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ABSTRACT important problem for multi-agent systems [5]. Coalitiasfsre-
sponders must coordinate to form teams that are able teetficds,
dig out victims, and unblock roads in the most effective wdgpre-
over, since typically the number of agents is limited, thesens are
likely to continually form, disband, and reform, in numesaf dif-
ferent parts of the affected area. Hence, agents need sclfegjule
their activities to execute tasks over time. Furthermoaeheask
might require a certain amount of work to be completed {bek-
load of the task) so that agents need to contribute to differeskista
different amounts of time, also depending on their abgitie exe-
cute a particular task. Second, tasks may be of differemnaygor
havedeadlinesby when they need to be completed (otherwise vic-
tims die or buildings burn down completely): if a buildingois fire,
the agents need to arrive there before it is burnt down anddsae
specific amount of effort (spraying water and evacuatingmig) in
order to extinguish it. Finally, some of the tasks may regagents
with different capabilities. For example, the task of resgua vic-
tim from rubble requires agents that have the ability to te@nd
dig, and those that can heal the victim. The problem may be fur
ther complicated if the agents have tools or knowhow thatato n
work well together, and hence, different teams may be éfietd
different degrees. For example, a team of two fire-brigacisg

The coordination of emergency responders and robots tatakee
a number of tasks in disaster scenarios is a grand challerge f
multi-agent systems. Central to this endeavour is the prolf
forming the best teams (coalitions) of responders to perftire
various tasks in the area where the disaster has struck. dViere
these teams may have to form, disband, and reform in differen
eas of the disaster region. This is because in most caseswiier
be more tasks than agents. Hence, agents neschedulethem-
selves to attempt each task in turn. Second, the tasks therase
can be very complex: requiring the agents to work on themifer d
ferent lengths of time and havirdgadlinesby when they need to
be completed. The problem is complicated still further whén
ferent coalitions perform tasks with different levels ofi@éncy.
Given all these facets, we define this as The Coalition Faomat
with Spatial and Temporal constraints problem (CFSTP). kidsvs
that this problem is NP-hard—in particular, it contains thell-
known complex combinatorial problem of Team Orienteeriagaa
special case. Based on this, we design a Mixed Integer Rrogra
to optimally solve small-scale instances of the CFSTP andldp
new anytimeheuristics that can, on average, compl&té&; of the
tasks for large problems (20 agents and 300 tasks). In sg doim

solutions represent the first results for CFSTP. . - !
if the hose equipment does not fit the water tank properly.

. . . Motivated by the importance of emergency response scenario
Categories and Subject Descriptors a number of approaches have recently emerged, particuléHjn

1.2.11 Distributed Artificial Intelligence ]: Multi-Agent Systems ~ the multi-robot routing domain, to address some of thesgess

one with a water tank and one with a hose, may not be useful at al

For example, Koenig et al. provide a number of auction-based

multi-robot routing algorithms that allow the allocation tasks
General Terms that provide quality guarantees on the solutions compwed]
Algorithms However, their work focuses on finding the best paths for tobm
visit tasks and does not consider team capabilities, taskloads

or deadlines. On the other hand, [13] provide algorithmslim a
Keywords cate tasks in large scale systems and dynamic environniessd
Coalition Formation, Routing and Scheduling, RoboCupResc on token passing. Their approach ensures that the rightsagemn

routed to the right tasks based on capability thresholds, thow
1. INTRODUCTION much of certain capabilities is needed to complete the tds&yv,

while their approach does consider agent capabilities aecigion
constraints for tasks (e.g., two tasks that must be exeattéte
same time), they ignore the benefit of forming coalitions gérats
to work on the same task. Recently however, [6] provide amgti
algorithms based on Mixed Integer Programming (MIP) tocte
teams of robots to tasks requiring teams with specific céifiabi
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Forming teams of agents which are able to effectively work to
gether on tasks is a key issue for many practical applicstion
particular, the coordination of emergency responders ahdtic
agents (e.g., Unmanned Aerial Vehicles and Unmanned Ground
Vehicles) to operate in disaster scenarios is a very chgitgrand



lems such as the Travelling Salesman Problem (TSP) (on which2.1 Basic Definitions

most work on multi-robot routing is based). Nevertheless,be-
lieve it is important to define the problem, relate it to othgisting
combinatorial problems, so that approximate solution negples
and anytime heuristics (that provide increasingly betéutgons if
given more time) can be re-used, and to devise new solutiais t
tackle the specific features of this problem.
Against this background, in this paper we define the problem

of allocating coalitions of agents to spatially distribditasks with

Agents are noted as, ..., a, € A that have to complete a num-
ber of taski,...,v.,» € V located in different parts of a space
(more than one task may be located in the same place); the set
of all possible task locations is denoted By-. A concrete ex-
ample of such a scenario exists in the RoboCupRescue simula-
tor where a number of ambulances have to allocate themskves
victims trapped in buildings or fire brigades need to formlieoa
tions to extinguish fires across a city [5]. The time takendor

workloads and deadlines so as to maximise the total number of agent to travel from one location to another is given by ationc

tasks completed over time. More precisely, we introducefohe
lowing setting. Consider a set of tasks and a set of agenth, wi
their given locations and corresponding travel times betwbem.
Each task is associated with a workload and deadline so hkat t
task is considered completed if and only if the required amofi
work on it is done by the given time threshold. Furthermofe, i
number of agents are working on a task simultaneously, tuoeir
tribution per time interval may not be necessarily additifdus,
while each of agents and j, on their own, can da: amount of
work in a time interval, they may produge> 2z (y < 2z in case

of sub-additive domains), if they collaborate and work om tifisk

at the same time. Given these spatial and temporal cortstiaiial
coalitional effects, the goal is to schedule agents to teskbat the

p:(LaULy)x Ly — [0, c0] (assuming all agents can move at
the same speed) whefg, is the set of agents’ initial locations in
the environment. Each taske V' has ademandconsisting of two
parameters as followdeadline d, € [0, o], (e.g., representing
the time until which the victim will survive without being seued

or the time until which the fire can be controlled) awdrkload

wy € [0, 0], (e.g., denoting the amount of work (in time units) that
has to be done to extract the victim or extinguish the fire).vile
denote asl.. the latest deadline, that id,a: = maxycy do.
Moreover, we assume that time is discrete such that agevsl tr
or perform tasks in measurable time units (e.g. secondsjtasmor
hours) starting at time equals zero.

number of completed tasks is maximised. We term this model as 2.2 Coalitions

Coalition Formation with Spatial and Temporal constraimi®b-
lem(CFSTP).

