
Task Assignment with Dynamic Token
Generation

Alessandro Farinelli, Luca Iocchi, Daniele Nardi, and Fabio Patrizi

University of Rome La Sapienza,
Dipartimento di Informatica e Sistemistica
Via Salaria 113, Rome, Italy
lastname@dis.uniroma1.it

Summary. The problem of assigning tasks to a group of agents acting in a dynamic
environment is a fundamental issue for a MAS and is relevant to several real world
applications. Several techniques have been studied to address this problem, however
when the system needs to scale up with size, communication quickly becomes an
important issue to address; moreover, in several applications tasks to be assigned
are dynamically evolving and perceived by agents during mission execution. In this
paper we present a distributed task assignment approach that ensure very low com-
munication overhead and is able to manage dynamic task creation. The basic idea
of our approach is to use tokens to represent tasks to be executed, each team mem-
ber creates, executes and propagates tokens based on its current knowledge of the
situation. We test and evaluate our approach by means of experiments using the
RoboCup Rescue simulator.

1 Introduction

The problem of assigning tasks to a group of agents or robots acting in a
dynamic environment is a fundamental issue for Multi Agent Systems (MAS)
and Multi Robot Systems (MRS) and is relevant to several real world applica-
tions. Many techniques have been studied to address this problem in different
scenarios, providing solutions that in different ways approximate the optimal
solution of the Generalized Assignment Problem (GAP), which consists in
assigning a predefined set of tasks (or roles) to a set of agents maximizing
an overall utility function that takes into account the capabilities of all the
agents in the team.

While GAP requires the definition of a static set of tasks, that must thus
be known in advance, in many application domains, tasks to be accomplished
are not known a priori, but are discovered dynamically during the execution
of the mission. Furthermore, when the system needs to scale up with size,
communication quickly becomes an important issue to address.

2 Alessandro Farinelli, Luca Iocchi, Daniele Nardi, and Fabio Patrizi

The problem of dynamic task assignment has been studied and experi-
mented by many researchers both in MRS (e.g. [3, 16, 10]) and in MAS (e.g.
[6, 4, 7, 13]) communities. Several different aspects of the problem have been
investigated and several approaches proposed. However, the growing com-
plexity of missions in which robots and agents are involved pushes toward the
development of novel solutions for task assignment, which are able to address
the more challenging issues posed by the applications. For example, auction
based approaches to task assignment, have been proved to fail in the RoboCup
Rescue domain, due to high communication requirements [8].

In this paper we present a distributed task assignment approach that is
able to dynamically discover new tasks to be accomplished according to the
situation perceived by the agents during the execution of their activities, and
to ensure very low communication overhead. We focus on task assignment for
teams operating in environments that need to meet (soft) real time constraints
in their mission execution, where agents involved have similar functionalities
but possibly varied capabilities. The reference scenario we are interested in
has the following characteristics: i) the domain and the number of agents
involved pose strict constraints on communications; ii) agents may perform
one or more tasks, but within resource limits; iii) too many agents fulfilling the
same task lead to conflicts that needs to be avoided; iv) tasks are discovered
during mission execution.

The basic idea of our approach is derived from previous work based on
token passing [12]. Tokens are used to represent tasks that must be executed
by the agents, and each team member creates, executes and propagates these
tokens based on its knowledge of the environment. The basic approach is
based on the assumption that one token is associated to every task to be
executed and that the token is maintained by the agent that is performing
such a task, or passed to another agent if the agent that has the token is not
in the condition of performing it.

In the case of dynamic discovery of the tasks to be performed and thus of
dynamic token generation, the token passing approach must be appropriately
extended in order to limit the number of tokens associated to the same task.
Indeed, in our reference scenario optimal performance is obtained when there
is a limited number of agents cooperating to execute the same task; when too
many agents operate on a single task the overall performance decreases, since
they ignore other tasks that evolve in a dynamic environment. The algorithm
presented in this paper allows every agent to generate tokens dynamically
whenever a task to be accomplished is perceived, while limiting the number
of tokens associated to the same task and minimizing the bandwidth (i.e.
communication messages among agents) required.

We test and evaluate our approach by means of experiments on a simu-
lated scenario, that models a team of fire-fighters engaged in fighting fires in
a city. To this end, we use the RoboCup Rescue simulator, that models the
evolution of fires in the buildings of a city, city traffic, fire-fighters actions
of extinguishing fires and communication among them. In this scenario, the

Task Assignment with Dynamic Token Generation 3

location of the fires are not known a priori and the fire-fighter agents find
them during their activities; in addition fires may unpredictably spread over
adjacent buildings if not extinguished in time. Moreover, communication con-
straints are very strict, since messages are both limited and costly (in terms
of simulation time steps).

