number of tasks completed. This can be expressed
as follows:

arg max
�∈�

∑
v∈V

�(v, �), (8)

subject to constraints in Equations (4) and (5).
As can be seen, the above objective is simply to maximize the

number of tasks completed with respect to the given constraints.
However, the space over which the function iterates is very large
(in the worst case, we might need to consider nearly |V |!d |V |

max

possible plans for each agent and the number of coalitions that
need to be considered at each task is at worst 2|A|). In the
worst case, the optimal solution to the problem is simply not
computable in reasonable time.9 Given that the time taken to
generate solutions in the disaster management domain is critical
in saving the maximum number of lives, it is important to devise
algorithms that solve the problem quickly even if they are not
optimal. Moreover, since the set of tasks is likely to change over
time, it may not be worth considering solutions that consider
allocations far ahead in time (i.e. long sequences of tasks to
be completed). Thus, in the next section, we define a myopic
objective function that tries to approximate the above objective
in the next subsection and later evaluate its effectiveness in
maximizing the number of tasks completed in Section 7.

4.3.2. Myopic solution
The general approach in this section is to allocate agents in a
myopic way in that the agents do not consider sequences of
tasks and only consider one task at a time. This is particularly
appropriate to dynamic situations (such as in RCR) where
solutions that consider allocations far ahead in time can be
quickly invalidated if new (more critical) tasks arrive in the
system. Moreover, the agents should try to maximize the number
of tasks completed in the minimum time available (i.e. to
avoid wasting time) in order to maximize the probability of
completing future tasks. Then, after any task is completed, the
agents that were working on that task are considered free and
are re-allocated on any remaining task.

To this end, at time t , we restrict the set of tasks to those that
are not yet allocated to any coalition of agents toV t ⊆ V , and for
each v ∈ V t we define the set of agents At

v ⊆ A that are able to
arrive at v before its deadline, that is At

v = {a|ρ(lat , v) ≤ dv},
where lat ∈ L represents a’s current location. Given At

v , for
each task, we use equation (3) to compute the set T (At

v, v) of
possible allocations of the agents to the task, and hence the set

9We have implemented and solved the problem using mixed-integer
programming and found that problems involving only 4 agents and 10 tasks
can take hours to solve.
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8 S. D. Ramchurn et al.

of possible coalition allocations �(T (At
v, v), dv). Let us also

denote At = ∪v∈V t At
v .

In order to find the allocations of coalitions that will complete
the tasks as fast as possible, let tvmin(·) be a general function that
returns the earliest time at which a task can be completed given
the set T ′ ⊆ T of coalitions allocated to it and is computed as
follows:

tvmin(t, �(T ′, t)) =
{

mint ′∈Sv(t,�(T ′,t))(t), Sv(t, �(T ′, t)) �= ∅
X, otherwise

where

Sv(t, �(T ′, t)) = {t ′ ∈ {t, · · · , dv} |
�(v, �(T (At

v, v), t ′)) = 1}
and X � dmax. That is, X is used to express the fact that the task
cannot be completed by its deadline given the set of allocated
coalitions.

Having defined the necessary constructs to find a timely
allocation of coalitions given the possible coalitions, at time t we
restrict the general set of allocations � to consider assignments
given by V t and At

v , v ∈ V t , as �t = ⋃
v∈V t �(T (At

v, v), dv).
Then every subset of �t represents possible allocations of
coalitions from time t onwards. Given this, the goal is to find a
set of such allocations that maximizes the following objective
function:

max
�t⊆�t

∑
v∈V

(
X − tvmin(t, �

t )
)

(9)

and satisfies the following: �τC→v
t ′ , τC′→v′

t ′′ such that C∩C ′ �= ∅
and v �= v′, and the condition in Equation (4) holds. This
basically means that the set of selected coalitions should not
overlap (i.e. an agent is only assigned to one task in this
allocation). Having allocated as above, at next time step, the
set of tasks is reduced to V t+1 = {v | v ∈ V t , �τC→v ∈ �t },
that is to the set of tasks that have not been allocated up to then,
and the set of agents At+1

v , v ∈ V t+1 is computed appropriately,
choosing from the currently unassigned agents (i.e. it is reset to
the empty set if all agents are allocated or is refilled with the
agents that have been freed).10

As can be seen from the above objective function, we
implicitly consider the routing of agents to form coalitions
at different tasks by only considering one task at a time and
determining the agents that can reach it. In so doing we reduce
the computation of solutions significantly (to O(k) plans to be
considered for each agent where k is a constant) as we do not
have to search for the optimal tour of all tasks in the system for
all agents. However, we can still show that the myopic solution
maintains soundness (but not completeness) as follows.