Our contribution includes a formalisation of the problendan
a definition of its relationship with other existing comtiowal
optimisation problems. Moreover, we show how to solve it-opt
mally and approximately using MIP and scheduling heursste
spectively. Specifically, this paper advances the statbeofitt in
the following ways. First, we show that the CFSTP is NP-Hard
and generalises the well known Team Orienteering proble@P(T
which itself generalises the TSP. In so doing, we build treedar
developing new algorithms for the CFSTP since it is not pguesi
to directly apply those used in other problems. Second, we pro-
vide an optimal solution to the CFSTP using MIP as a benchmark
to solve small-sized problems where computation time isanas-
sue. Third, we devise neanytimeheuristics to find approximate
solutions fast and hence provide the first lower bounds osdhe
tions that can be found in any given CFSTP. Finally, we eroally
evaluate our algorithms and show that they compute (in less 5
secondsY7% efficient solutions for non-trivial problems involving
up to 20 agents and 300 tasks (with uniformly distributedkaor
loads and deadlines). Thus, our work encompasses all aspiect
the CFSTP, from the model, generalisations, optimal swh,tand
an anytime heuristic. Moreover, our algorithms can be ehas
the first to ever solve the CFSTP and are therefore the benkbma
against which future algorithms for the CFSTP can be evatlat

The rest of the paper is organised as follows. In Section 2, we
provide notation and basic definitions, and present the db@fr-
STP model in Section 3, using a disaster management scexgrio
a running example. Then, Section 4 examines the complekity o

the problem, shows how the CFSTP generalises the TOP and henc

is NP-hard. In Section 5, the MIP formulation for the CFSTP is
provided, as well as some results on the scalability of tipecgeh.
Section 6 describes our heuristics that provide approxrmsatu-
tions to the CFSTP. Section 7 empirically evaluates ourrétyos
and Section 8 concludes.

2. BACKGROUND

We first provide the basic notation and then go on to expanaen h
coalitions can be represented and how allocations of agetdsks
can be used to generate allocations of coalitions to tasks.

Agents may form coalitions for several reasons. First, thalver
of tasks may be much larger than the number of agents. Hence,
agents need to schedule themselves in, possibly diffegeotips
to try and maximise the number of tasks completed. Secomrd, th
workload for a given task may be too high for one agent to cetepl
it by the deadline of that task. Hence, agents need to woktheg
on the same task at the same time to complete it in time.

We define what it means for an agent to “work” on a task later
in this section. First, however, we denote the fact that aanag
a works on a task at a given timet by 72 ~". We defineT =
{T8 7 Yacawev,tco, - dmas} S the set of all possible allocations
of agents to tasks. When one or more agents work togethereon th
same task, they work as a coalitioft, € 24 in a similar way,

we denote byrC " the fact that a coalitiorC’ works on taskv

at timet. In effect, the coalition captures the synergistic effect o
the agents’ capabilities which helps them complete tastsféghan
they would if they worked separately (at different pointsiine) on

the same task. Now, given an agent allocaflénC T and a time
horizont’ € {0, -, dmaz} Within which we want to explore the
coalitions that could existwe define the corresponding (feasible)

allocation of coalitionsI'(7”,t'), over the given time period, as
follows:

DT, ) = {rf7 | C={a| i € Thwe Vit <t} ()

The above definition basically means that a coalitioexists for
taskv at time¢ if all agentsa € C work onwv att¢. This also
means that only one coalition exists at a given task at anyiome
Given this, we denote b} = {I'(T, dma=)} the set of all coalition
assignments generated By

Obviously, physical agents cannot be allocated to all tasledl
times and, therefore, the solution to the allocation pnobleill
involve agents working only on some tasks at some pointsie.ti
More precisely, we will say that an allocation of agents asfble if
it assigns an agent to two different tasks only in time poivitese
difference is greater than the travel time between the spoeding
tasks. Given this, note thatd’ C T is a feasible agent allocation,
then it generates a feasible coalition allocatiB(iI”, ¢'), over any
time period[0,t'], ¥ < dmas. Therefore, coalitions that exist at
different locations at the same time do not overlap.

This will become useful when we discuss the algorithms to gen
erate a solution.



The work that a coalition performs on a task in each time unit
(or, step) decreases the workload of that tagtor example, con-
sider the case of a victim buried under debris in the RoboCeg R
cue domain [5], by removing part of the debris rescue agests r
duce the amount of work necessary to dig out the victim. The ex
tent to which the workload decreases is dependent onaghe of
the coalition, given by the function : 24 — N*. The func-
tion u(-) basically expresses how well the agents involved in the
coalition work together and how their capabilities matclor &x-
ample, if agents; andas have a coalition value of({a;}) =1
andu({a2}) = 1, then, if they work together they may generate a
valueu({a1, a2}) = 3, if their capabilities are synergistic. We will
assume for now that coalition values are independent oféable t
the agents work on and that coalitions of more agents ardlysua
better or equal to coalitions of smaller numbers of agenitst 15,
uw(C U {a}) > u(C).2 For now we will also assume tasks are,
in turn, homogeneous. Since tasks are considered to beatomi
only one coalition can perform one task at a time. For exantpée
above assumptions hold when we consider the problem ofatoc
ing ambulances to rescue victims in the RoboCup Rescue domai

function p) or the delay for a coalition to be formed when several
agents need to meet to work on a task (i.e., some agents have to
wait for others). These spatial constraints thereforeyappér the
existence of coalitions. If agentis routing to task from location

l € La U Ly (which is either its initial location or another task) at

a given timet, the starting times;, € [0, d,] at which agent: starts
working on the task must satisfy the following:

sa 2 t+p(l,v) 4)

Note that given the condition in (4), coupled with the deaelli
constraint (3), and assuming that travel times are propuatito
distances between the locations (and hence satisfy thgkeian-
equality), we can restrict all possible assignments todHewing:

T = {{Ttagw}te{p(la,v),w ,dv}}aeA,UGV

wherel, € L is the location of agent at timet.