The results that are reported in this paper show that the proposed exten-
sion of the token passing approach provides good performance in this scenario,
while maintaining a very low communication bandwidth and thus significantly
increasing the scalability of the system. Therefore, the proposed approach is
specifically well-suited for large scale teams operating in dynamic environ-
ment, as compared to other dynamic task assignment methods that require a
wider communication bandwidth.

2 Problem Definition

The definition of the problem considered in this paper is derived from the
GAP problem [14], which consists in assigning a set of tasks (or roles)
R = {r1 . . . rm} to a set of agents (or entities) E = {e1 . . . en} with differ-
ent capabilities for each task Cap(ei, rj) ∈ [0, 1] (i.e. a reward for the team
when agent ei performs task rj), different resources needed by the agents
for performing each task Resources(ei, rj), and the resources available for an
agent ei.resources. An allocation matrix A is used for establishing task as-
signment: ai,j = 1 if and only if the agent ei is assigned to task rj . The goal
for the GAP problem is to find such an allocation matrix, that maximizes the
overall capability function:

f(A) =
∑

i

∑
j

Cap(ei, rj)× ai,j

subject to:

∀i
∑

j

Resources(ei, rj)× ai,j ≤ ei.resources

∀j
∑

i

ai,j ≤ 1

For example, in the rescue scenario that we have considered in our exper-
iments, tasks are fires to be extinguished and agents are fire fighter brigades.
The capability of a fire fighter to extinguish a fire, maybe dependent on several
parameters, however a good approximation could be to consider the capability
as a function of distance from the fire; clearly, if the nearest fire fighter is al-
located to each fire the team gain a reward in terms of total traveled distance
and time to extinguish all the fires. Resources are represented by the amount
of water needed to put out fires.

4 Alessandro Farinelli, Luca Iocchi, Daniele Nardi, and Fabio Patrizi

The above formulation is well defined for a static environment, where
agents and tasks are fixed and capabilities and resources do not depend on
time. However, in several applications it is useful or even necessary to solve a
similar problem where the defined parameters changes with time.

For example, in the above mentioned rescue scenario, all the defined pa-
rameters clearly depends on time, (e.g. fire fighters capabilities are strongly
dependent on the environment evolution). Indeed several methods for dynamic
task assignment implicitly take into consideration such an aspect, providing
solutions that consider the dynamics of the world and derive a task allocation
that approximate solutions of the GAP problem at each time steps (see for
example [3, 16, 10, 8]).

The method described in this paper follows the line described above, and
aims at solving the GAP problem when the set of tasks R is not known a
priori when the mission starts, but it is discovered and dynamically updated
during tasks execution.

To describe our method we will use the following notation. We denote
that the set R depends on time with R(t) = {r1 . . . rm(t)}, where m(t) is the
number of tasks considered at time t, and we express the capabilities and
the resources depending on time with Cap(ei, rj , t), Resources(ei, rj , t), and
ei.resources(t). The dynamic allocation matrix is denoted by At, in which
ai,j,t = 1 if and only if the agent ei is assigned to task rj at time t. Conse-
quently, the problem definition is to find a dynamic allocation matrix that
maximizes the following function

f(At) =
∑

t

∑
i

m(t)∑
j=1

Cap(ei, rj , t)× ai,j,t

subject to:

∀t∀i
m(t)∑
j=1

Resources(ei, rj , t)× ai,j,t ≤ ei.resources(t)

∀t∀j ∈ {0, . . . ,m(t)}
∑

i

ai,j,t ≤ 1

3 Token Generation for Tasks Allocation

The main idea of the token passing approach is to regulate access to tasks
execution through the use of tokens, i.e. only the agent currently holding
the token can execute the task. Following this approach the communication
needed to guarantee that each task is performed by one agent at time is
dramatically reduced (see [2]).

If a task can benefit from the simultaneous execution of several agents, we
can decide to create several tokens referring to the same task. However, when

Task Assignment with Dynamic Token Generation 5

tokens are generated and perceived by agents during mission execution con-
flicts on tasks may arise. In this paper we will deal with two kinds of conflicts:
the first one is due to the fact that the same task can be perceived by several
agents during the missions, and if no explicit procedure is used the allocation
process has no control on the maximum number of agents operating on such
a task; this can lead to a consistent waste of resources and result in poor
performance. The second type of conflict arises when an agent accomplishes
a task and other tokens referring to the same task are still active, causing
agents to waste precious time in trying to accomplishing terminated tasks.