First, we can easily deduce that in time step t , an agent is
allocated to only one task since coalitions do not overlap and the
starting times of the agents are consistent as per Equation (4).

10Given this, it only makes sense to recalculate when we have freed agents.

Second, since the set of agents At excludes those that have
been allocated at t ′ < t , it is not possible that an agent is
previously allocated to a given task. This means that there will
be no solutions that have agents being allocated to two tasks
at the same time. Now, we can also deduce from the objective
function in Equation (9) that it will return 0 in case no tasks
can be completed (since tvmin(·) returns X when no coalitions
can complete any task) and only be greater than 0 in case at
least one task can be completed. However, this does not prevent
the coalitions from being assigned to the tasks even though
they cannot be completed. We do not exclude such a possibility
since more agents may become free (after completing some
tasks previously allocated) and work with these coalitions to
complete the tasks.

Thus, so far, we have only considered centralized solutions
to the CFST. However, in the disaster management problem
we believe it is important that computation is distributed as
argued in Section 3. Given this, we next proceed to define our
decentralized solution.

5. A DECENTRALIZED SOLUTION

Here, we describe a DCOP formulation for the CFST problem
that allows agents to divide up the objective function defined in
(9), in such a way that different sub-functions can be computed
separately by individual agents and a coordinated solution can
be found by message passing between them.

5.1. The DCOP formulation

Formally a DCOP can be defined as a tuple 〈A, X , D, F〉, where
A = {a1, . . . , ak} is a set of agents, X = {x1, . . . , xn} is a set
of variables, each variable xi is owned by exactly one agent
ai , but an agent can potentially own more than one variable.
The agent ai is responsible for assigning values to the variables
it owns. D = {D1, · · · , Dn} is a set of discrete and finite
variable domains, each variable xi can take the value in the
domain Di . Then, F = {f1, . . . , fm} is a set of functions
that describe the constraints among variables. Each function
fi : Di1 × · · · × Diri

→ � depends on a set of variables
xi ⊆ X , where ri = |xi| is the arity of the function. Each
function assigns a real value to each possible assignment of the
variables it depends on.

There are many ways in which we can formalize the CFST
problem as a DCOP, depending on what we choose to represent
with variables and how we define the constraints among them.
These choices have impact on the communication overhead,
the computational load and the computation distribution among
agents. Here we decide to assign to each agent a variable that
represents the agent’s current target, that is, the task that the
agent will attempt. This formalization has several benefits. First,
it removes the complexity of modelling coalitions, as they are
dealt with inside the utility function. Second, it minimizes the
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Decentralized Coordination in RCR 9

loops in the constraint network, simplifying computation and
avoiding redundant information propagation. A formulation
similar to this one can be seen in the work of [23]; in which
a number of stationary sensors are required to coordinate to
track moving targets.11

In our DCOP formalization, variable domains consist of the
task locations that are reachable fast enough for the agent to
arrive and make a useful contribution (e.g. the set of victim
locations that the agent can reach before the victims’ deadline).
If xi represents the variable for which agent ai is responsible,
given t is the current time, the domain of this variable is then
Di = {vk ∈ V t |t +ρ(xi, vk) ≤ dvk

}, where xi is the current task
the agent is assigned to or the agent itself (i.e., its initial location)
and dvk

represents the deadline for task vk (as specified above).
The constraint functions in this formulation represent the

‘utility’ of each task, taking into account all variables whose
domains contain the location of the task in question. More
formally, assuming xi ∈ X and vj ∈ V t , xi is a variable to
fj (the utility function of vj ) if and only if vj ∈ Di . As such,
in this DCOP formalization, there are N variables, one for each
agent, and M constraint functions, one for each task.

