SPQR-RDK: a modular framework for
programming mobile robots

Alessandro Farinelli, Giorgio Grisetti, Luca Iocchi

Dipartimento di Informatica e Sistemistica
Universita “La Sapienza”, Rome, Italy
Via Salaria 113 00198 Rome Italy

E-mail: <lastname>@dis.uniromal.it

Abstract. This article describes a software development toolkit for pro-
gramming mobile robots, that has been used on different platforms and
for different robotic application. In this paper we address design choices,
implementation issues and results in the realization of our robot pro-
gramming environment, that has been devised and built from many peo-
ple since 1998. We believe that the proposed framework is extremely
useful not only for experienced robotic software developers, but also for
students approaching robotic research projects.

1 Introduction

Research on developing autonomous agents, and in particular mobile robots,
has been carried out within the field of Artificial Intelligence and Robotics from
many different perspectives and for several different kinds of applications, and
the development of robotic applications is receiving increasing attention in many
laboratories. Moreover, robotic competitions (e.g. AAAT contexts, RoboCup,
etc.) have encouraged researchers to develop effective robotic systems with a
predefined goal (e.g. playing soccer, searching victims in a disaster scenario,
etc.). These robots have been obviously used not only for these competitions,
but also for experimenting the research techniques developed within robotic
research projects. Moreover, mobile robots are also used for teaching purposes
within computer science laboratories and often students are required to work
and develop robotic applications on them!.

This increasing population of robots in the research laboratories and the con-
sequent need for developing robotic applications have started a process of design
and implementation of robotic software, that aims in a special way at having
a design methodology and a software engineering approach in the development
of such applications, which integrates several functionalities and architectural
choices that go beyond the scope of conventional robotic applications.

Furthermore, companies producing and selling mobile robots make available
to their users development libraries and software tools for building and debug-
ging robotic applications (e.g. Saphira for Pioneer robots [4], OPEN-R SDK for

! e.g. CMRoboBits Course at CMU http://www.andrew.cmu.edu/course/15-491/.



Sony AIBO [5], etc.). These tools are obviously platform dependent and thus
they cannot easily be used for building multi-platform robotic systems, and also
they usually lack some features that are required from a general purpose robot
development toolkit. For instance, the OPEN-R SDK completely lacks facilities
for remote monitoring the behavior of the robot. It just support wireless network
communication among processes and all the remote information exchange must
be explicitly coded. On the contrary, the Saphira environment, although it is
specifically implemented for the Pioneer robots, has several facilities for build-
ing robotic applications and debugging them also by using a Pioneer simulator
and allowing for a graphical display of the robot status.

Finally, a number of open source multi-platform robotic development envi-
ronments have been realized. For example, OROCOS (Open RObot COntrol
Software)? is an European project that has recently started with the objective
of realizing a framework for developing robot control software under Real Time
Linux. This project has many general goals, like independence to architectures
used for connecting the components together, to robot platforms, to robotic de-
vices, to computer platforms. The OROCOS project has a long time target and
it is currently under development. Player/Stage [2] is also a general framework
for controlling a robotic system. Player supports a wide range of devices, algo-
rithms and viewers, that can be tested through Stage, a simulator able to work
on complex multi robot scenarios. Each of these devices can be either a server
or a client, allowing for a great flexibility in spreading the computation on dif-
ferent machines. However, Player/Stage provides only limited support for high
level specification of user-defined modules and their interaction. CARMEN? com-
prises a set of independent utilities, that communicate with each other through
the UNIX inter process communication facilities. This framework has been used
for implementing a set of interesting algorithms, but it is mainly suited with the
low level activities of the robots (such as navigation and exploration). Also the
works in [7, 8] are focused on proposing robot middle-ware that are not specific
to a given platform or to a particular application domain. In particular, the sys-
tem presented in [8] is explicitly focused on the realization of soccer applications,
while in [7] mostly low level interface issues are addressed.

In this paper we describe a Robot Development Toolkit (RDK) for modular
programming of mobile robots. The toolkit we have realized includes a middle-
ware that implements all the basic requirements for the development of a typical
robotic application, a set of modules implementing the basic functionalities of the
robot, and a set of tools that are useful for developing, monitoring and debugging
the entire application. In particular the middle-ware implements an infrastruc-
ture for: task management, interfacing with the robot hardware, representation
of the status of the robot, remote monitoring and debugging.