Similarly, at a given time’, if we knew the partial solution (i.e.,
the allocations of each agent) up to this point, we couldaspthe
initial location of agenta with its current location/;;. Thus, at
each timet’, given a specific task and a subset of agents C A,

Given the above definitions, we next define the CFSTP that this we can specialise the set of all possible allocations to:

setup generates and detail the associated constraints.

3. COALITIONS WITH CONSTRAINTS

The goal of CFSTP is to maximise the number of tasks completed

given all possible allocations of agents to tasks. In paldic this
allocation needs to take into account two main types of caims:
temporal and spatial. The former take care of restrictioitis ve-
spect to the time taken by agents to finish a task, while therlat
restrict the movement of agents around the tasks given the ti
available to them. In what follows, we detail these constsaand
then formulate the objective function we aim to maximise. Wile
assume that the solution should contain some allocatiogefita
to tasks as the s@t’ C T.

3.1 Temporal Constraints
To specify constraints on the agents’ completion of tasksgefine
a binary-valued functiofV : V' x T' — {0, 1} as follows:
Wy — Zth"UEF u(C) <0
otherwise

1,

0 @

W) = {

T(A/7v7t/) = {{Ttaav}te{tl‘ﬂ’(l?{v'U)v“‘ vdv}}aeA, (5)

Now, depending on where the agent is routing from, its stgrti
time at a particular location is restricted in two ways. Fifagent
a arrives at from its initial locationl, € L4, then:

53 > p(lm U) (6)

Second, if within the assignmefft, agenta moves tov from an-
other tasky’, then:

SZ 2 SZ + | Ute{p(la,v/),w ,t/gdv/}’rta*}v | +p(”0/7”0) (7)

wheret’ is the time at whichu stops working at’.

Similar to (6), (7) requires that an agent will not start wiogkon
a task before reaching it. Here, the second term in the rightth
side represents the amount of time that agespends in total on
taskv’—the sum of this and the starting time @fon v’ gives the
earliest time agent can leave task’; by adding to thisp(v’, v)
we get the earliest time by which tasks reached by agemnt

Note that the routing of agents to taskslirmay not actually be

Thus, W (-) expresses the fact that a task can only be completed if feasible (i.e., where the agents reach the tasks befonedbad-

all the work done on that task by all coalitions equals or eaggr
than the workload of that task. However, the coalitions caly o
be effective up till the deadline of the task, after which thsk is
deemed failed. To express the success or failure of a tastefiree
the functionA : V x T’ — {0, 1} as follows:

L, max c—vept < dv A W(,I') =1
0, otherwise

A = { ©)
Thus,A(+) returns 1 only if the given task can be completed as per
the schedule of agent assignments specified.

3.2 Spatial Constraints

The fact that tasks are spatially distributed implies thete is a
cost to switching from one task to another. This cost is a&ptu
by the time spent by agents in travelling from task to task. (i.

Note that we here assume that workloads and deadlines are ind
pendent (e.g., digging down rubble does not improve thetthedl

a victim) of the task in any way. In future work we will conside
removing this assumption.

3While these assumptions are reasonable in most robot gpattid
emergency response domains, and help speed up computagon,
aim to remove them in future work.

lines) and one of the challenges is to find those routes tleat ar
feasible and efficient (i.e., minimise the time travellimplamax-
imise the tasks completed). To find such an assignment we note
this problem is very similar to solving a Vehicle Routing Blem
(VRP) with time windows [14]. Thus, to find an assignment that
is consistent with the constraints defined in section 3.Inigyrn,
equivalent to finding a feasible schedule for the tasks [FusT

the problem is a complex combination of both routing and dahe

ing that generates a search space that grows exponentiathe i
number of tasks that can be attempted (as we show next).

3.3 The Objective Function

The main objective of the CFSTP is to maximise the number of
tasks completed. This can be expressed as follows:

arg max Z A(v,T),

veV

®)

subject to constraints in equations (6) and (7).

It is important to note that the space over which the function
iterates is very large—in the worst case, we might need te con
sider nearIyiV|!d‘,,‘fa‘z possible plans foeach agerit In order to
understand the practical implications of trying to find atirogl



solution in this case, we propose an optimal algorithm based
MIP in section 5 and evaluate it with increasing numbers ensg)
and tasks. We show that while the MIP algorithm is a good bench
mark for small sized problems, as expected, it does not sgale
for large problems requiring quick solutions. Hence, intieec6
we propose novel heuristics to try to combat the compleXithe
CFSTP. Before doing so however, in the next section we esdbor
on the complexity and other combinatorial problems relateithe
CFSTP. Our aim is to show that the CFSTP is a novel optimisatio
problem that generalises several existing combinatoriathlpms.
This sets the stage for further analysis of all the possipéis
cases of the CFSTP (which is beyond the scope of this paper).

4. COMPLEXITY ANALYSIS

In this section we show that CFSTP falls within the class of NP
hard problems, and show how it is a new generalisation of taenl
Orienteering Problem.

4.1 NP-Hardness of the CFSTP

The well-known Orienteering Problem (JR3 defined as follows.
Givenn nodes in the Euclidean plane, each with a seqrg > 0
whereo (1) = o(n) = 0, find a route of maximum score through
these nodes that beginslaand ends at, and whose duration is no
greater than a given valug,.x. This problem (and, in particular,
its special case with unit scores, i.e(i) = 1 for anyi # 1,n)
has been shown to be NP-hard [3], as it contains the Tragellin
Salesman Problem (TSP) as a special case. Similarly to tad pr
in [3], the TSP can be reduced to our problem or, alternativele
can observe that the unit-score version of the OP is a spexsal
of CFSTP, hence the following result.

