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cIT+Robotics Srl, Contrà Valmerlara 21, 36100 Vicenza (Italy)

Abstract

Robotics technology has recently matured sufficiently to deploy autonomous
robotic systems for daily use in several applications: from disaster response
to environmental monitoring and logistics. In such applications, robots must
establish collaborative interactions so to achieve their individual and collective
goals and a key problem is for robots to make individual decisions so to optimize
a system wide objective function. This problem is typically referred to as co-
ordination. In this paper, we first describe modern optimization techniques for
coordination in multiRobot systems. Specifically, we focus on approaches that
are based on algorithms widely used to solve graphical models and constraint
optimization problems, such as the max-sum algorithm. We then analyse the
coordination problem faced by a set of robots operating in a warehouse logis-
tic application. In this context robots must transport items from loading to
unloading bays so to complete packages to be delivered to customers. Robots
must cooperate to maximizes the number of packages completed in the unit of
time. To this end a crucial component is to avoid interferences when moving
in the environment. We show how such problem can be formalised as a Dis-
tributed Constrained Optimization problem and we provide a solution based on
the binary max-sum algorithm. Finally, we provide a quantitative evaluation of
our approach in a simulated scenario using standard robotics tools (ROS and
Gazebo).
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1. Introduction

Autonomous robotic systems are now becoming a crucial technology for several
diverse application domains. Thanks to the increased reliability of platforms
and sensors, as well as the reduced price of technology, robotic platforms are
now used daily for several tasks such as domestic services (e.g., the Roomba
vacuum cleaner) or industrial manufacturing. A key distinctive element for
this new application domains is the high level of autonomy exhibited by such
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systems which is in sharp contrast to robotic applications developed few years
ago. Autonomy is now a crucial component for robotic technology and there are
various initiatives to assess and challenge autonomous robotic systems in various
scenarios. A recent example is the EU project RockIn1 that aims at fostering
the use of autonomous robots through competitions in two main areas: domestic
services and industrial manufacturing.

Now, the increased use of robotic platforms and the high level of auton-
omy lead the way towards the deployments of Multi-Robot Systems (MRS),
where several platforms operate in the same environments. A clear example of
this is the Kiwa system [39], where several autonomous driving units transport
materials in different areas of a warehouse.

When MRS must be deployed, a key component to ensure high efficiency for
the system is the ability to orchestrate the different actions of the robots so to
maximize the system performance. In other words, the MRS must be equipped
with coordination techniques so that each robot will choose its single actions to
maximize a system wide objective.

In this paper, we consider coordination approaches for MRS, with a specific
focus on industrial application and specifically warehouse logistics. In particu-
lar, we consider a set of robots involved in transportation tasks in a warehouse,
and we propose a coordination approach to maximize the task throughput (i.e.,
number of task completed in the unit of time).

Several previous approaches have considered the coordination problem for
MRS, and nowadays there is a wide range of techniques that can be used to
coordinate MRS [17, 9, 22]. One of the most well studied problems for coor-
dination in MRS is task assignment [17, 22], where a set of robots must be
assigned to a set of tasks to maximise a system-wide objective function (e.g.,
complete the maximum number of tasks, minimize the make-span, etc.). The
task assignment problem has been tackled with various techniques such as Mixed
Integer Programming (MIP) approaches [20], reactive methods [27] and biolog-
ically inspired approaches [24]. Arguably one of the most widely used approach
for task assignment is the market based framework [8], where robots exchange
valuations (i.e., bids) to execute tasks and the task is assigned to the robot with
the best valuation.

Recent approaches to coordination investigate the use of graphical models
and decentralised optimization approaches for MRS coordination [1, 4] and in
particular for task assignment [13, 31]. Graphical models are appealing tools as
they exploit the structure of the domain, that in MRS typically relates to local-
ity of interactions: the actions of a robot typically affects only a small subset
of other robots (e.g., robots in close proximity or robots assigned to close-by
tasks). Graphical models provide extremely efficient techniques for optimiza-
tion, and have been used in different community such as machine learning [3]
and constraint processing [7]. Here we focus on a specific type of graphical
model, i.e., the Distributed Constraint Optimization Problems (DCOPs) [25] as

1see http://rockinrobotchallenge.eu/ for more details.
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we are interested in decentralised solution.
In more detail, in this paper, we provide a DCOP model for the task assign-

ment problem faced by robots involved in logistics operations in a warehouse.
Among the various solution approaches for DCOPs we advocate the use of
heuristic algorithms, and specifically the max-sum, an iterative message passing
approach that has been shown to provide solutions of high quality for systems
operating in real-time and with limited computation and communication re-
sources [11]. The max-sum approach works very well when the problem can
be well decomposed, i.e., when the decisions of one robot affect only a small
subset of team-members, because the message update step, a key operation of
max-sum, has a computational complexity that is exponential in the number
of robots that can perform the same task. This exponential element can be a
significant limitation for large scale, real-time systems. To combat this, recent
approaches [35] show that for specific types of constraints and by using binary
variables, such exponential element can be reduced to a polynomial. Hence,
for models that involve only this type of constraints (called Tractable Higher
Order Potentials or THOPs) and binary variables, we can use the max-sum
approach (called Binary Max-Sum or BMS) for large-scale systems that must
operate with real-time constraints. This important result has been exploited by
relevant literature in different application domains such as UAVs coordination
[31] and rescue operations [30]. Following this recent literature, here, we provide
a binary DCOP model that involves only THOPs to encode our task assignment
problem. A key feature of our model is the possibility to explicitly represent
spatial constraints in the task assignment problem, hence minimizing harmful
interference among the robots that severely limit the effectiveness of the system
for warehouse logistic operations.

In summary, the main novelty of this work is the formalization of the coor-
dination problem related to logistic scenarios as a DCOP, where we explicitly
represent the interferences among the robots in the model. Moreover, we show
that such model can be encoded using only THOPs, hence we can devise a
tractable solution approach based on the max-sum algorithm.

We provide a quantitative evaluation of our approach in a simulated scenario
using standard robotics tools (i.e., ROS and Gazebo). We compare the BMS
approach to a greedy local search algorithm (i.e., DSA [15]), and our results show
that the BMS provides better solutions by minimizing robots interferences.