Now, to embed the myopic scheduling strategy of the agents
(presented in Section 4.3) into the objective function, we
compute the utility function for each task as follows:

fi(xi) = X − t
vi

min(�(T ′, dmax)), (10)

whereT ′ = T (Avi
(xi), vi) andAvi

(xi) = {xk|xk ∈ xi∧xk = vi}
such that the constraint in Equation (4) is met. Note that∑

vi∈V t fi(xi ) is equivalent to our myopic solution specified in
Equation (9). The fact that agents have a variable which assigns
them to a task ensures that they can only be part of one coalition
in the allocation.

Finally, notice that solutions provided by the DCOP
formalization presented here can be tied directly back to our
initial representation presented in Section 3. For example,
consider a situation where an agent a1 assigns itself to
task v1 and works on the task at time steps 3–5 and
agents a2 and a3 assign themselves to task v2, working
on this task for time steps 3 and 4. This outcome can be
represented by Tv1 = {τ a1→v1

3 , τ
a1→v1
4 , τ

a1→v1
5 } and Tv2 =

{τ a2→v2
3 , τ

a2→v2
4 , τ

a3→v2
3 , τ

a3→v2
4 }. Then, the allocations of

coalitions can be deduced from �(Tv1 ∪ Tv2 , dmax).
Having defined the formulation of the decentralized solution

to the CFST, we next describe the Max-Sum algorithm that
solves it.

11Notice that following this formulation, it is not obvious which agent is
responsible for the computation of the utility functions, as utilities are defined
for tasks that can be performed by multiple agents. While the assignment has an
impact on the agent’s computational load, it does not impact the performance of
the algorithm in terms of solution quality and communication overhead. Here we
focus on providing an efficient decentralized solution to the coalition formation
problem and we do not address the problem of balancing the computational
load among the agents. As such we can use any assignment of utility functions
to agents that avoids redundant computation. A simple policy is to assign the
computation for shared utility functions to the agent that has the lowest ID.

FIGURE 2. The example from Fig. 3 formulated as a factor graph,
with agents as variables (circle), and victim locations as factors
(squares). The lines now connect the factors to the variables over which
they are defined.

FIGURE 3. An example scenario, containing two rescue agents (black
stars) and three victims (white triangles). The lines connect agents to
victims they can reach before their deadline.

5.2. Applying the Max-Sum algorithm

To apply Max-Sum to the DCOP formalization presented above,
we adopt a Factor graph representation of the problem [24]. A
factor graph is a bipartite graph where vertices are variables,
which represent the variable of the DCOP formalization, or
functions, which represent the DCOP constraints. The edges of
the factor graph connect functions to variables over which they
apply. The situation in Figure 2 is represented as a factor graph
in Figure 3. The global utility function in this example would be

F(x1, x2) = f1(x1) + f2(x1, x2) + f3(x2). (11)

It is important to note, that when the factor graph is cycle
free, the algorithm is guaranteed to converge to the global
optimal solution such that it finds the combination of states
that maximizes the sum of the functions. When applied to
cyclic graphs (e.g. in the case where more than one agent
can attempt exactly the same tasks), there is no guarantee of
convergence but extensive empirical evidence demonstrates that
this family of algorithms generate good approximate solutions
[24, 25]. In particular, the Max-Sum algorithm has been shown
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10 S. D. Ramchurn et al.

to outperform previous approximate algorithms on standard
DCOP benchmarks [8].12

In order to apply Max-Sum, there are two types of messages
that need to be specified. Given our factor graph formulation of
the problem, we need to specify messages that need to be sent
from variable to function and vice-versa as follows:

• From variable to function:

qi→j (xi) for all values of xi

where

qi→j (xi) = αij +
∑

k∈Mi\j
rk→i (xi), (12)

where Mi is a vector of function indices, indicating which
function nodes are connected to variable node i, and αij

is a scalar chosen such that
∑

xi
qi→j (xi) = 0, in order to

normalize the message and hence prevent them increasing
endlessly in the cyclic graphs that we face here.

• From function to variable:

rj→i (xi) for all values of xi

where

rj→i (xi) = max
xj \i

⎡
⎣fj (xj ) +

∑
k∈Nj \i

qk→j (xk)

⎤
⎦, (13)

where Nj is a vector of variable indexes, indicating which
variable nodes are connected to function node j and xj\i ≡
{xk : k ∈ Nj \ i}.