THEOREM 1. CFSTP is NP-hard.

PROOF To see this, consider a single-agent version of CFSTP
in which the set of tasks corresponds to the subset of nfdes
1,n}, the agent’s initial location is given by nodeand the travel
times p(-) between the locations are set up accordingly with the

the performance of the entire set of agents is taken intoustco

In TOP, each member of the team (assuming that all start at the
same point) tries to visit as many locations as possibleimvith
prescribed time limit, and then ends at the terminal poilso(gint

to all). Once a team member visits a location and is awarded it
associated score, no other agent can be awarded a scorehfgom t
same point. Thus, each agent has to choose a sequence wmfriecat
to visit so that there is minimal overlap in the locationsteid by

the members of the team, the time limit is not violated, ardtdtal
team score is maximised. We now show that the TOP can be viewed
as a special case of the CFSTP. Specifically, we reduce frerseth

of TOP with integer scores. We then proceed and argue that con
sidering integer scores is sufficient as for any TOP with seates
there is a corresponding problem with integer scores whesefs
optimal solutions is included in that of the original prafle

Consider an instance of the TOP with integer scores and eeduc
it to CFSTP as follows. With each node# 1, n with scoreo (i),
associate a locatiod, with tasks{v1, v3, . .., v, ;) }. Assign zero
travel times between any two tasks at the same locationagist
at different locations set travel times according to théasises be-
tween the corresponding nodes. As before, set zero workitmad
all the tasks and for each taskat locationl* define its deadline as
d,i = tmax — 0(i,n), whered(i, n) is the distance froni to the
terminal node. Since the workloads are zeros, any time antage
visits a location, it can complete all the tasks at it, andstbal-
lect the full score of the corresponding control point. Qinly, if
another agent visits the same location, this will not bring addi-
tional score to the team. By similar arguments regardingiliééy
and optimality of routes we gave for the single-competitBse; we
conclude that the sets of optimal solutions for the two proid
coincide.

Now, it remains to show that every TOP can be represented by a
TOP with integer scores. This is true because the numberd#sjo
and hence, the number of scores, is finite, and therefore the is
number of their possible subsums—representing possildee
values of the problem. Indeed, a feasible solution is givethie
subset of nodes so that there is a route that has a total leagth

distancesi(-) between the corresponding nodes on the plane. Set greater tharmax through these nodes, and the corresponding ob-

the workloadsw,, = 0 for all tasksv and the deadlines té, =
tmax — (v, n), Whered(i,,n) is the distance between node
that corresponds to task and the terminal node;. It is easy to
see that any feasible solution for this problem is feasibletlie
corresponding OP, as the deadlines are set in a way that fngm a
visited location (including the last one in the route) thertmal
node can be reached by the timg.. For optimality, notice that
since travel times between the locations are determinedstgnte

on the Euclidean plane, the triangle inequality holds, aedch
pliyn) < pliyio)+ %, p(ij—1,i5)+p(ir, n), for any sequence
of nodes(i, io, i1, . . . , ik, n). Thereby, our deadline requirements
are not “overrestricting”. Therefore, if we had a polynohraé
gorithm for solving CFSTP, we could find a route starting aind
ending atr, that maximises the number of locations visited by time
tmax, thus solving the OP in polynomial time. Since the OP is NP-
hard, the CFSTP is at least as difficult; in fact, even its $fied,
single-agent version with zero task workloads, is skl

4.2 Generalising the Team Orienteering Prob-
lem

Having shown that CFSTP is NP-hard based on its generalisati

of the OP (which basically ignores deadlines, workloadd,@ali-

tions), we now turn to defining how it generalises the extenas-

sion of the OP, the Team Orienteering Problem (TOP) [1], ifrctvh

4Also referred to as the “generalised traveling salesmahlend’
[15].

jective value is given by the sum of scores over the seleatbset

of nodes; hence, there are at m@ﬁz‘f (”;2) feasible objective
values. Arrange them in increasing order, andddie the mini-
mal difference between two values in the sequence. Multitly
the sequence by/ > = (accordingly, each score is multiplied by
M). Note that the difference between any two values in the mod-
ified sequence is at leagt When all scores are rounded up, each
subsum—value in the sequence—will grow by at mest 2, and
hence this will not affect the order of the values in the sagae
(note that if there were several solutions with the sameaotibge
value, they may result in different values after roundinowbver,
the order of these “groups” of values will remain the same)wN
the solution that corresponds to the maximal value in theltieg
sequence gives a maximal value in the original sequencejet-ob
tive values. Thus, the set of optimal solutions for the TORhwi
these modified, integer, scores is contained in the set afapt
solutions of the original TOP.

From the literaturé most related studies have typically focused
on routing optimisation under time and capacity constsaiand
ignore the issue of coalition formation and (possibly nioreér)
coalitional contributions to tasks they are assigned tousTlhe

SPerhaps, the most relevant models to our problem are the-Orie
teering Problem with Time Windows [4] in which a point canynl
be visited within a specified time interval, and the Vehictauing
Problem with Time Windows and a Limited Number of Vehiclek [8
where a feasible solution may contain unserved customet®m@an
relaxed time windows.



CFSTP is the first attempt to deal with the problem of optinaallic
tion formation under temporal and spatial constraints. iQisly,
this results in high complexity and difficulty of solution.

5. MIP FORMULATION

We present here our MIP formulation of the CFSTP to estalalish
benchmarking optimal solution technique.