The rest of the paper is organized as follows: Section 2 provides necessary
background on MRS coordination approaches, focusing on graphical model,
DCOPs and BMS. Section 3 details our model for task assignment in ware-
house logistic operations, and Section 4 presents our empirical evaluation of the
proposed approach. Finally, Section 5 concludes the paper.

2. Background and Related Work

In this Section, we detail the main issues for MRS coordination in industrial
domains, then we provide a detailed discussion on coordination approaches for
MRS, highlighting challenges and main solution techniques. Finally, we provide
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necessary background on coordination approaches for multi-robot systems based
on decentralized optimization and specifically on factor graphs.

2.1. MRS for Industrial Applications

The use of robots for industrial tasks in the broad area of manufacturing and
logistics increased significantly over the last years, and several initiatives target
industrial scenarios as an application domain. For example, the recent EU
project RockIn considers the use of robots in industrial environments as one
of the main challenges of the project. Specifically the RockIn project aims at
pushing forward the innovation in cognitive and robotic systems through the
use of competitions, and proposes two challenges: the @home challenge, which
targets service robotics and the @work challenge which focuses on innovative
industrial robots that perform various tasks such as pick-and-place and quality
control. A crucial aspect of the project is the interest towards robotic systems
that can closely interact with humans and become a sort of personal assistant of
the workers. This requires robots to operate in a dynamic environment and to
have a continuous interaction with human operators. Such operation modalities
are in sharp contrast with respect to the standard use of robotic systems in the
industry, where robots are typically isolated in highly engineered manufacturing
cells and perform highly specialized tasks.

In this paper, we also focus on industrial scenarios where robots have a high
degree of autonomy and operate in a dynamic environment. However, our focus
is not on single robot capabilities (such as object manipulation or recognition)
but rather on the use of a MRS where coordination plays a crucial role.

In this perspective, the Kiwa system [39] offers a radically innovative and
interesting approach to material handling in warehouse management, by using
a large team of autonomous driving units to transport storage pods in different
areas of a warehouse. The main innovation behind the Kiwa system is the use of
a coordinated approach where independent robots negotiate tasks to optimise
the material handling operations.

In this work, we consider a similar setting where a set or robots are in-
volved in transportations tasks for logistics. However, we focus on the specific
problem of task assignment explicitly considering spatial constraints in the task
allocation process. In particular, we consider the paths that robots execute
to accomplish tasks and we aim at choosing task assignments that minimize
spatial interferences between different robots. Moreover, we propose the use of
advanced techniques for coordination that are based on graphical models and
DCOPs solutions. Specifically, we devise a binary THOP-only factor graph
model and investigate the Binary Max-Sum algorithm as a solution approach.

2.2. Coordination in MRS

Coordination for MRS has been investigated from several diverse perspectives
and nowadays, there is a wide range of techniques that can be used to orches-
trate the actions and movements of robots operating in the same environment.
Specifically, the ability to effectively coordinate the actions of a MRS is a key
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requirement in several application domains that range from disaster response to
environmental monitoring, military operations, manufacturing and logistics. In
all such domains, coordination has been addressed using various frameworks and
techniques and there are several survey papers dedicated to categorize such dif-
ferent approaches and identifying most prominent issues when developing MRS
[5, 37, 9].

Given our focus on logistic scenarios, here we restrict our attention to coor-
dination approaches based on optimization and specifically on task assignment
[17, 22] as this is the most common framework for our reference application
domain [39]. Overall, the problem of task assignment can be roughly stated as
the problem of deciding which robot of the MRS performs which task(s). This
decision process has a great impact on the performance of the overall system
and therefore has been deeply studied and investigated. In particular, in [17]
Gerkey and Mataric propose a taxonomy to analyze the different approaches
to the problem of Multi Robot Task Allocation (MRTA), along with a formal
framework for the study of this problem. The authors consider three main di-
mensions: 1) single-task (ST) vs multi-task (MT) robots, based on whether the
robots involved in the task assignment process can execute more than one task
at a time; 2) single-robot (SR) vs multi-robot (MR) tasks, considering whether
the tasks to be performed involve one or multiple robots; 3) instantaneous as-
signment (IA) vs. time-extended assignment (TA), distinguishing whether the
information concerning the robots, tasks and environment permit only an in-
stantaneous assignment or a more sophisticated planning approach. The authors
provide a formal characterization of a wide set of MRTA problems, analyzing
and classifying in their taxonomy significant approaches used in MRS litera-
ture; for those approaches, bounds to the optimality of the method used with
respect to the optimal solution are provided. Recently, Korsah and colleagues
[22] present a new taxonomy that progress beyond the work by Gerkey and
Mataric by explicitly taking into account the issues of interrelated utilities and
constraints across task execution, i.e., tasks are not independent and executing
a task has effect on the reward/cost of other tasks in the system.

Coordination based on task assignment has been addressed from several per-
spectives ranging from Mixed Integer Programming (MIP) approaches [20] to
decentralized reactive methods [27] and biologically inspired techniques [24]. In
particular, market based approaches represent a widely used framework for task
allocation in robotic systems in various application domains such as exploration
and mapping [42] and multi-robot patrolling [29] (see [8] for a recent survey).
In such framework robots use auction-based mechanisms to negotiate tasks and
reach a consensus on the allocation. The basic idea is that robots exchange
“bids” with their team-mates, and such bids encode how well each robot can
perform a given task. The bid computation is typically domain dependent as
it must consider application specific constraints/features. The use of different
auction mechanisms and their effect on task allocation has been deeply studied
in the relevant literature and the main approaches can be broadly divided in
three main categories: i) combinatorial auctions, where robots bid for set of
tasks, and hence they can consider synergies and constraints that might hold
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among such tasks [2]. ii) repeated, parallel single item auctions, where robots
bid on a single task in parallel and the auctions are repeated periodically. This
scheme does not consider synergies among tasks, hence, as stated in [19], the
overall performance of the system can be arbitrarily far from the optimal. How-
ever, unlike combinatorial auctions, parallel single item auctions are very fast
to solve and robust to possible unexpected problems [34]. iii) sequential single-
item auctions, where robots bid on single tasks, but such tasks are auctioned
sequentially and when a robot bids on a task it considers synergies with all
tasks it is currently responsible for. This type of auctions has been frequently
used as it represents a good compromise between computation requirement and
quality of solution. In particular, in specific settings, this scheme can provide
quality guarantees on the solution (see [36] for more detail). Often, such auction
schemes are hybridized to produce solutions that are both effective and robust
to possible unexpected situations [26].

