
RMASBench: a Benchmarking System for Multi-Agent
Coordination in Urban Search and Rescue

(Demonstration)
Fabio Maffioletti
University of Verona

Verona, I-37134, Italy
fabio.maffioletti.uni@gmail.com

Riccardo Reffato
University of Verona

Verona, I-37134, Italy
refax88@gmail.com

Alessandro Farinelli
University of Verona

Verona, I-37134, Italy
alessandro.farinelli@univr.it

Alexander Kleiner
Linköping University

58183 Linköping, Sweden
alexander.kleiner@liu.se

Sarvapali Ramchurn
University of Southampton

Southampton, SO17 1BJ, UK
sdr1@soton.ac.uk

Bing Shi
Wuhan University of Tec.

Wuhan, China
bingshi@whut.edu.cn

ABSTRACT
This demonstration paper illustrates RMASBench, a new bench-
marking system based on the RoboCup Rescue Agent simulator.
The aim of the system is to facilitate benchmarking of coordination
approaches in controlled settings for dynamic rescue scenarios. In
particular, the key features of the systems are: i) programming in-
terfaces to plug-in coordination algorithms without the need for im-
plementing and tuning low-level agents’ behaviors, ii) implemen-
tations of state-of-the art coordination approaches: DSA and Max-
Sum, iii) a large scale crowd simulator, which exploits GPUs par-
allel architecture, to simulate the behaviour of thousands of agents
in real time.
Categories and Subject Descriptors: I.2.11 Distributed Artificial
Intelligence: Multiagent Systems.
Keywords: Agent-based simulations, Benchmarks, Urban Search
and Rescue.
Online Material: http://youtu.be/39y6tkhv5O4

1. INTRODUCTION
The development of benchmarking platforms for agent-based sys-
tems is a fundamental step towards building agent-based appli-
cations in the real world. Benchmarking platforms allow us to
evaluate the performance of state-of-the-art algorithms and mech-
anisms in controlled settings and determine the best ones to use
under a wide range of realistic conditions. To this end, these plat-
forms need to incorporate simulation environments that pose re-
alistic challenges that mimic those of the real world. This means
creating environments where the problems are dynamic, the envi-
ronment variables may be liable to bias or uncertainty and where,
potentially, agents have to address issues of scale. Examples of
such platforms include multi-agent coordination competition plat-
forms [1, 7] and the TAC platforms [4].1

Crucially, such platforms need to allow for easy implementa-

1Altogether these competitions attract hundreds of participants ev-
ery year and contribute to the development of solutions to real-
world problems and the advancement of research in general.

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito,
Jonker, Gini, and Shehory (eds.), May, 6–10, 2013, Saint Paul, Minnesota,
USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

tion of new algorithms without requiring researchers to implement
low-level elements irrelevant to their algorithm. To date, very few
benchmarking platforms have been developed according to such
principles (and adopted by the artificial intelligence community).
In particular, we note the dearth of realistic testbeds for agent-based
coordination mechamisms such as distributed constraints optimi-
sation (DCOP), task allocation (TA), or coalition formation (CF).
Those testbeds that do aim to evaluate such algorithms (e.g., DCOPo-
lis2, CATS3) typically provide inputs that are drawn from fixed dis-
tributions or define coordination problems that are usually static or
require significant extensions to create dynamic settings and large-
scale problems. As a result, there are currently no well defined
realistic benchmarks for DCOP, TA, and CF.

Against this background, we develop and evaluate a novel testbed
for multi-agent coordination algorithms called RMASBench. Our
work builds upon the existing RoboCup Rescue simulation plat-
form (RSP) that simulates an urban search and rescue scenario
and has also been used by emergency responders and planners to
both train and plan for emergencies [6]. However, the RSP as it
is, does not allow for easy implementation of coordination algo-
rithms, often requiring coding low-level elements such as network
communication protocols and path-planning algorithms. Moreover,
the heavy computations involved in generating realistic simulations
(e.g., large crowds moving or fires spreading) require multiple ma-
chines and only permit simulations with low numbers of agents
(fewer than 200). Hence, we significantly extended the RSP in or-
der to allow for the easy implementation of coordination algorithms
and develop a large-scale crowd simulator that allows users to run
simulations involving thousands of agents in real-time on a single
standard computer.

In more detail, our work advances in the following ways the
state-of-the-art. First, we provide programming interfaces to imple-
ment coordination algorithms without the need of coding and tun-
ing low-level agents’ behaviors. Moreover, we provide facilities to
compute standard metrics for evaluating coordination approaches.
Second, we implemented standard coordination algorithms such as
DSA [3] and MaxSum [2] on our test suite, and investigate how
they perform under different simulation settings. Third, we develop
a large-scale crowd simulator based on the use of Graphics Process-
ing Units (GPUs) that allows us to scale the simulation to thousands
of agents.

2http://www.dcopolis.org/
3http://www.cs.ubc.ca/~kevinlb/CATS/



...

...

Com 
Dispatch

DCOP 
Agent N

DCOP 
Agent 2

DCOP 
Agent 1

RSL Simulator

Platoon 
Agent N

Platoon 
Agent 2

Platoon 
Agent 1

Center 
Agent 

(a) (b) (c)

Figure 1: Figure (a), functional connection between the rescue simulator (grey & blue) and RMASBench (orange). Figure (b), a snapshot of
the system running. Figure (c), part of the map of Paris with 2000 civilians simulated in real-time on a GPU.