Specifically, the aim of CFSTP is to maximise the number of
tasks completed by the agents such that the deadline of eath c
pleted task is met. Our decision variables include binarnabtes
d, € {0,1} for eachv € V, indicating whether the taskis suc-
cessfully completed, and the objective is to maximise tha sfi
these variables over the set of tasks (see 3.3). sStheduledeci-
sion variables includa;, (integer) representing the absolute time
at which agentu € A starts its work on task € V, and with
a slight abuse of notation we can represent assignmentsasy bi
variablesr*~" € {0, 1} indicating whether agent € A is at lo-
cationv € V in the time intervalt, t € T = {0,1,...,dmac}
(dmaz is defined in section 2.1). We assume that the allocation
process starts from the time intervak= 1, and use the zero time
interval for sake of formulation only. Thus, for all agentsldoca-
tions we set zero service at time= 0 and use a convention that
zero starting time for a particular agent at a particulaatimn es-
sentially means that the agergverstarts working at this location.
The coalition values(C') € R are assumed to be given as an input.
Given this we use:" " € {0, 1} as binary variables to indicate
whether a coalition of agents, C' € 24 is the one working on
taskv € V in the time intervalt € T (see (10) below). We use
routing variablesr;; (binary) to indicate whether agemtc A trav-
els from locatiory € L4 U Ly to locationj € Ly. Now, we can
finally formulate CFSTP in terms of the objective functiordam
set of constraints.

Objective function:

max » _ . )
veV
subject to:
e completionconstraints:
dmax
Z th*wu(c) > Sy Wy vveV, (10)
t=0 ceg24
dm,am c
STO>T TS M by ey, (11)
t=0 ce2A
ST TP T < by vie(0,dman] ve VLt El0,dmas], 12
Cce24
e deadlineconstraints:
d/TVL(l‘T
s+ Z 787 < dyyvoeviaca, (13)
t=0
e starting time, routing, and service consistemonstraints:
Pa.g) < 85+ ML =1 )vacajeLy, (14)

d’nlﬂ/m
sot > T T 4 p(6,7) < 8h A+ M1 = 1Y) vacaijery (15)
t=0
ST < lyvacater, (16)
veV
1=2lt = (so)| < 777" = 771" waeA,vev,eeT\ {0}, 17
d’nlﬂ/m
787" = 787 £ 2,vaca vev, (18)
t=0
1=t = (sy = p(i, )] = MQ =) < |70 =707,
VaEA,i,jELv,tGT\{O}, (lg)

i = Ovaca icLy, (20)
Tt Z ri; < livaca jery,, (21)
i€Ly
> rd < LivaeasieLy ulla), (22)
JELy
Sl <MY 17 vieny aea, (23)
i€Ly
STl <MY T Vi€ Ly,a € 4, 4
i€Ly
e linking constraints:
ri > ivjeLy,, (25)
a€Ai€LyU{lg}
- c—
(P (el v’VCEZA,aEC,UEV,tE[O,dm,am], (26)
acC
dmax
s <M > 7T vacawev, @7
t=0
dm,am
ST TV < Mslvacavev, (28)
t=0
so > T, VaEA,vEY, (29)
i€Ly U{lg}
sg <M Z i1, VacA veV, (30)
ieLy U{lq}
DT S Lvicio.dmanl, (31)
i€Ly
70" = 0,vaca,vev, (32)

wherep(i, j) represents the travel time froine Ly U Ly toj €
Ly, andM is a large positive number.

The completion constraints in (10) to (11) determine whethe
the total contribution of all the agents to each task is eigneater
than or equal to the task’s workload (if the task is completad
zero (otherwise). In particular, (12) enforces uniquegassients of
coalitions to completed tasks. Constraint (13) requiresigadline
of each (completed) task to be met (note that by (10), (11)bynd
the convention about starting times, in the case of an untatgp
task, the left hand side of the inequality will be equal toozer

The routing consistency constraints in (14) and (15) impbtt
the starting time of a particular agent at a particular liocais
greater than or equal to the time at which the agent is ablgiteea
at the location after it had finished its work at the previonsat
tion, or from its initial location (for its first task). The netraints
in (16) require an agent to be working at most at one location i
a particular time interval. Constraint (17) implies thag thinary
service variable*~" of agenta at locationv has different values
at timest — 1 and¢ if the corresponding starting time equais
constraint (18) then requires that an agent changes itEsestatus
(i.e., “working” v/s “not working”) at a particular locatioat most
twice. Coupled with (32), this implies that if an agent is Wiog
at a particular location, then its service indicator chanigealue
from zero to one at the starting time, and then from one to zero
when the agent stops its service. Constraint (19) links eetw
service binary variables and finishing service times, innailar
way. Routing constraints in (20)-(22) require that an agkres
not travel from a location to itself, and, given a particutaration,
it can arrive there from only one previous location and cavee
from there for at most one next location.

The linking constraints in (25)-(30) determine that thédeing
conditions are satisfied: (i) if there is an agent that asrieea par-
ticular location, the task at this location should be corrgule (ii)

a coalition is considered to be working at a particular lmeatn
a given time interval if and only if all its members are wordiat
that location in that time interval; (iii) an agent startsrkiag at a



particular location if and only if it spends some time at tloisa-
tion; (iv) an agent starts working at a particular locatibarid only
if it actually arrives there from a previous, or from its ialt loca-
tion. Moreover, coupling constraint (18) with (26) also s the
coalition (of which the agents are members) service timakbr
only changes twice. Also constraints (31) and (32) enswatthe
algorithm allows agents to service only one task per timp atel
does not assign agents to tasks at time equals zero regbgctiv
We implemented the solution presented in this section USiNg
ILOG CPLEX 9.1 and found that for small scenarios with not enor
than 4 agents and 7 tasks, the algorithm takes more than & twur
find the optimal solution. Since the problem is NP-Hard, iswea-
pected that the running times would grow exponentially. M/thiis
permits solving small problems off-line, such running téaee not
acceptable for the type of domains (e.g., emergency respamd
surveillance missions) that need solutions to the CFSTiR@nin
particular, there is a need for algorithms that can retutatiems
quickly and anytime (i.e., the algorithm starts by givingtjza so-
lutions and improves upon them if given more time). We presen
such a solution in the next section.