Another framework that has been widely used for task assignment is the one
based on token passing originally proposed by Scerri and colleagues [32]. In this
context tokens represent tasks to be executed and are exchanged through the
system in order to collect information and to allocate the tasks to the robots.
When a robot receives a token, it decides whether to perform the task associated
to it or to pass the token on to another robot. This decision is taken based only
on local information: each robot follows a greedy policy, i.e. it tries to maxi-
mize its utility, given the tokens it can currently access, its resource constraints
and a broad knowledge on team composition. However, tasks are executed by
the robot that has the corresponding token only if its capability is higher than
a given threshold. Such thresholds guide the search towards good solutions
for the allocation problem, and while such mechanism cannot provide guaran-
tees concerning the optimality of the solutions found, in practice it consistently
increases the algorithm performance [32]. The main benefit of the token pass-
ing scheme is the extremely low computation and communication requirements
that makes such approach very well suited for robotic scenarios [10, 40], large
scale applications [33] and situations where communication can be severely lim-
ited (e.g., application scenarios such as incident management and rescue, where
bandwidth is limited and the number of messages must be minimized) [14] .

Following recent results in MRS literature [1, 13, 31], in this paper we in-
vestigate a different perspective to task assignment and coordination, by using
decentralized optimization techniques and proposing a representation of the
coordination problem based on graphical models. In the next Section, we de-
scribe the necessary background on graphical models, Distributed Constraint
Optimization Problems and the most prominent solution techniques (i.e., Dis-
tributed Stochastic Algorithm and the max-sum).

2.3. Graphical Models for Coordination

The main idea behind the use graphical models for coordination is to exploit the
structure of the domain to provide efficient techniques to solve the problem. For
example, consider our warehouse logistic scenario, while there could potentially
be several orders to consider and several robots to control, the actions of one
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such robot typically impact only on the future decisions of a subset of its team-
members. Graphical models represent a general and powerful framework to
encode such structure and to exploit the possible loose dependency of different
elements in the system so to alleviate computation. In particular, graphical
models have been used in different research communities with different names:
e.g., probabilistic graphical models [3], cost networks [7], DCOPs [25]. However
they all share similar key concepts and solution techniques [18]. Here we focus
on DCOPs as we are interested in decentralized solutions.

Figure 1: An exemplar situation for MRS coordination in warehouse logistic
(inspired by the RockIn@Work challenge). Robots must transport items from
the three loading bays (right part of the image) to the unloading bay (left).

To give an intuition of how we can model our application scenario by using
DCOPs, Figure 1 shows an exemplar configuration of robots and tasks in a
simple warehouse scenario. Tasks in this context require to pick up, load, and
transport various items from three loading bays (visible in the right side of the
picture) to the unloading bay (left). Robots should avoid accessing the same
loading bay, moreover they should try to avoid as much as possible interference
in the corridor connecting the bays. Considering this, a possible cost network
representing this situation is reported in Figure 2. This diagram uses a factor
graph [23] to represent the cost network, where circles represent variables and
squares represent factors. A factor is associated to a cost (or utility) that pro-
vides a value for each possible configuration of the variables linked to that factor.
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Variables in this case represent possible allocations of robots to tasks (i.e., load-
ing bays), hence the domain for variable r1 and r2 will be D1 = {t1, t2, t3}. Our
objective, is then to find the assignment of variables that maximises the sum
of the functions (in this paper we consider the function as utilities hence we
maximise their sum).

Figure 2: A factor graph representation of the scenario reported in Figure 1.

More in general a DCOP for a multi-robot coordination problem is a tuple
〈R,X ,D,F〉, where R = {r1, . . . , rm} is a set of robots and X = {x1, . . . , xs} is
a set of variables, where each variable xi is owned by exactly one robot ri, but a
robot can potentially own more than one variable. The robot ri is responsible for
assigning values to the variables it owns. D = {D1, · · · , Ds} is a set of discrete
and finite variable domains, and each variable xi can take values in the domain
Di. Then, F = {f1, . . . , fn} is a set of functions that describe the constraints
among variables. Each function fi : Di1 × · · · ×Diki

→ <∪ {−∞} depends on
a set of variables xi ⊆ X , where ki = |xi| is the arity of the function and −∞ is
used to represent hard constraints. Each function assigns a real value to each
possible assignment of the variables it depends on.

The goal is then to find a variable assignment that maximises the sum of
constraints:

arg max
x

∑
i

fi(xi) (1)

To date, there are a significant number of solution techniques for DCOPs,
and they can be broadly divided into two main families: exact algorithms that
are guaranteed to provide the optimal solution (such as ADOPT [25] and DPOP
[28]) and heuristic approaches such as greedy local techniques (e.g., DSA [41])
or max-sum [12]. Now, while exact algorithms find useful application within
large computational systems, they do not address many of the additional chal-
lenges that are present when considering robotic systems that must operate in
dynamic environment. In particular, to guarantee optimality of solution all the
above exact algorithms demand that some aspects of the algorithm grows expo-
nentially in size (because finding an optimal solution for a DCOP is an NP-hard
problem [25]) and such exponential element can not be accepted in our reference

8



application domain. In contrast, heuristic approaches can not guarantee opti-
mal solutions but they do provide a viable alternative for robotic applications
as they require moderate computation and communication resources.