The messages flowing into and out of the variable nodes within
the factor graph are sets of values that represent the total utility
of the network for each of the possible states of the variable.
At any time during the propagation of these messages, an agent
is able to determine which task it should undertake such that
the sum over all the task utilities is maximized. This is done
by locally calculating the function, zi(ai), from the messages
flowing into agent i’s variable node:

zi(xi) =
∑
j∈Ni

rj→i (xi) (14)

and hence finding arg maxxi
zi(xi).

Notice that, although the Max-Sum algorithm is approximat-
ing the solution to a global optimization problem, it involves
only local communication and computation.Also note that Max-
Sum typically runs continuously. This means that if any change
is made to the factor graph (e.g. some tasks are found to have
a different workload or deadline or new tasks appear) such that
the utility computed by the factors changes, Max-Sum will have
each factor recompute its messages and generate a new solution.

12The results in Section 7.1 further confirm this.

Now, Max-Sum was not specifically designed to deal with
the dynamic changes in the factor graph that typically arise in
the RCR scenario. As a result, there are inefficiencies in the
re-computation of the solution (specifically the maximizations
in Equation (13) and over Equation (14)). First, when new
messages are generated from changes in the system, but the
contents of these messages do not change the solution, the
factors still re-compute solutions and forward these messages
to variables when they need not. It is important to avoid such re-
computations because the space to be searched by each factor
can be quite large. In the general case, this is exponential in
the number of states of the variables to a given factor. Second,
Max-Sum does not make any assumptions about the states of the
variables and hence iterates over a large state space whereas, in
our case, there are several properties of the tasks and the agents
that could be exploited to reduce the state space.

Given this, in the next section we detail how we extend
Max-Sum to avoid factors computing over all possible variable
states. Moreover, we significantly modify the algorithm to allow
variables to detect disruptions in the factor graph and, wherever
possible, prevent the connected factors from recomputing their
messages. In so doing, we devise an algorithm that is more
tailored to the domain we consider and is robust to changes in
the environment (i.e. can re-compute solutions quickly when
new tasks appear or existing tasks are completed).

6. THE FAST MAX-SUM ALGORITHM

The F-Max-Sum algorithm extends the standard Max-Sum in
two main ways. First, in order to reduce the number of states
over which each factor has to compute its solution, we introduce
new functions on variable and factor nodes that single out the
states that matter to them. Second, we introduce new functions
that allow each variable to decide when to send messages to
its other connected factors when changes happen in the factor
graph (i.e. a factor is removed or added). We detail these two
extensions in the following sub-sections and show how they
allow us to make significant computational and communication
savings in Section 7.

6.1. Reducing communication and computation

In order to reduce the number of states each factor needs to
compute its solution over, we restrict the domain of each variable
to only two states per each connected factor representing the fact
that an agent is assigned to a specific task (the factor) or not.With
this change, we can now specialize the message computation
performed by the original Max-Sum which applies over all
states of the variables involved (see Equations (12) and (13)).
Hence, in what follows, we introduce new functions to manage
these new messages that inform the factors of these states and
show why F-Max-Sum retains the same properties as Max-Sum
with this reduction in state space:
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Decentralized Coordination in RCR 11

• From variable to function:

qi→j (xi = vj ) = q and qi→j (xi = v−j ) = q ′

where

q = αij +
∑

k∈Mi\j
rk→i (v−k) and

q ′ = αij + rb→i (vb) +
∑

k∈Mi\b,j

rk→i (v−k). (15)

where b = arg maxxi �=vj
zi(xi) represents the best task

to which xi can be allocated apart from vj . The above
message differs from the usual Max-Sum message (see
Equation (12)) in that the variable sends only the utility
values for two states; where the agent ai assigns itself to
vj and where it does not. This is possible here because
the utility gained by function fj by assigning ai to vk for
k �= j is the same for all k since the agent does not help
in saving vj in this case. Hence, what matters to fj is only
the utility that the rest of the system gets for not assigning
the agent to vj .