6. THE SCHEDULING HEURISTICS FOR-
MULATION

Having established the benchmark for optimal algorithnrstife
CFSTP, we now turn our attention to designing approximate pr
cedures that can return efficient solutions quickly. Thesehwe

first present a set of heuristics that allow us to generaigrasgnts
7£7? for each agent in the system and then define a procedure
which optimises over these possible assignm&mé incorporate
these procedures into our Coalition Formation with LookeAt
(CFLA) algorithm. Generally speaking, the CFLA is basedmpo
the following main objectives:

1. Maximise the number of tasks completed-to achieve this we
only allocate agents to tasks that they can complete.

2. Maximise the working time of the agents—to achieve this we
make sure that the smallest coalitions possible are a#dddateach
task. In so doing, we ensure that the maximum number of tasks
are attempted at any one time and we minimise the travel tfime o
all the agents (since making more agents travel to the saske ta
increases the total travel time and hence less time is &¢tuging
used to work). However, the tradeoff in maximising the wogki

pleted in the next time step when agents are allocated toitka g
task), which generates good solutions in reasonable time.

Based on above principles, the algorithm works as an iterati
process as follows: Step 1: define which tasks can be reaghed b
their deadline by which agents: Step 2—define which coalitib
agents should be allocated to a given task; Step 3—definehwhic
tasks to attempt first; Step 4—repeat from step 1 assumingtsge
start from the point where they finish their previous taskiluait
tasks are allocated. We now detail each step in turn.

6.1 Step 1: Defining Feasible Allocations

Recall from section 2.2 that the sEtcontains all possible assign-
ments of agents at all times. ThenTtC T andt’ be the point in
time such thaly, = {7/ 7" }aca,vev,icqo, .- ,i/3. Here we show
how to exactly defind,. Thus, we need to find which tasks are
accessibldy each agent in the system. By “accessible”, we mean
that the agent can reach the task at tifngiven its earlier position

It attimet < t'. Let us assume that there exists aAé;sy that
stores all agents that are working (or travelling to a taskjnae

intervalt’. We show how to construetf,'usy when agents get allo-
cated in section 6.3. Now, also assume that the set of taakldke
not been completed at tintds V;. Then, using algorithm 1 we can

constructT},. To do so, the algorithm loops through all agents that

Algorithm 1 Define the set of feasible assignments.

e At
Require: Ay, .,

1. 7,, = 0 {Initialise with empty se}.

2: forall v € V; do
1//

3: forallac Ay = A\ Af,,, do

4 if t + p(l%, 1,) < t' wheret < ¢’ {a canreachv att'} then
5: Ty — Ty U {777} {include the agent

6: end if

7. endfor

8: end for

are not busy and checks in step 4 that the agent can arrive at th
task at timet’. By defining the allocation of agents at every time
using7T; we are able to generate new positions for agents for later
time points and hence define new starting positiong'fas ¢'.

Now, having computed?/, we can construct assignments at time
t of coalitions to task§' (7}, t) (defined in 2.2). However, as we

time is that the agents may take longer to finish some tasks andare aiming to maximise the number of tasks attempted, wetnext

can therefore not finish future tasks. Thus, to minimise isle of
losing future tasks, in the CFLA we perform a one-step lob&zal
(more than one step leads to significantly more computation)
find out the consequence of completing each task with eadi-pos
ble coalition. Hence, while our solution may not return atiropl
solution, it clearly establishes an empirical lower boundtte op-
timal solution (see section 7).

3. Minimise the time taken by coalitions to complete the maxi
mum possible number of tasks—to achieve this we need to make
sure that the most efficient coalitions are chosen to comlet
maximum possible tasks that can be reached. Specificallgpan
timal algorithm would try to balance the allocation of theeats
acrossall the tasks to minimise the overall time to complete the
maximum possible number of tasks. However, doing so, would
require searching an exponentially large (in the numbeasiks)
space. In contrast, we adopt a greedy approach to allocatadht
efficient coalition to the most important tasks (where intpoce
can be defined in terms of how many other tasks could be com-

b1t is important to note here that we do not use one of the many
heuristics that have been used in TSP or OP because sucktiosuri
generally do not incorporate a notion of coalition valued,as a
result, would not constitutadmissibleheuristics for the CFSTP.

to find the smallest possible coalitions that can servicezhles.

6.2 Step 2: Choosing the Best Coalition

In this step, we compute the best set of agents that can kb

to complete a given task. Our approach is based on a minmin ob-
jective whereby we try to minimise both the size of the caatis

used and the time at which a task can be completed. To this end,
here, we detail an earliest-completion-first (ECF) allmsatlgo-
rithm (adapted from [11]) that iterates over the set of gdesigent
allocations (defined in step 1) to generate the possibleatitins

of coalitions to tasks:" " at timet. Using our ECF algorithm we
try to minimise the completion time for the given task so tggnts
can be allocated to other tasks as soon as possible. Thuspi s
of algorithm 2, we first define the size of the smallest caalithat
can complete the task. This is a non-trivial process thatires
searching through all coalitions that can reach the taskchedk-
ing whether they can complete it. This procedure, in the taase,
involves searching@!“*! coalitions whereA, is the set of agents
that can reach. Given this, our solution involves applying binary
search to select the best coalition size, coupled with §lidyear
time algorithm to loop through the coalitions of the seldcieze,

resulting in computation o (3";*¢min 2*). Having done so, the



Algorithm 2 ECF algorithm.

Algorithm 3 Allocating Tasks.

Require: T,/,v € V}

1: DefineI'(T,/, d.,) asin equation (1).

’

min_c—verr,, a,) 1Cl where "=t 4(C) - t —

w, > 0{get the minimum size of the coalition that can complete thle-ta use

binary search and algorithm by [10] for this.
D osett™im — d,
Dforall 7€V € T(Ty,dy) where|C| = sizemin {use [10] to cycle
through coalitions of a given siZedo

work «— w, — Zrﬁﬂ“,t’e{t,-‘« v} u(Cy)

2: Find sizemin

if work < 0then
tminmar = Ming,, . (W, — ZTclﬂuy,/e{t’___ tmaw} u(Cy)
{minimum time at which the task can be complégted.
8: if timinmaz < to'*" {check if this is a better coalitiohthen
9: t7 = tminmae {record minimum timg.
C* = C, {record the ECF coalition allocatioh.
end if
end if
. end for
I return C*

algorithm loops through coalitions of the given sizézeni») to
find the one that can complete the task the earliest (stepdd)to
As can be seen, the ECF algorithm is completely myopic as it

does not consider the effect of allocating a coalition oreotasks

to be allocated at a later timé > t. To be able to capture such
effects, it is first important to represent the effect a gigacation

can have on future allocations and then apply an algorittaindn
take into account such effects. To this end, in the next @eatie
detail just such a procedure which is the core of the CFLA.