Among heuristic approaches, DSA is one of the most prominent technique.
In short, DSA is a distributed local greedy search technique, which uses a
stochastic element to mitigate possible misalignments in robots’ assignments.
In more detail, when using DSA each robot initializes its variables with a ran-
dom assignment and then they perform a series of local moves to optimize the
objective function. A local move involves changing the joint assignment of the
variables corresponding to a subset of the robots (aka neighborhood) to optimize
the local gain (the difference between the sum of local utility functions evaluated
with the new assignment with respect to the previous one). In a decentralized
context robots evaluate and perform local moves in parallel, informing their
neighbours of the new assignment after each move. Such parallel execution
without coordination can result in poor system performance since robots can
act based on out-of-date knowledge about the choices of other robots. To com-
bat this, DSA introduces stochasticity by only allowing each robot to optimize
its local gain if a random number exceeds a certain activation probability. Such
activation probability must be empirically tuned for the application domain.
Overall, DSA provides a low cost heuristic solution to DCOPs and it has been
used in various contexts [15], however due to the greedy nature of the optimiza-
tion it can often return solutions of poor quality.

The max-sum algorithm has been frequently used in the probabilistic graph-
ical model community [3, 16] and offers a very different perspective for solving
DCOPs. In such approach, each robots tries to compute an estimation of the
impact that each of its action has on the global optimization function. Such an
estimate (usually called the belief function) is build up by iteratively exchang-
ing messages with neighbours, and once this belief function is built each robot
chooses the assignment that maximizes this function. The max-sum operations
are best understood considering the associated factor graph, in more detail, at
each execution step, each robot computes and sends two types of messages: the
variable to function (qxi→f (xi)) message and function to variable (rfV→xj

(xj))
messages. The equations to compute such messages are reported below2:

Variable to function messages:

qxi→f (xi) =
∑

g∈Mi,g 6=f

rg→xi(xi) (2)

where Mi represents the set of funtions connected to xi.
Function to variable messages:

rfV→xj (d) = max
dk1

,··· ,dks

[fV (d, dk1 , · · · , dkl) +
∑

k∈(k1,··· ,kl)

qxk→fV (dk)] (3)

2We refer the interest reader to [6] for a more detailed description of the algorithm.
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were, (dj , dk1 , · · · , dkl) represents the joint variable assignments of variables
V = (xj , xk1 , · · · , xkl), and d is one possible value of Dj . Notice that the
message update step for a function that is connected to l variables requires in
general exponential operations in l (i.e., O(|D|l) where |D| is the cardinality of
the largest domain among the l variables). This can represent a computational
bottleneck depending on the specific application scenario.

At any time during the propagation of these messages, robot ri is able to
determine which value it should adopt such that the sum over all the robots’
utilities is maximised. This is done by locally calculating the belief function,
zi(xi), from the messages flowing into robot i’s variable node:

zi(xi) =
∑
g∈Mi

rg→x(x) (4)

and then finding arg maxxi
zi(xi)

The max-sum iterative message passing process terminates when the mes-
sages reach a fixed point (i.e., new messages are identical to previous messages).
However, the max-sum algorithm is guaranteed to converge to a fixed point only
if the factor graph is acyclic and in this case it computes the optimal assign-
ment. In more general settings, there are only limited guarantees on convergence
and solution quality [38], however extensive empirical results [12, 21] show that
when executed on a loopy factor graph max-sum often achieves very good solu-
tions. Since in these cases convergence is not guaranteed the iteration process
is usually performed for an arbitrary (relatively small) number of coordination
cycles.

The max-sum algorithm has been recently used in various application do-
mains and specifically for coordination of multi-robot systems [13, 1, 4]. How-
ever, as mentioned above the computational complexity associated to the mes-
sage update step for function-to-variable messages can be a problem when there
are factors that depends on several variables or when the domain of the variable
is large. In the next Section we describe a recent, promising direction to combat
this bottleneck.

2.4. Binary Max-sum and Tractable Higher Order Potentials

As mentioned above the max-sum algorithm is a widely used tool in the prob-
abilistic graphical model community. In such community, the computational
bottleneck for the message update phase has been recently addressed by Tar-
low and colleagues [35] which have shown that for specific types of constraints
such message update can be reduced to polynomial time (between O(k) and
O(k log(k))), depending on the constraint types, where k is the number of
variables connected to the constraint. These constraints are called Tractable
Higher Order Potentials (THOPs) and authors have shown that by exploiting
the specific structure of these constraints it is possible to update messages while
avoiding the complete enumeration of all variables’ configurations. Tarlow and
colleagues identify several types of THOPs, however the most important ones,
and the ones that we will use here, are the so called cardinality potentials. The
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distinctive feature of these potentials is that the value of the associated func-
tion depends on the number of variables that are active (i.e., the number of
variables that take value 1), but not on which specific variable is active. In
general, a cardinality potential can be expressed as f(X) = f ′(na(X)), where X
represents one possible configuration of the variables and na(X) =

∑
xi∈X xi,

i.e., the number of active variables in the configuration encoded by X. Tarlow
and colleagues have shown that for cardinality potentials the complexity of the
message update phase for function-to-variable messages (i.e., equation 3) can
be reduced to O(k log(k)). Particular cases of cardinality potentials are strict
cardinality potentials such as OneAndOnlyOne, AtMostOne and AllZeros. For
some of these strict cardinality potentials it is possible to devise even more effi-
cient procedures to update the messages, and in particular Pujol-Gonzales and
colleagues in [31] show that for OneAndOnlyOne potentials the messages can
be computed in O(k).

As mentioned, such reduced complexity is possible only for constraints that
exploit a specific structure, however, previous work has shown that for many
application domains such potentials are expressive enough to encode the re-
lated optimization problem [31, 30]. Specifically, cardinality potentials are very
frequently used for encoding coordination problems. For example in a task as-
signment problem one typically must express that at most one robot is assigned
to one task, this can be easily represented as a function that returns 0 for all
configuration where at most one variable is active, and −∞ otherwise (assuming
a maximization problem).

Typically THOPs are defined over binary variables hence the associated so-
lution technique is called Binary Max-Sum. The main idea to represent a task
assignment problem with a binary model (i.e., a model where the domain of ev-
ery variable can take only 2 values) is to use decision variables to represent the
fact that a specific robot is allocated to a specific task. In more detail, if a vari-
able ri has a domain Di = t1, · · · , tk (i.e., robot ri can be assigned to k tasks), in
the binary model we have k decision variables < ai,1, · · · , ai,j , · · · , ai,k > where
ai,j = 1 represents the fact that robot i is allocated to task j and ai,j = 0 means
that the robot is not allocated to the task. Moreover, if a robot can execute only
one task we must also create a k-ary constraint Si(ai,1, · · · , ai,j , · · · , ai,k) that
ensure that only one variable will be active for each robot (i.e., ∀i;

∑
j ai,j ≤ 1).