• From function to variable:

rj→i (xi) for xi = vj and any xi = v−j

where

rj→i (xi) = max
xj \i

⎡
⎣fj (xj ) +

∑
k∈Nj \i

qk→j (xk)

⎤
⎦ and

− j ∈ Mi \ j. (16)

The above differs from the usual Max-Sum message (see
Equation (13)) in that the factor does not need to compute
the utility the system gets for all values ofxi . Instead, it only
computes for ai being assigned to vj or not. When ai is not
assigned to vj , fj (xj ) is independent of the specific task
that the agent is assigned to and hence we can generalize
this allocation to be any task other than vj . Note that this
operation is different from the one in Max-Sum which
would have searched assignments of the variable which do
not improve the utility of the factor in any way. Thus, we
effectively prune the space that would have originally been
searched by Max-Sum without losing any information

Since now a variable node receives only two values per factor
it is connected to, the variable node needs to sum these messages
in a different way from Max-Sum. Basically, if a variable node
xi has received rj→i (xi) for xi = vj and xi = v−j , the variable
simply adds rj→i (vj ) to all other messages rk→i (v−k) where
v−k is defined as above. Hence, the computation of the function
z(·) is now (compared with Equation (14)):

zi(xi) =
⎛
⎝rj→i (vj ) +

∑
k∈Ni\j

rk→i (v−k)

⎞
⎠

given xi = vj .

In so doing, we get the total utility for all states of the
variable. Then, the variable can choose which value it takes
as arg maxxi

zi(xi) as before.
Note that our approach to extend Max-Sum can be adapted

to other types of problems where domain-specific properties
can be exploited to reduce the state space. In more detail, the
extensions we present in F-Max-Sum can be generally applied
to any domain where functions show a similar dependency
structure from the variable. That is, the function has a significant
change only for particular values of the domain (e.g. when the
variable is allocated to the task that the function represents in our
case). This clearly has a significant impact on the computation
that factors go through when performing the maximization step,
as we reduce the domain size of the variable. In particular, for
our domain, a factor that depends on n variables that have a
domain composed of d values each, will need to perform dn

computations, while with our extension this reduces to 2n.
Also note that since F-Max-Sum does not specifically try to

reason about cycles in the factor graph, F-Max-Sum cannot be
guaranteed to converge on graphs with cycles similar to Max-
Sum. However, both F-Max-Sum and Max-Sum are guaranteed
to converge on acyclic graphs.13 We next detail how F-Max-Sum
adapts to disruptions.

6.2. Managing disruptions

We define a disruption in the graph as the addition or removal
of a task from V which results in the addition or removal of a
factor from the factor graph. This may happen for a number of
reasons. First, a task vi is removed from V , for example, when
a victim has been rescued or has perished. Second, a task vi

is added to V when new information is received (e.g. a new
building on fire or a new victim is located). Third, if the wrong
information is received about a task vi having a certain demand
when it does not (e.g. a false alert about a trapped victim), then
it will be removed from V .

Now, in order to define how the algorithm chooses to send a
message, we first assume that at time t , the allocation computed
by each variable is arg maxxi

zt (xi). Then, at time t ′ two types
of disruption may happen:

(i) A new task vk appears t ′ > t—the set of tasks that needs
to be assigned is augmented to V t ′ = V t∪{vk}. This also
means that the set of indices of factor nodes is increased
to Mt ′ = Mt ∪ {j}.

(ii) An existing task vk disappears at time t ′ > t—the
set of tasks that needs to be assigned is decreased to
V t ′ = V t \ vk . This also means that the set of factor
nodes is decreased to Mt ′ = Mt \ {j}.

Given the above, the domains of the variables will also change
accordingly. The result is that the variables xi with vk ∈ Di will

13A simple verification of the messages sent for F-Max-Sum will
confirm this.
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12 S. D. Ramchurn et al.

need to make different decisions based on whether the factor is
removed or has just been added. Essentially this means that:

(i) if fj is added, then zt ′(xi) = zt (xi) + rj→i (xi).
(ii) if fj is removed, then zt ′(xi) = zt (xi) − rj→i (xi).