Our development toolkit is currently named SPQR-RDK, and is available to

be used by robotic programmers?.

2 Orocos project, www.orocos.org.
3 Carmen project, www-2.cs.cmu.edu/~carmen/
4 Available from http://www.dis.uniromal.it/~spqr/.



We are currently using our framework for developing different kinds of robotic
applications: i) RoboCup soccer [3] ii) RoboCup Rescue [6] iii) RoboCare [1] -
a project for developing a multi robot system for assistance of elderly people in
a health care house. The development of these applications has given us a real
testbed for evaluating the proposed RDK and, by a comparison with the devel-
opment of similar applications by using a different development environment (in
particular, we refer to the robotic soccer application with Sony AIBO robots by
using OPEN-R SDK), we have experimented the effectiveness of our toolkit.

2 Design Choices

During the development of our RDK, we have identified a set of fundamental
functionalities and a set of software requirements needed for our framework.

As our applications have been developed through the years by different peo-
ple which were able to work at the application only for a limited period of time,
modularity and re-usability appear to be the main issues to address: the proper
division of the code in independent modules exchanging data inside a clear frame-
work ensures to have a coherent software generation, resulting in highly modular
and re-usable code. Efficiency is also a primary requirement, the middle-ware
needed for running the modules must have a minimum overhead with respect to
the entire application. Moreover, the hardware computational capabilities must
always be considered, posing strict constraints on the implementation choices
for our middle-ware; therefore most of the design choices that we have done
(e.g. language, operating system, shared memory for information exchange) are
motivated by this requirement.

As for functionalities we have identified three main issues to be addressed:
i) Remote Inspection Capability ii) Information Sharing iii) Common
Robot Hardware Interface.

Remote Inspection is a fundamental functionality for every robotic appli-
cation. The Remote Inspection mechanism, should allow the developers to use a
general mechanism for remote inspecting the internal status of the application,
with limited network bandwidth and with minimum computational overhead
with respect to the normal execution of the robotic application.

Another important problem that we have faced during our past developments
has been the exchange of data among modules. A basic use of shared memory,
without any data access policy, is not satisfactory because the management of
all the shared data in the program can become very complex. Similarly, the
use of message exchanging typically arises the same problems and may also
affect modularity of the system, when a module is implemented by including the
details of other interacting modules. Therefore, an important functionality for
the RDK is an Information Sharing mechanism providing a uniform interface
and a policy for sharing data among modules.

When dealing with several different types of mobile bases and sensing de-
vices the independence of the application from the low level details of platforms
and devices becomes an important issue. Hence, the development of a Robot



Hardware Interface has been detected as another important functionality: a
uniform interface has to be defined between robot devices and user modules, and
hardware configuration is described in a configuration file.

3 Software Architecture and Implementation of the
Middle-ware

Pluggable User Modules

Robot Remote Robot
Task .

Hardware Inspection | perceptual
Manager

Interface Server Space

Robot Low Level

Library Process Scheduler

Fig. 1. Middle-ware Architecture Layered View

The RDK we are presenting in this article is based on a middle-ware that
provides the basic functionalities for the development of robotic applications.
This middle-ware is composed by a minimum set of modules, common to all
the applications that can be developed within our framework. In particular, the
middle-ware is made up by the following modules Robot Hardware Interface,
Task Manager, Robot Perceptual Space and Remote Inspection Server
as shown in Figure 1. In the following a description of each of those modules is
given.

3.1 Robot Hardware Interface

The Robot Hardware Interface implements a level of abstraction with respect
to the specific mobile base in use, providing the user with a common interface
for accessing all the robotic platforms and devices. We decided to model this
abstraction by exploiting the fact that usually each robotic platform comprises
several sensors and actuators (devices), but only one mobile base. For robots
and devices we implemented an abstract interface through a class hierarchy; in
this way robots and devices of the same kind can be accessed through a common
interface, and a user module can thus directly access the information and the
services provided by a device, using the more general class needed. Moreover,
by enforcing the abstraction on the robot hardware, it is possible to port all the
written software on a new mobile base, simply by writing the low level interface.

The Robot Hardware Interface (RHI) module encapsulates the functional-
ities for accessing the mobile base and the on board devices and provides an
abstraction for: i) mobile robot kinematics, by implementing the functions for
reading odometry and for controlling the motion that are specific to a mobile



platform kinematics model (for example, distinguishing holonomic® mobile bases
from unicycle-like® ones); ii) mobile base connection, by providing a standard way
to access the mobile base and its specific control functions.