To better see this, Figure 3 reports the binary versions of the factor graph in
Figure 2. The diagram shows the binary variables that represent robots’ de-
cisions and the factors that ensure one robot will only execute one task at a
time. For example variables {x21, x22, x23} represent the possible allocations
for robot r2 and the factor S2 ensures that only one of those variables will be
active. Moreover, for each task (e.g., t1) we have one factor that encodes the
value (or penalty) for having more than one robot allocated to that task (e.g.,
C1) and one factor for each robot that encodes how well each robot can perform
that task in isolation (e.g., u12 and u21). These last factors are unary factors as
they depend only on one variable, and take into account all elements that are
specific for a task and a robot, such as the distance from the robot to the task,
robot’s capabilities related to the task (e.g., whether the robot can perform the
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actions required by the task) and so forth.

Figure 3: The binarized version of the factor graph reported in Figure 2.

Summarizing, to have a tractable message update phase for the max-sum
approach we can create a model that is composed of binary variables and con-
straints that are THOPs. In Section 3 we provide such a model for our specific
application scenario.

3. A Binary Max-Sum Approach for MRS Coordination

In this Section we detail our reference scenario for MRS coordination and then
we provide a binary THOP model of such scenario.

3.1. Problem Description

Our reference scenario is based on a warehouse that stores items of various
types. Such items must be composed together to satisfy orders that arrive
based on customers’ demand. For example, think of a wholesale bookseller
that sells books to bookshops. To reduce transportation costs associated to
the book delivery the wholesale bookseller waits for several single-book orders
to queue up and packages the books into one case that is then shipped to the
bookseller. Hence, in our reference scenario we have items of various types that
are stored in particular sections of the building (i.e., loading bays) and must be
transported to a set of unloading bays where such items are then packed together
by human operators. The set of items to be transported and where they should
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go depends on the orders. Here we do not consider the optimization process
associated to which of the orders that the wholesaler receives should be passed
on to the warehouse transportation system, instead we consider only the problem
of serving the orders once they have been passed on to one of the unloading bays.
Hence, in our domain, a set of robots is responsible for transporting items from
the loading bays to the unloading bays and the system goal is to maximize the
throughput of the orders, i.e., to maximize the number of orders completed in
the unit of time. Now, robots involved in transportation tasks move around
the warehouse and are likely to interfere when they move in close proximity,
and this can become a major source of inefficiency (e.g., robots must slow down
and they might even collide causing serious delays in the system). Hence, a
crucial aspect to maintain highly efficient and safe operations is to minimize the
possible spatial interferences between robots. Specifically, here we propose to
take this interferences into account in the task assignment process and assign
tasks to robots so to reduce the possible interferences among the transportation
robots.

Figure 4: A schema of an exemplar scenario with 3 loading bays {L1, L2, L3},
2 unloading bays {U1} and 2 robots {r1, r2}. The line segments {I1, I2, I3}
represent the routes that connect the loading and unloading bays. We assume
that the distance d1,3 between U1 and L3 is greater than d1,1 and d1,2.

Figure 4 reports a diagram depicting a schema of an exemplar scenario for
our warehouse coordination problem. The scenario includes, three loading bays
{L1, L2, L3}, one unloading bay {U1} and two robots {r1, r2} positioned in U1.
The line connecting the bays represent the optimal route that robots should
follow to transport items, and we indicate relevant segments of this route with
{I1, I2, I3}. When robots move across the bays they will go through some of
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this segments, for example if robot r1 must go from U1 to L1 it will go through
segments {I1, I2}. We consider a spatial interference when two robots must
traverse the same segments to complete their tasks, hence our goal is to assign
tasks to robots while minimizing such spatial interferences. For example, assume
we have three tasks that involve transporting one item from each of the loading
bays to the unloading bay: {< L1 → U1 >,< L2 → U1 >,< L3 → U1 >} and
that both robots can execute all such tasks. Moreover, we assume that the travel
distance from U1 to L3 is greater than both the distances to L1 and L2. In this
case, if we do not consider the spatial interferences, one of the best allocations
(i.e., the ones that minimize travel time for all robots and consequently the task
throughput) will assign r1 to L1 → U1 and r2 to L2 → U1,3, however this will
create a spatial interference on segment I2 that might significantly slow down
the actual task completion time. On the other hand assigning r1 to L2 and r2
to L3 will result in a longer travel time but it will avoid any spatial interference.

In what follows we provide a binary THOP model for this task assignment
problem that explicitly takes spatial interferences into account.

3.2. Formalization

We formalize the MRS coordination problem described above as a task alloca-
tion problem where robots must be allocated to transportation tasks. In our
formalization we impose that robots can execute only one transportation task
at a time, hence we do not explicitly represent sequence of tasks for the single
robot, moreover, if transportation tasks are more than the available robots (as
it is usually the case in most practical scenario) at each time step only a sub-
set of the tasks will be allocated. However, since the task allocation process is
repeated over time robots effectively serve a sequence of tasks. The rationale
behind this choice is twofold: first, since we assume no knowledge on future
orders for the warehouse we prefer to avoid planning ahead of time as the situa-
tion may drastically change, e.g., a new order arrives that should be served first.
Second, we aim at solving the allocation problem in a small fraction of time so
to operate in real-time, hence we prefer to avoid reasoning over the sequence
of task allocation. Moreover, we impose that one transportation task can be
executed by only one robot, this is to avoid interferences for the loading and un-
loading operations. Following the taxonomy proposed by Gerkey and Mataric in
[17], this is a single-task, single-robot, instantaneous-assignment problem. How-
ever, as mentioned above, we explicitly consider the spatial interferences among
robots that move in the warehouse, hence we try to find an assignment that
maximizes the task throughput considering possible delays due to such spatial
interferences.