Then, the decision that the agents make is as follows.
Assuming for each fk for vk ∈ Di we define the utility for
xi = vk and xi = v−k as {zt (xi = vk), z

t (xi = v−k)}, then:

(i) If both zt (xi = vk) = zt ′(xi = vk) and zt (xi = v−k) =
zt ′(xi = v−k), then xi does not need to transmit a newly
computed qi→k(xi) based on the new domain of xi .

(ii) Otherwise, xi has to send the message. This is because,
if the utility that ai achieves by being allocated (or not)
to vj changes, then the system’s utility might change
as well and hence messages need to be sent around
in any case.

For example, consider Fig. 4 that shows a situation with
two agents a1, a2 and two victims v1, v2 at time t . Suppose
at time t ′ > t a third victim v3 is discovered and thus the factor
graph changes as shown in the figure. The tables represent the
utility functions for each victim. The assignment of an agent
to the victim is noted in binary format to represent whether it
is allocated (1) or not (0). The value in the left-most column
represents the utility (earliest time) obtained for the assignment
selected (e.g. {a1 = 0, a2 = 1} results in a utility of 4 at V 2).

The best allocation at time t is computed as {a1 = v1, a2 =
v2} which gives a value of 4+2 = 6, while when the new victim
is discovered then the best allocation is {a1 = v2, a2 = v3}
which gives a value of 4+3 = 7. The change in the factor graph
will result in a different zt ′

2 (a2), which will trigger information
propagation leading F-Max-Sum to change the allocation and
obtain the best value. In particular, notice that when v3 is
discovered we have zt

2(a2 = v2) = 4 and zt
2(a2 = v−2) = 0

2V1V V3a2a1

V2 a1 a2

0 00
0 14
1 04

5 1 1

V1 a1

0

1

0

2

V a2

0

1

0

3

FIGURE 4. Example of a new task v3 being discovered in the system.
The resulting factor (V3) is added (shown by the dotted line) to an
existing factor graph . Then a2 needs to decide whether it sticks to v2
or moves to v3. The tables show the utility (in the left-most column) for
the assignment of each agent to each victim. At time t only the tables
for v1 and v2 exist and at time t ′ the table for v3 is introduced.

while zt ′
2 (a2 = v2) = 4 and zt ′

2 (a2 = v−2) = 3, which results in
zt

2(a2 = v2) = zt ′
2 (a2 = v2) but zt

2(a2 = v−2) �= zt ′
2 (a2 = v−2)

and message propagation is necessary to deal with the change
in the factor graph and reach a better allocation.

In the case where the utility does not change (i.e. zt
2(a2 =

v−2) = zt ′
2 (a2 = v−2)) with respect to vk , then F-Max-Sum

prevents any message from being sent (see the rules above) as
the rest of the system (starting from fk) will not be affected
(since a2 cannot do any better by changing its assignment).
Instead, in Max-Sum, any change in utility in any state of the
variable initiates a new message (see Equation (12)) and hence
results in it recomputing Equation (13) (which maximizes over
all states of all its connected variables) only to find out that the
allocation does not change. Comparatively, F-Max-Sum only
needs to check over vk’s states to decide whether to send a
message or not, thus minimizing the computation needed to
implement any changes in utility. Thus, by distributing some
of the computation on the variable nodes (in addition to factor
nodes) and filtering out messages, F-Max-Sum can avoid both
the redundant computation and messages of Max-Sum.

Also note that F-Max-Sum and Max-Sum have essentially
the same behaviour when it comes to computing the solution
since they both take into account the same information (i.e.
changes in utility that will affect the assignment of agents to
tasks). F-Max-Sum is simply more efficient at doing so.

Having described Max-Sum and F-Max-Sum, in the next
section we empirically evaluate F-Max-Sum in the RCR domain
and compare it with Max-Sum with respect to disruptions.

7. EMPIRICAL EVALUATION

In this section, we evaluate and benchmark F-Max-Sum to
show how effective it is at finding good solutions and how it
scales with the number of tasks. Moreover, we examine how
effective F-Max-Sum is in adapting to changes in the task set.
Our experiments are therefore divided into two parts. First, we
compare the effectiveness of F-Max-Sum in maximizing the
number of tasks completed compared with a number of other
strategies. This aims to validate our use of the myopic solution
as a good approximation to the optimal solution. Second, since
Max-Sum and F-Max-Sum compute the same solutions, we
apply both to the same data set and evaluate their performance
in responding to changes in the task set.14 In so doing, we
show how F-Max-Sum is more efficient in both computation
and communication.