Each mobile base is generally equipped with various kinds of sensors and
actuators like sonar rings, laser scanners, cameras, kickers (in the case of our
soccer robots) and so on, that are generically defined as Dewvice. These devices
are connected to the robot and grouped in a set of hierarchical classes.

Both devices and robot drivers can be replaced by simulators or players of
real data streams recorded before, allowing for off-line application development
and debugging.

3.2 Task Manager

The Task Manager has been designed in order to allow the user to dynamically
load his/her modules, to specify their execution features (i.e. execution period,
scheduling policy, priority and so on) and to export the information to be shared
among them.

A first feature of the Task Manager is to allow the users to easily define the
scheduling policy of their modules by wrapping the Linux thread libraries.

Moreover, the Task Manager allows for the exchange of information among
modules. When modules need to directly exchange information each other, the
simplest solution is to couple them. However, this simple solution has the effect
of limiting the software modularity and may results in cyclic references which
are difficult to resolve in the linking phase.

Therefore, besides the mechanism of directly coupling two modules, the Task
Manager offers another possibility to exchange information, by abstracting on
the type of information. In fact, if a module needs data provided by some other
module, it only needs to know where to read such data and when the data are
available. On the other hand, a module that produces information can easily de-
clare the kind of such information without knowing which user module will use
it. This solution grants a complete independence among modules sharing data
and it is possible to substitute a module with another, by only ensuring that the
two modules produce the same kind of data. This mechanism has been used for
sharing information among user modules, as well as between a device and a user
module. Notice that the such mechanism requires the use of a shared memory
thus limiting the spreading of computation on different machines. However, dis-
tributed robotic applications are currently not within the scope of our RDK and
solutions explicitly designed for such applications are already provided in other
programming frameworks (such as Times tool” or Charon®).

5 An holonomic robot has three degrees of freedom in its motion.

5 A unicycle robot has translational and rotational velocity bounded by a given kine-
matic law.

7 http://www.timestool.com/

& http://www.cis.upenn.edu/mobies/charon /examples.html



3.3 Robot Perceptual Space

The Robot Perceptual Space (RPS) contains all the information known by the
robot about the environment, and represents the current knowledge shared by
all the modules in the application.

The RPS defines a uniform interface for accessing its data, thus similarly
to the Task Manager provides a mean for information exchange. However, the
semantics of the information contained in the RPS is different from the informa-
tion shared through the Task Manager: RPS represents an updated snapshot of
the robot perception of the environment, and the information contained in the
RPS are specific to the robot application and thus generically useful for all the
modules; the information exchanged by user modules through the Task Manager
are instead parameters depending on the implementation of such modules and
not on the characteristics of the environment.

3.4 Remote Inspection

The lessons learned from the past difficulties in debugging our software yielded
to the design of a mechanism for remote control and debug that allows a module
to generate and export information that can be received and displayed by a
(graphical) remote client application (remote console). Information computed
within the user modules are of different kinds and should be represented in
different graphical forms: scanner readings, images, sonar readings, detected map
features, position hypotheses, etc.

In facing the problem of building a debug interface, a key issue is to consider
the high noise level and the latencies imposed by current wireless networks,
therefore particular care has to be given in keeping low the bandwidth require-
ments. According to this consideration it has been designed a sharing mechanism
that allows for a flexible run time selection of the information to inspect, in fact
avoiding the differentiation of a release version from a debug one. We have thus
chosen to implement a publish/subscribe mechanism for debugging information,
in order to allow the user for selectively monitor the data of interest.

The Remote Inspection Server (RIS) defined in our middle-ware exports fa-
cilities for publishing information that can be monitored by remote clients. The
publishing mechanism comprises two steps: The first one is refresh, where the
RIS copies the information requested by at least one client in a local buffer.
The second one is transmission, where the RIS performs the transmission of the
buffered information to the clients. In this way network latency only affects the
communication of the information to the remote host and not the efficiency of
the publishing module on the robot. During the normal operation, when it is
not needed to monitor the robot behavior in such a deep way, and clients do not
request information to the robot, there is no overhead at all, since the Remote
Inspection Server detects this situation and avoids useless computation.



4 Developing a robotic application: pluggable modules
and supervisor tools

The development of a robotic application requires the realization of a set of
modules implementing specific functionalities that must be appropriately con-
nected together. The middleware realized for our RDK is suitable both for the
realization and connection of the application modules.