In more detail, our model considers a set of items of different types E =
{e1, · · · , eN}, stored in a set of loading bays (Li). Each loading bay con-
tains items of the same type. The warehouse must serve a set of orders O =

3Here we consider only the instantaneous allocation problem, the allocation process will
then be repeated for the remaining tasks.
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{o1, · · · , oM}. Orders are processed in one of the unloading bays (Uj) one at
a time. Each order is defined by a vector of demand for each item type (i.e.,
the number of required items to close the order). Hence, oj = 〈d1,j , · · · , dN,j〉,
where di,j is the demand for order j of items of type i. When an order is finished
(i.e., all required items have been unloaded to the bay) a new one arrives, and,
as mentioned before, we assume to have no knowledge on future orders.

The orders induce a set of N × M transportation tasks T = {ti,j}, with
ti,j = 〈di,j , Pi,j , pri,j〉, where ti,j defines the task of transporting di,j items of
type i (hence from loading bay Li) for order oj (hence to unloading bay Uj).
Each task has a set of edges Pi,j that form the shortest path going from Li to Uj .
pri,j is the priority for the task that is provided as an input to the transportation
system, this can be related to the urgency of the order or to specific commercial
agreements between the wholesaler and the order recipients4.

We have a set of robots R = {r1, · · · , rK} that can execute transportation
tasks, where each robot has a defined load capacity for each item type Ck =
〈c1,k, · · · , cN,k〉, hence ci,k is the load capacity of robot k for items of type i.

The allocation of robots to transportation tasks is encoded by an allocation
matrix A = {ai,j,k} where ai,j,k = 1 if robot rk is allocated to transportation
task ti,j and 0 otherwise. Hence we have a total of K×N ×M binary variables.
For each robot and each transportation task we define δi,j,k as a measure of
travel time required to perform task ti,j given current position for robot rk
(without considering possible interferences with other robots).

Notice that, when we allocate a robot k to a task ti,j we do not impose any
constraint on ci,k and di,j . This means that a robot k might be allocated to a
task ti,j even if the robot can not transport all the demand for that task in a
single trip (i.e., ci,k < di,j). In this case, we load on the robot k the maximum
amount of item units it is able to transport (i.e., ci,k). Then at the next task
assignment iteration we update the demand for the transportation task ti,j
accordingly (i.e., the new demand for the transportation task is di,j − ci,k).
In this way even tasks that require a higher demand than the capacity of the
robots will be accomplished in successive travels. Similarly, when ci,k > di,j
the amount of units we can transfer to the destination is min(ci,k, di,j). This
is reflected in equation 5 that defines the value of assigning a robot k to a
task ti,j (considering also the priority for the task and the travel time without
interferences).

vi,j,k = min(ci,k, di,j)(pri,j − δi,j,k) (5)

To represent spatial interferences among robots, we consider a set of trans-
portation line segments I = {I1, · · · , IQ}, and a mapping M from line seg-
ment to all pairs of transportation tasks and robots. Such mapping relates a
line segment with all the pairs < ti,j , rk > that use such line segment, i.e.,
M : Iq 7→ {ti,j , rk}q ⊆ T × R. A pair < ti,j , rk > uses a line segment Iq if

4While we set a uniform priority in the experiments of Section 4, we maintain this concept
in the model to show that our approach can incorporate such information.
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the shortest path that robot rk must perform to go from its current position to
the loading bay and then to the unloading bay uses the line segment Iq. The
interaction among robots happens on the line segments, where more robots on
the same line segment generate an interference, hence slowing down the opera-
tions. Such interferences, are defined by a function Iq(aq) that takes as input
all allocation variables related to line segment q, and penalizes the presence of
more robots on the line. Hence the function Iq(aq) = f(

∑
q aq) where with a

slight abuse of notation we indicate with q the indices of the pairs <task,robot>
related to line segment Iq as returned by the mapping M previously defined.
Specifically, we consider as f(

∑
q aq) = α(

∑
q aq)

η, with α ≥ 0 and η ≥ 0.
Given this our objective function is:

max
A

∑
i,j,k

vi,j,kai,j,k −
∑
q

Iq(aq) (6)

subject to:

∀k
∑
i,j

ai,j,k ≤ 1

i.e., one robot can do at most one task.

∀(i, j)
∑
k

ai,j,k ≤ 1

i.e., one task can be allocated to at most one robot.
Such constraints can be encoded in the objective function by including se-

lectors, which are functions that return zero for valid configurations and ∞
otherwise. In more detail, we have robot selector functions Rsk representing the
constraint that each robot can execute at most one task:

Rsk({ai,j,k}) =

{
0 if

∑
(i,j) ai,j,k ≤ 1

∞ otherwise

where variables {ai,j,k} are all decision variables that represent possible alloca-
tions for robot rk.

Moreover, we have task selector functions T si,j representing the constraint
that each task can be executed by at most one robot:

T si,j({ai,j,k}) =

{
0 if

∑
k ai,j,k ≤ 1

∞ otherwise

where variables {ai,j,k} are all decision variables that represent possible robot
allocations for task Ti,j .

Hence the complete objective function is:

max
A

∑
i,j,k

vi,j,kai,j,k −
∑
q

Iq(aq)−
∑
k

Rsk({ai,j,k})−
∑
i,j

T si,j({ai,j,k}) (7)
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Figure 5: A binary factor graph model for the scenario represented in Figure 4.

Figure 5 reports a binary factor graph that encodes such objective function
for the exemplar scenario represented in Figure 4. The factors Rs1 and Rs2 rep-
resent the selector factors for the two robots and the factors {T s1,1, T s1,2, T s1,3}
represent the selector factors for tasks. The factors {I1, I2, I3} are associated
to the line segments and represent the possible spatial interferences among the
robots. Notice that I1 is linked only to variables {a1,1,1, a1,1,2} because such
segment will be used only by all robots associated to task T1,1 (i.e., to go from
the current unloading bay U1 to the loading bay L1 and back). Similarly I3
is associated to variables {a1,3,1, a1,3,2}. However, I2 is linked to variables
{a1,1,1, a1,1,2, a1,2,1, a1,2,2} because such segment will be used by all robots as-
sociated to task T1,1 and task T1,2. The connections between the I factors and
associated variables can be easily devised by knowing the set of edges Pi,j that
are associated to each task. Finally, each variable is associated to a unary factor
that encodes task-robot specific features. In our case the unary factor encodes
the function Ui,j,k(ai,j,k), where Ui,j,k(1) = vi,j,k and Ui,j,k(0) = 0.