7.1. Experiment 1: solution quality

In this experiment, we choose the set of agents A such that
|A| = 10 and vary the set of tasks V in increments of 5

14We focus on the application of Max-Sumand F-Max-Sumto tree-
structured problems in order to tease out their key differences and leave their
evaluation over cyclic graphs for future work.
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Decentralized Coordination in RCR 13

such that |V | ∈ {10, 15, . . . , 60}. Fifty instances of agent
and task positions are randomly generated for each set of
tasks. Moreover, the deadline of each task is drawn from a
uniform distribution that is dependent on the number of tasks as
dv ∈ U(0, 10 ×|V |) and the workload is drawn from a uniform
distribution that is also dependent on the number of tasks as
wv ∈ U(0,

10×|V |
2 ). In so doing, we set up an average-case

problem where the deadlines and workloads are balanced with
respect to the number of tasks. That is, there is a fair distribution
of easy (long deadline small workload) and hard (short deadline
and large workload) tasks.

We compare F-Max-Sum against two other strategies; namely
OPGA (see Section 2), which is the only other decentralized
algorithm designed for a similar problem to ours, and a
centralized approach (which we devised based on the objective
function defined in Section 4.3.2). Note that the centralized
algorithm also includes a one-step look-ahead process which
optimizes the sequence of tasks attempted by the coalitions.
Basically, the algorithm not only chooses the best coalition to
allocate to each task at time t , but also determines how the
allocation would allow agents to reach and complete other tasks
at time t + 1. It then returns the allocation that maximizes the
total number of completed tasks at t and t + 1. In so doing, the
centralized algorithm acts as an upper bound on the solutions
generated by F-Max-Sum and OPGA.

All of the strategies were evaluated on the 50 instances and run
over 10 × |V | time steps (i.e. at each time step, each strategy
is used to allocate available agents to tasks). The mean total
number of tasks completed by each strategy is shown in Fig. 5,
along with 95% confidence intervals.

As can be seen from Fig. 5, F-Max-Sum outperforms OPGA
by up to 9% (for 60 tasks), and shows this trend persists as the
number of tasks increases. This is because the OPGA only seeks
to find local maxima, whereas F-Max-Sum finds the optimal of
all considered solutions. In addition to this, OPGA is based upon
the DSA (see Section 2), and thus has the associated problem

FIGURE 5. Number of tasks completed by agents—comparing the
F-Max-Sum (FMS) algorithm to OPGA and a centralized algorithm.

of agents sometimes thrashing between assignments. In more
detail, we found that F-Max-Sum can complete up to 76% of the
tasks given the settings of our experiments, compared with up
to 67% with OPGA and up to 90% with a centralized one-step
lookahead search. In the next section, we evaluate the robustness
of F-Max-Sum against disruptions and see how its performance
compares with Max-Sum.

7.2. Experiment 2: robustness

When disruptions occur in the environment, the current set
of tasks changes and the agents may need to be re-assigned.
In the worst case, this means that the whole allocation of
agents to tasks needs to be recomputed. In this experiment,
we evaluate how efficient F-Max-Sum is compared with Max-
Sum in dealing with changes in the set of tasks. To do this,
we generated two distinct sets of random tree-structured factor
graphs: one varying the average degree of variable nodes (noted
as δx), and the other, varying the average degree of factor
nodes (noted as δf ). Given these graphs, in our experiments, we
remove one factor (equivalently a task in the RCR scenario) and
let the algorithm recompute the solution. It should be noted that
we focus our experiments on tree structured graphs on which
Max-Sum is guaranteed to converge for the same reasons as
noted in footnote 14.

Now, on the one hand, the degree of each factor node is equal
to the number of variables it is connected to (i.e. how many
agents can save the victim). Hence, it determines the space of
possible combinations (or coalitions) the factor needs to search
through, which is exactly 2δf combinations. On the other hand,
the degree of each variable node is equal to the number of factors
it is connected to, and hence the number of possible allocations
(i.e. δx − 1) it can affect if one of its factors is removed from
the graph (i.e. a task is removed). Given these features of the
problem, our goal is to evaluate how F-Max-Sum can minimize
the number of messages that needs to be propagated in the graph
and the computation performed by all remaining factor nodes
when a given factor is removed from the graph.