It is interesting to notice that the composition of an application, in terms of
which modules are activated and how they are connected, is simply described in
a configuration file. Moreover, once we are satisfied with the robotic application
in the virtual environment, our framework allows for an easy interchangeability
of modules simulating the behavior of some sensors with actual sensor data
interpretation modules, in order to make the application work on a real robot.

Ball Pos,

Image
o) o8 B
(i conr) {0 B —

Range Points
Range Points

eadings
. Localizatior

S el
Action

ns
Plan Execution

Plans

Fig. 2. Real robotic soccer application Fig. 3. Virtual cleaning application

As an example in figure 2 and 3 two instances of robotic applications obtained
by implementing and connecting modules developed within our framework are
shown.

5 Conclusions

In this paper we have presented a framework (SPQR-RDK) for developing mod-
ular multi-platform robotic applications, that has been designed for providing
modularity, effectiveness and efficiency. This RDK allows a group of program-
mers to design and implement the modules composing a multi-platform multi-
robot application, having both remote control and remote debugging capabili-
ties, with a very small effort, by using a software engineering approach and by
focusing on the semantics of the information exchanged among the modules.
The main use of our framework is for people (mainly students) that want to
develop a solution for a single topic or for a specific application (e.g. localiza-
tion in an office-like environment, path planning with moving obstacles, multi
robot coordination in a soccer domain, etc.), by using available modules for all
the other capabilities of the robot. Our RDK provides these programmers with



an easy methodological tool for implementing the robotic application and also
it allows for easily evaluating the specific application developed under different
environment conditions and in comparison with different solutions.

The presented RDK has several advantages with respect to other robotic de-
velopment libraries distributed by robot producing companies (e.g. Saphira [4],
OPEN-R SDK [5], etc.), since it has been specifically designed for multi-platform
applications. Furthermore, differently from other general-purpose robotic devel-
opment tools, like the works in [7,8] or the tools CARMEN and Player-Stage,
our RDK provides in an integrated framework some important facilities, such
as easy and efficient implementation of modular solutions to a specific robotic
problem, remote control and inspection, information sharing, abstraction with
respect to the mobile base and the connected devices, and a set of useful tools
for developing typical robotic applications.

The SPQR-RDK is continuously increasing in the number of modules that
are realized for the different applications that are currently under development
within our group, but always maintaining the same middle-ware. This is an
important achievement for our group since having several modules that can be
combined for building different robotic applications with a small effort, allows
for developing different solutions to common robotic problems and to evaluate
them in several scenarios and in general to increase over time the quality and
the effectiveness of the robotic applications developed.

References

1. S. Bahadori, A. Cesta, G. Grisetti, L. Iocchi, R. Leone, D. Nardi, D. Oddi, F. Pecora,
and R. Rasconi. Robocare: an integrated robotic system for the domestic care of
the elderly. In In Proceedings of Workshop on Ambient Intelligence AI*IA-03, Pisa,
Italy, 1995.

2. B. P. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project: Tools
for multi-robot and distributed sensor systems. In In Proc. of the Int. Conf. on
Advanced Robotics (ICAR 2008), pages pp. 317-323, Coimbra, Portugal, June 30 -
July 3 2003.

3. H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsubara.
Robocup: A challenge problem for ai and robotics. In Lecture Note in Artificial
Intelligence, volume 1395, pages 1-19, 1998.

4. K. Konolige, K.L. Myers, E.H. Ruspini, and A. Saffiotti. The Saphira architecture: A
design for autonomy. Journal of Experimental and Theoretical Artificial Intelligence,
9(1):215-235, 1997.

5. Sony. Open-r sdk, http://www. jp.aibo.com/openr/.

6. S. Tadokoro and et al. The robocup rescue project: a multiagent approach to
the disaster mitigation problem. IEEE International Conference on Robotics and
Automation (ICRA00), San Francisco, 2000.

7. H. Utz, S. Sablatng, S. Enderle, and G. K. Kraetzschmar. Miro - middleware for
mobile robot applications. IEEE Transactions on Robotics and Automation, Special
Issue on Object-Oriented Distributed Control Architectures, 18(4):493-497, 2002.

8. Hui Wang, Han Wang, C. Wang, and W. Y. C. Soh. Multi-platform soccer robot
development system. In RoboCup 2001: Robot Soccer World Cup V, pages 471-476,
2001.