We solve this model by using the max-sum algorithm where the message
update phase exploits the structure of the higher order potentials as described
in Section 2.4. In particular, the model involves one selector factor for each
transportation task, one selector factor for each robot, one selector factor for
each line segment and one unary factor for each variable. Hence if we have S
transportation tasks, K robots and Q line segments we have S × K variables
and a total of S × K + S + K + Q factors. For unary factors, the message
derivation is not a problem as they will always send the same value (i.e., the
factor Ui,j,k will always send the value vi,j,k). All not-unary factors are cardinal-
ity potentials hence the complexity of the message update phase is linearithmic
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(i.e., O(k log(k))). Hence the message update phase is extremely efficient and it
is possible to handle extremely large factor graphs (i.e., comprising thousands
of variables/factors see [16] for example).

The binary factor graph depends on the transportation tasks that are present
in the system, hence it can change each time a task is completed. However, in
this work we wait for all robots to finish their current tasks before building a
new factor graph. The new factor graph is built by removing all tasks that
have been executed, by considering all new tasks that may have appeared in
the system and by updating the demand for all tasks that have been partially
executed. Such factor graph is then solved by running BMS for a fixed amount
of iterations and the decision is implemented by the robotic platforms that
execute the tasks they are assigned to. This more conservative approach avoids
task re-allocation that might be problematic in a logistic scenario where picking
up and placing objects might require human intervention or might be difficult
to be accomplished by the robots.

In the next session we describe our empirical evaluation of our approach.

4. Empirical Evaluation

In this Section we present the empirical evaluation of our approach. The goal of
our empirical evaluation is: i) to validate the use of our DCOP model for task
assignment in our logistic scenario; ii) to evaluate the performance of our BMS
approach as opposed to other heuristic techniques for DCOPs. As mentioned in
Section 2.3, providing the optimal solution for a DCOP is an NP-hard problem.
Hence, for most practical settings it will be not feasible to compute an optimal
allocation. While we could compute the optimal solution for small instances
(i.e., few transportation tasks, few robots) this would not provide significant
information on the quality of solutions returned by BMS for realistic scenarios.
To this end we compare our BMS approach against DSA which is a standard
greedy heuristic for solving DCOPs. Section 4.1 describes our implementation
and the empirical methodology in more detail, while Section 4.2 presents and
discusses the achieved results.

4.1. Implementation and Empirical Methodology

The BMS approach has been implemented using C++ language, the ROS frame-
work and the Gazebo simulator for the scenario. The ROS architecture is in-
trinsically distributed therefore it is an ideal candidate for testing our decen-
tralized coordination approach. In particular, the factor-graph nodes should
be distributed over the agents. We define two kinds of agents which will be
responsible for the message computation:

1. robot agents. They are in charge of the messages related to i) the variables
that define the possible allocations of the robot; ii) the unary value factors;
iii) the robot selector factor. For example, considering Figure 5 the robot
agent for robot r1 will be in charge of the message update for the variables
{a1,1,1, a1,2,1, a1,3,1}, for the unary factors {U1,1,1, U1,2,1, U1,3,1} and for

18



the selector factor Rs1. This agent runs on the computational node that is
in charge of controlling the robot.

2. supervisor agent. This agent is in charge of those factors “shared” among
more robots such as those representing the spatial interferences and the
tasks mutual activation. In our implementation we decide to have this
agent running on the robot that has the lowest id among the ones that
share each factor. For example, considering Figure 5, the supervisor agent
will be in charge of all the three Iq factors and the three T sij factors, and
it will be hosted by the computational node for robot r1. This choice does
not have any impact on the execution of the algorithm but only on the
computation and communication load for the computational node. This
has never been an issue in our experiments.

The robot capacity for each kind of product (i.e., the Ck vector defined in
Section 3.2) is chosen randomly over a standard normal distribution. The agents
exchange all the messages over a local network hosted in a pc with standard
features: 8 core Intel i7, 4GB RAM, 10MB cache. In our experiments, we fixed
the number of total iterations for BMS to 10, according to our results this always
allows the algorithm to converge to a valid solution (in the variable assignment).

The effectiveness of the BMS approach has been evaluated comparing with
the DSA approach [15]. The DSA activation probability threshold has been
empirically tuned over the Scenario 2 described in Table 1 and fixed to pa = 0.7.

Our warehouse logistic scenario is defined by the number of loading and
unloading bays, the number of robots, the topology of the environment and
the orders that the transportation system must serve. The number of load-
ing/unloading bays and the number of robots is an input that defines the specific
scenario. As for the orders, a random order generator creates a set of loading
bay requests for each unloading bay (the number of items to be collected from
that bay is chosen randomly between 0 and 4 items). Hence for each scenario
the number of orders depends on the number of loading and unloading bays.
Moreover, depending on the demand and on the robot capacity, the number
of orders induces a number of transportation tasks that are executed by the
robots. On average in our experiments the number of transportation tasks for
one scenario varies between 20 to 40 for each unloading bay. For each scenario
the experiment will continue as long as all the orders have been served, and
after each run of the task allocation algorithm the warehouse status is updated
removing the transportation tasks that have been executed and updating the
demand for those that have been partially completed (see Section 3.2). The new
warehouse status is the new input for the task allocation algorithm (i.e., BMS
or DSA). Hence for each scenario we have several runs of the task assignment
algorithms.

Figure 6 reports an example of the warehouse topology scheme used in our
experiments while Figure 7 reports a screenshot from the Gazebo simulator for
a specific example with 5 loading bays, 3 unloading bays and 2 robots. The
same warehouse logistic scenario is then solved by both the BMS and the DSA
algorithm.
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Figure 6: Warehouse topology scheme.

Figure 7: Warehouse topology example in Gazebo, with 5 loading bays, 3 un-
loading bays and 2 robots.