6.3 Steps 3 & 4: Allocating Tasks

Given the procedure to choose the best coalition for a giaek, t
the algorithm proceeds by going through each task to chesk ho
many tasks will be accessible in the future. Based on this;i-t
oritises tasks that can lead to the most tasks being condpiete
future. The algorithm (shown in algorithm 3) proceeds abvas.
We define a seVeompietea for all tasks that have been completed.
This set is populated as the algorithm runs through all taskss
allocates coalitions as it goes along. Then, for each taastkhhs
not been completed yet, it picks the best coalition that eaallo-
cated to it (steps 5 to 7) using a combination of algorithmsid a
2. Then, for each other task that has not been visited yetlthe
gorithm checks to see if, after assigning the coalitionctebd(step
9), the available set of agents can complete other taskeatimes
(see steps 10 to 19). For each reachable task, the countbiitda
tasks is increased by one. In fact, in so doing, we effegtitral-
verse a tree (of depth 1) rooted at a given task and where delgfn
represent other tasks that can be completed at a later tirae tjiat

a particular coalition has been allocated at the root. Thyeedeof
such a tree rooted at each task is then used as the measucad® de
whether to complete the root task or not (see steps 22 to 25).

1. degree, =0
2: repeat

3: forall v € V \ Veompletea do

4. setT, = T, {where tis currenttime of operatipn

5: Generatel'y,, from algorithm 1

6: ComputeT;v based orl’;,, {Get only those relevant to.}

7. Generate”'; using algorithm 2 for agent.

8:

9: Createfrtc,ﬁ“ forall ¢’ = t,---t, wheret, is equal to the time at
which w, — Zrclﬂy’t,e{t’_“ o) u(Cy,) < 0 {keep track of the
time of completioh

. tity

10: ALt =,

’ "

11: AZZSy = UT/Sfu,T”>tv Agugy

12: Ap, — A\ AZZSy {Update the list that can reach the tasktat}

13: Updaté]’t’:tv {update the set of assignments according to the completion

time}

14: count = 0 {a possible number of tasks completed next after tdsk

15: forall (vi € V' \ Veompietea U {v} {for other task}

=dy, .

16: GenerateAzi ¢ using updated’y_, .

17: {Check to ensure all members of this group can reach tg$ldo

=do,

18: it 3c., C Al where  (w,, —
Erﬁ“",t’e{tuﬁ»tmavel(lu,lui),--- v, } u(Cy) < 0 {agents
can still complete task.then

19: count = count + 1 {increase the number of tasks that can be

completed aftew is completed by, }

20: end if

21: end for

22: degree, <« count

23.  endfor

24:  AssignC,« tov* wherev* = arg max, (degree, ) {use algorithm 3

25: Veompieted “— Veompietea U {v*}

26: UpdateT’ {remove allocated agents from available agents, and up@ate

on new agents’ positiorjs.

27 untl V =10

7. EMPIRICAL EVALUATION

The worst case guarantee of the CFLA is ofly since itis always
able to allocate the best coalitions to a feasible task ifetlexists
one (a simple verification of algorithm 3 proves this). Compa
ing with our MIP solution reveals that while, at times the GFL
can return high quality solutions, the size of the probletmst t
can be tested (i.e., less than 15 tasks and 5 agents) make-the r
sults hard to generalise. Moreover, the MIP solution takas

if not days compared to the CFLA (which only take seconds) as
expected. Therefore, here we evaluate the additional befgér-
forming a one-step look-ahead in the CFLA by comparing a com-
mon scheduling algorithm, earliest-deadline-first (EDE)][ that
allocates ECF coalitions to the tasks that have the eadéstlines.
Our hypothesis is that, by exploiting the look-ahead, the. £F
should be more efficient (i.e., complete more tasks) and eftee-

tive (i.e., completing them faster) than the EDF approaahthis
end, here we present an average case study by making no assump
tion about the structure of the problem and assigning randork-

As can be seen, we fix the look-ahead to one step since the com,,45 and deadlines. This is important because the perfamenaf

putation as shown earlier, grows exponentially in the nundjie
agents and hence, by considering further future steps thereel
computation would grow even more. We also show in sectio@® th
a one step look-ahead generates good-enough soldtiBirsally,

it is important to note that as the CFLA incrementally buiidie-
cations, the algorithm is inherentnytimeand could be stopped
before completion to give partial solutions (i.e., to margortant
tasks) that get better as the algorithm is given more time.

"Note that it is unlikely that values will be defined for alt po-
tential coalitions (which we assume here and in our experig)e
Reducing the number déasiblecoalitions could significantly re-
duce computation and therefore permit deeper look-aheads.

the heuristics significantly depends on a number of parasete
cluding, but not limited to: (i) the number and position ofats
and tasks, (ii) the demand (workload and deadline) of eathatad
(iii) the coalition values.