Against this background, we separately varied the values
of δx and δf between 1 and 15, in increments of 1. In each
simulation, the value that was not being controlled (i.e. δf when
we controlled δv , and vice-versa) was randomly selected from
a uniform distribution in [3, 6]. For each value of the controlled
variable, 50 random tree instances were generated. We ran both
F-Max-Sum and Max-Sum on each instance generated and
recorded the following values:15

Mean computation units used (MCU)—the average
number of combinations of states evaluated at a factor
node.
Mean total number of messages sent (TNS)—the
average total number of messages sent, by both variable
and factor nodes.

15These are typical measures used in the DCOP community [13].
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14 S. D. Ramchurn et al.

Mean total size of messages sent (TSS)—the average
total size of all messages sent by all nodes, measured
in bytes. This reflects the number of total number of
variable states communicated throughout the graph.

Given that we expect F-Max-Sum to outperform Max-Sum
on several fronts, we postulate the following hypothesis:
Hypothesis: F-Max-Sum has lower MCU, TNS and TSS for all
values of δx and δf than Max-Sum.

The intuition behind this hypothesis is that, on the one
hand, by allowing variables to only send two messages to the
connected factors (representing whether they assign themselves
to the task or not), F-Max-Sum prevents those factors from
evaluating a large number of redundant states (i.e. those states
where an agent is allocated to tasks other than the one associated
to the given factors). Moreover, for increasing values of δx ,
the number of factors connected to each variable increases.
Then, since F-Max-Sum filters messages sent by variables
when disruptions occur (see Section 6.2), as δx grows, F-
Max-Sum becomes more effective than Max-Sum in preventing
unnecessary recomputation and messages.

The results shown in Figs 6–8 confirm our hypothesis. Thus,
for increasing values of δx , F-Max-Sum takes up to 38% less
TNS, up to 91% less TSS and up to 99% less MCU than Max-
Sum. For increasing values of δf , we notice a similar trend
where F-Max-Sum improves upon Max-Sum by up to 70%
in MCU, up to 33% in TNS and up to 57% in TSS. These
results show that, indeed, F-Max-Sum has the most significant
improvements over Max-Sum in graphs where large numbers
of factors are connected to each variable. However, we can see
that for the lower values of δx , the difference in MCU and TSS
of F-Max-Sum and Max-Sum is much smaller. This is because
the variables have a much smaller domain. In more detail, we
showed in Section 6.1 that F-Max-Sum reduces the MCU of
Max-Sum from dn to 2n, and the size of each message sent
to 2 in all cases, as opposed to it depending on d. Thus, it

FIGURE 6. Total messages sent over varying edges per each type of
node—comparing the FMS algorithm to Max-Sum (MS).

FIGURE 7. Total message size sent over varying edges per each type
of node—comparing the FMS algorithm to MS.

FIGURE 8. Computation units used over varying edges per each type
of node—comparing the FMS algorithm to MS.

follows that F-Max-Sum will only make a noticable difference
where d > 2. Given this, we can see that the improvement
given by F-Max-Sum increases very quickly as the value of
δx grows.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have modelled the RCR domain in terms of
a CFST constraints. We then provided a DCOP formulation
of the problem and showed how to solve it using the Max-
Sum algorithm. On the basis of this, we then developed the
novel F-Max-Sum algorithm that improves upon Max-Sum
to deal with disruptions in its underlying factor graph more
effectively. In so doing, we have provided the first full solution to
the problem of decentralized coalition formation that pervades
disaster management. Our solution is also one that is able to
efficiently adapt to a dynamic environment.
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While our experiments show how effective F-Max-Sum is in
finding good allocations, it will be important to show in future
how the algorithm scales with increasing numbers of agents
and different profiles of deadlines and workloads. Moreover,
we also aim to evaluate the performance of F-Max-Sum under
more general settings of variable and factor degrees. Finally, we
aim to extend the algorithm to consider the addition and removal
of agents from the environment and show how F-Max-Sum can
be extended to achieve convergence on cyclic graphs.
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