The two algorithms has been compared using scenarios similar to those de-
scribed in Section 2.1 where the number of loading bays is higher than the
number of unloading bays. This is a typical situation for warehouses, as usually
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a wholesaler has several items types (e.g., books) but it will typically have few
carriers that distribute the items in the local area. To evaluate our algorithm
in different operative conditions and to assess how the various parameters influ-
ence the performance of the system, we vary the number of loading/unloading
bays and the number of robots in the system. In more detail, we used seven
scenarios described in Table 1.

# loading bays # unloading bays # robots
Scenario 1 5 3 2
Scenario 2 20 7 5
Scenario 3 20 5 5
Scenario 4 30 20 20
Scenario 5 30 20 15
Scenario 6 30 20 10
Scenario 7 20 5 10

Table 1: Main parameters for the scenarios used in the experiments.

To assess the performance of the approaches we consider the following mea-
sures:

1. The average robot interferences: the average number of robots using the
same line.

2. The effective interactions: the highest number of robot using the same
line.

3. The Average Task Completion Time (ATCT): the time required to com-
plete a transportation task.

The first two metrics describe the interferences on the routes and are connected
with task throughput. That is, the higher the interferences the higher is the
travel time for moving from a bay to another. The third metric is a direct
measure of the throughput (the lower the better).

4.2. Results

Tables 2, 3, 4 report the above defined metrics for each scenario. Our results
show that BMS is more effective than DSA for what concerns robot interac-
tions. Such better performance requires a higher number of messages exchanged,
nonetheless, these numbers are not problematic for the bandwidth of communi-
cation networks typically used in robotics (e.g., IEEE 802.11). The BMS usually
does not improve massively the number of robots over each line on average (av-
erage interferences), but it fully shows its potential in limiting the maximum
number of interferences and reducing the average completion time for the tasks.
In other words, the BMS avoids critical situation for robot interferences where
several robots attempt to use the same route. Comparing the Table 3 and 4 we
can see that, when the number of robots and loading bays are fixed, the perfor-
mance improvement of BMS over DSA significantly increases with the number
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of unloading bays. This is because BMS is able to find assignments of higher
quality that better distribute robots over the available routes, hence reducing
robot interferences.

Avg. robot int. Effective interactions ATCT (s)
BMS 1,098 1,353 33,72727
DSA 1,299 1,750 45,21429

BMS imp. 18,30% 29,32% 34,06%

Table 2: Results of the scenario with 2 robots, 3 unloading bays, 5 loading bays.
Comparison between the DSA and BMS performances.

Avg. robot int. Effective interactions ATCT (s)
BMS 1,332 2,130 40,30989
DSA 1,836 3,429 62,20257

BMS imp. 37,81% 60,93% 54,31%

Table 3: Results of the scenario with 5 robots, 20 loading bays, 7 unloading
bays. Comparison between the DSA and BMS performances.

Avg. robot int. Effective interactions ATCT (s)
BMS 1,635 2,565 40,30989
DSA 2,100 3,842 50,67556

BMS imp. 28,49% 49,78% 25,71%

Table 4: Results of the scenario with 5 robots, 20 loading bays, 5 unloading
bays. Comparison between the DSA and BMS performances.

Experiments on scenarios 4, 5, 6 are designed to investigate both the run
time for the two algorithms and the time needed for completing a single trans-
portation task. Specifically, Table 5 reports results for the run time. Results
show that the DSA is significantly faster than BMS. However BMS can still
solve the problem in seconds hence being suitable for on-line task assignment.
In fact, the computation time is significantly smaller than the time required by
the robots to complete a task (see Table 5).

Figure 8 compares the average time to complete a transportation task for
DSA and BMS. In this experiment the maximum speed for robots is 0.5 m/s
and the average distance between loading and unloading bays is about 3 meters.
Results show that DSA always incurs a higher completion time. This is because
it finds solutions of lower quality with respect to BMS, hence the chance that
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a robot must to stop to avoid collisions with other robots is higher5. Moreover,
notice that the improvement in performance between BMS and DSA increases
when the number of robots increases (e.g., with 20 robots the completion time
for BMS is almost half of the completion time for DSA). This confirms that BMS
can better manage the interactions between robots significantly improving the
throughput of the system.

Robots DSA Run time (s) BMS Run time (s)
10 0,01 1,98
15 0,02 2,13
20 0,03 2,47

Table 5: Run time for the task allocation algorithms.

Figure 8: Average completion time for a transportation task, the y axis reports
time in seconds, the x axis reports the number of robots.

Finally, in scenario 7 we have more robots than unloading bays, hence the
possibility of having interferences between robots is higher, as more robots might
be allocated to the same unloading bay. Table 6 shows that in this situation
the improvement in performance for BMS is more evident in terms of average
robot interference and effective interactions.

5. Conclusions

This paper investigates the use of modern coordination approaches, based on
graphical models, for task assignment in MRS. Specifically, we consider the
task assignment problem related to warehouse logistic operations, where robots
must transport materials from loading bays to unloading bays while minimizing

5Notice that, when two or more robots could collide, the simulation provides a random
order of priority where just one robot per time can move until all the possible collisions are
resolved.
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Avg. robot int. Effective interactions ATCT (s)
BMS 3,2 4,0419 14,5295
DSA 5,2215 5,75 16,03553

BMS imp. 63,17% 42,26% 10,37%

Table 6: Results for the scenario with 10 robots, 20 loading bays, 5 unloading
bays. Comparison between the DSA and BMS performances.

interferences. In more detail, we provide a broad analysis of previous approaches
for MRS coordination, focusing on task assignment, and we present a detailed
description of graphical model approaches to coordination. Crucially, we devise
a specific DCOP model for our task assignment problem, where variable are
all binary and constraints are only THOPs. This allows us to use the BMS
approach to efficiently solve our task assignment problem. Finally, we evaluate
our approach in a simulation environment, comparing the BMS approach to
a greedy local solution (i.e., DSA). Results show that BMS provides superior
performances.

We believe that our work takes a first important step towards the use of
graphical models for MRS task assignment in logistic scenarios, opening up a
novel promising direction for MRS coordination in industrial domains.
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