7.1 Experimental Setup

Both the CFLA and EDF were implemented in Java. In our ex-
periments we draw coalition values from a uniform distribntas
u(C) = k x |C| wherek ~ U(1,2) (to simulate super-additive
coalitions). Moreover, for task deadlines and workloads gener-
ated these values from a uniform distribution over the raraj¢he
deadlines ad,, ~ U(5, 600) andw, ~ U(10, 50), respectively (to
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Figure 1: Time taken to visit all tasks.
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simulate wide ranging scenarios). The number of tasks was fix
at 300 and the number of agents was varied from 2 to 20 (sirce th
number of coalitions i€/4! — 1 we are limited in the size of the
problem we can generate). The positions of the agents wiere al
cated randomly on a 50 by 50 grid where the travel time between
two points was computed as the Manhattan distance between th
points (meaning maximum travel time of 100 time units). With
these settings in place, the problem cannot be solved byaggeit
performing tasks on their own and hence the selection of good
coalitions can guarantee a large number of completed tagks.
measured the percentage of completed tasks, the trave(itiene
number of time steps), and computation time required to ¢etap
them. We ran 100 randomly generated instances of the abtye se
for each number of agents and we report in Figure 1 the mean per
formance and plot the5% confidence interval (as error bars) for
each instance for the percentage of completed tasks andutamp
tion time, respectively. We next describe the results.

7.2 Results

The CFLA is found to complete more tasks than the EDF (up to
31% in the best case) particularly when the number of agents in
the system is low (see figure 1(a)). Also, as the number oftagen
increases, it becomes more apparent that CFLA becomes ifaore e
ficient (by up t016.5% for 20 agents) than EDF in visiting tasks
(see figure 1(b)) even though they complete nearly the same nu
ber of tasks (see figure 1(a)). These results are statlgtgighif-
icant given that the error bars do not overlap and hence thdtse
confirm our hypothesis. However, the computation time fotL &F
(4.5s for 20 agents) grows exponentially faster than theEDF
(1.5s for 20 agents) due to the look-ahead procedure. irhé
results show that in non-trivial scenarios CFLA88% efficient
with only 10 agents anfl7% efficient with 20 agents.

8. CONCLUSIONS

In this paper we have introduced a novel coordination prabkbe

CFSTP, which can be used to capture many real world apitsti
including the coordination of emergency responders in mdig-
asters, and is relevant to other application domains, ssishraeil-
lance and patrolling of wide geographical area or multietodx-
ploration of hostile environments. We have shown that CFBTP
a combinatorial optimisation problem that generalisesymaher
hard combinatorial problems and is NP-Hard. Given this, vee p
vided the first benchmark optimal algorithm for CFSTP. Githeat
the latter is only appropriate for small and non-urgent faots, we
devise the CFLA algorithm which fast, anytime, and impleteen
look-ahead heuristic that can return good solutions inaweasle
time (less than 5s for 20 agents and 300 tasks). Hence, we show
that, on average, the CFLA can find allocations (in less tregc
onds) that complete up W% of the tasks given a ratio of 1:15 of
agents to tasks.

Future work will look at developing anytime optimal algbrits
to solve the CFSTP. In particular, we aim to build decergealiso-
lutions to dynamic versions (where the number of tasks aedtag
may not be known in advance) of the CSFTP based on our pre-
liminary work in [12]. We also aim to gather better datasetsrf
realistic applications such as emergency response, im toder-
mulate benchmarks for the CFSTP.

Acknowledgments

This research was undertaken as part of the ALADDIN (Autooosn
Learning Agents for Decentralised Data and Information&ys)
project and is jointly funded by a BAE systems and EPSRC (En-
gineering and Physical Sciences Research Council) sicgtag-
nership (EP/C548051/1). We also kindly thank the anonynmeus
viewers for their very useful comments.

9. REFERENCES
[1] I.-M. Chao, B. L. Golden, and E. A. Wasil. The team oriegriag problem.
European Journal of Operational Resear@8:464-474, 1996.

[2] K. Daniel and S. Koenig. Fast winner determination foeapcoordination with
SBB auctions. IrProc. 8th Int. Joint Conf. on Autonomous Agents and
Multiagent Systems-Volumef@ages 1197-1198, 2009.

B. Golden, L. Levy, and R. Vohra. The orienteering probl&aval Research
Logistics 34(3):307-318, 1987.

M. Kantor and M. Rosenwein. The orienteering problermhviine windows.
Journal of Operational Research Socie#3(6):629-635, 1992.

H. Kitano. Robocup rescue: A grand challenge for muiteat systems. In
Proceedings of the Fourth International Conference on MAillent Systems
(ICMAS) pages 5-12, 2000.

M. Koes, I. Nourbakhsh, and K. Sycara. Heterogeneousirabbt coordination
with spatial and temporal constraints.Pnoceedings of the Twentieth National
Conference on Atrtificial Intelligenc@ages 1292-1297. AAAI Press, June
2005.

M. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak, Aeyivegt,

S. Koenig, C. Tovey, A. Meyerson, and S. Jain. Auction-baseti-robot
routing. InProceedings of the International Conference on Roboticierge
and Systempages 343-350, 2005.

H. C. Lau, M. Sim, and K. M. Teo. Vehicle routing problemttvtime windows
and a limited number of vehicleEuropean Journal of Operations Research
148:559-569, 2003.

M. Pinedo.Scheduling: theory, algorithms, and syste®gringer Verlag, 2008.
T. Rahwan and N. R. Jennings. Coalition structure geti@r: dynamic
programming meets anytime optimisation.Rroceedings of the Twenty Third
Conference on Artificial Intelligenc@ages 156-161, 2008.

K. Ramamritham, J. Stankovic, and W. Zhao. Distribugetdeduling of tasks
with deadlines and resource requiremetE&E Transactions on Computers
38(8):1110-1123, 1989.

S. D. Ramchurn, A. Farinelli, K. S. Macarthur, M. Polu&e and N. R.
Jennings. Decentralised coordination in RoboCup RedteComputer
Journal (to appear), 2010.

P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe. Alitiag tasks in extreme
teams. IPAAMAS '05: Proc. 4th Intl. Joint Conf. on Autonomous Agemid a
Multi-Agent Systempages 727—-734. ACM, 2005.

P. Toth and D. Vigo, editord-he vehicle routing problenSociety for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2001.

T. Tsiligirides. Heuristic methods applied to orieeiting. Journal of the
Operations Research Socie8b6(9):797-809, 1984.

(3]
4

[5

(6]

[7

8l

[0
[10]

[11]

[12]

[13]

[14]

[15]