2. THE RMASBENCH SYSTEM
In this section we provide a description of the RMASBench system
focusing on the coordination API we provide, the implemented al-
gorithms and the large scale crowd simulator.

2.1 Coordination API and algorithms
RMASBench was developed as part of the RSP to introduce a

generic API for multi-agent coordination that essentially provides
facilities for exchanging messages among agents and for making
coordinated decisions. Moreover, RMASBench provides a library
implementing state-of-the art coordination approaches such as DSA
and MaxSum, two state of the art DCOP solution techniques. The
rational behind this choice is twofold: i) the DCOP framework al-
lows to efficiently solve complex problems by exploiting domain
structure and ii) there are a rich wealth of solution techniques for
DCOPs (both exact and approximate) that are often compared and
evaluated on synthetic benchmarking scenarios (e.g., graph colour-
ing). We believe that in this sense RMASBench is an ideal test-
ing ground to compare such techniques considering various per-
formance metrics (e.g., solution quality, communication and com-
putation overhead) and different operative conditions. Among the
several solution techniques for DCOPs we choose these algorithms
because they represent two widely used heuristics based on differ-
ent perspectives: DSA is essentially a greedy local search, while
MaxSum is based on inference.

To implement new coordination algorithms in RMASBench, users
can simply derive a class from the DecentralizedAssignment inter-
face, which essentially represents an agent, and implement the fol-
lowing functions. i) computeOutgoingMessages(); ii) getIncom-
ingMessages(); iii) computeAssignment(). Note that each of these
functions will then be called in a synchronized manner within each
coordination cycle of the assignment computation. In more details,
Figure 1(a) depicts the embedding of RMASBench into the agent
simulation package of the RSL while Figure 1(b) shows a snapshot
of the system coordinating the operations of fire brigades on a part
of the Paris map.

2.2 CUDA-based crowd simulation
At present, the RSP only allows sequential computation for agents’

behaviour on a single CPU, hence simulating the movements of
a relatively small number of agents can take a consistent amount
of time. This imposes severe limitations to the use of RSP both
for emergency planners to formulate evacuation plans and for re-
searchers wishing to evaluate their coordination algorithms on large
crowds.

To address these issues and equip both practitioners and researchers
with an efficient benchmarking platform, we developed an evacu-
ation simulator that implements individual civilians as individual
agents running their commands in parallel. Crucially, we imple-

mented agents’ path planning and social behaviours in terms of a
parallel program that can be run on standard Graphics Processing
Units for easy deployment on any PC [5]. By so doing, we are able
to exploit the highly parallelised memory and processing architec-
ture of the GPU to speed up the simulations by orders of magnitude
and therefore to create realistic situations for decentralised algo-
rithms to solve in real time.
The evacuation simulator was integrated with RMASBench in such
a way that both platforms can be run on different PCs to allow for
efficient parallel computations at the platform level (espousing the
distributed architecture adopted by the RSP). This was achieved
by using a socket connection to transmit data between the two. The
communication protocol between RMASBench and the crowd sim-
ulator is based on XML and allows to exchange information about
the simulated agents’ positions at every time step. In more de-
tail, RMASBench sends a first message with the initial positions of
all the civilians and rescue agents in the map. Figure 1(c) shows
a snapshot of an evacuation simulation realised with our CUDA-
based crowd simulation with 2000 agents on the Paris map.

3. CONCLUSIONS
We introduced RMASBench, a testbed for multi-agent coordina-
tion based on the RSP, which, in contrast to existing testbeds, of-
fers a highly dynamic and large-scale benchmarking environment
for Multi-Agent coordination in the USAR domain.

4. REFERENCES
[1] T. Behrens, M. Köster, F. Schlesinger, J. Dix, and J. Hübner. The

multi-agent programming contest 2011: A résumé. In L. Dennis,
O. Boissier, and R. Bordini, editors, Programming Multi-Agent
Systems, volume 7217 of Lecture Notes in Computer Science, pages
155–172. Springer Berlin / Heidelberg, 2012.

[2] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. Decentralised
coordination of low-power embedded devices using the max-sum
algorithm. In Proceedings of the Seventh International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2008), pages
639–646, 2008.

[3] S. Fitzpatrick and L. Meetrens. Distributed Sensor Networks A
multiagent perspective, chapter Distributed Coordination through
Anarchic Optimization, pages 257–293. Kluwer Academic, 2003.

[4] W. Ketter and A. Symeonidis. Competitive benchmarking: Lessons
learned from the trading agent competition. AI Magazine, 33(2):103,
2012.

[5] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to
General-Purpose GPU Programming. Addison Wesley, 2010.

[6] N. Schurr and M. Tambe. Using multi-agent teams to improve the
training of incident commanders. Defence Industry Applications of
Autonomous Agents and Multi-Agent Systems, pages 151–166, 2008.

[7] C. Skinner and S. Ramchurn. The robocup rescue simulation
platform. In Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2010), pages
1647–1648, 2010.