We explicitly address these problems by proposing an extension to the
algorithm presented in [2]. In the following, a Task refers to the physical
object or event that the agent perceives and that implies an activity to be
executed (e.g. a fire to be extinguished), therefore given a perceived object o
we define the related task T (o); a Token comprises the physical object related
to the task and an identification number, that identifies different tokens for
the same task, therefore given a task T (o) we may have a number s of tokens
TK(o, 1)...TK(o, s). The main idea of the proposed algorithm is that when
an agent perceives a task, it records this information in a local structure and
announces the presence of the task to all its team mates. Only the agent
that first perceives a new task (e.g. a fire) creates one ore more tokens for
it; conflicts that might arise due to simultaneous perception are addressed
and solved as explained later. Whenever, an agent accomplishes a task it
announces to the entire team the task termination, and each of the team
members removes the tokens referring to the accomplished task from their
local structures.

Using this approach conflicting tokens can still be created for two main
reasons: i) Contemporary task discovery: two agents e1 and e2 perceive
a new task t, creating a set of tokens Tk(t, 1)...Tk(t, s) exactly at the same
time, such that both agents will have different tokens referring to the same
task. ii) Messages asynchrony Assume we have three agents e1, e2, e3; if
e1 immediately after the creation of a new set of tokens Tk(t, 1)...Tk(t, s)
decide to send one of them, say Tk(t, j), to agent e3, this token will not be
found in the local structure of e1 when the announce messages of e2 arrives
and therefore will not be deleted; for e3 we can have two situations: a) the
message referring to token Tk(t, j) arrives before the announce message of e2

b) the announce message of e2 arrives before the message referring to token
Tk(t, j). In both these situations the token Tk(t, j) will not be deleted, and
the conflict will not be solved. Both these problems have been addressed and
solved in our approach as explained later in this section.

In the algorithm the following data structures are used: i) Known Tasks
Set (KTS) is a set containing at each time step all the tasks that has been
perceived by all the agents; ii) Token Set (TkS) is the set of tokens each agent
currently holds; iii) Temporary Token Set (TmpTkS) is a set containing the to-
kens created by the agent in the current time step; iv) Accomplished Tasks Set
(ATS) is a set containing at each time step all the tasks that have been accom-

6 Alessandro Farinelli, Luca Iocchi, Daniele Nardi, and Fabio Patrizi

Algorithm 1: Procedures for on line token generation
OnPercReceived(task)
(1) if (task 6∈ KTS)
(2) KTS = KTS ∪ task
(3) TmpTkS = TmpTkS ∪ T (task, 1) ∪ ... ∪ T (task, s)
(4) send(Msg(Announce,task))

OnMsgReceived(Msg)
(1) if Msg.type == AccomplishedTask
(2) ATS = ATS ∪ Msg.task
(3) if Msg.type == Announce
(4) if (Msg.task 6∈ KTS)
(5) KTS = KTS ∪ {Msg.task}
(6) else
(7) if Msg.senderId ≥ MyId
(8) TmpTkS = TmpTkS \ {T |∀jT (Msg.task, j)}
(9) if CurrentTask == Msg.task
(10) StopCurrentTask()
(11) if Msg.type == Token
(12) TkS = TkS ∪ Msg.Token

OnTaskAccomplishment(task)
(1) ATS = ATS ∪ task
(2) send(Msg(AccomplishedTask,task))

TokenManagement()
(1) TkS = TkS \ ATS
(2) TokenSet = ChooseTokenSet(TkS)
(3) SendTokenSet = TkS \ TokenSet
(4) Send(Msg(Token,SendTokenSet))
(5) TkS = TkS ∪ TmpTkSet
(6) StartTask(ChooseTask(TokenSet))

plished by all the agents each of this data structure is local to one agent. v) A
message has three fields: type ∈ {announce, accomplishedTask, token}, task
that contains information about the perceived task (e.g. fire position), valid
when type is announce or accomplishedTask; finally the token field is valid
only when the message is of type token and contains information about the
token (e.g. task position, Id number, visited agents etc.); whenever an agent
detects a new task through its perception it adds the new task to the KTS,
creates s tokens referring to the task and adds them in the TmpTkS, then
it Announce the new task to all its team members (Algorithm 1 OnPercRe-
ceived). Each team member when accomplishes a task sends an accomplished
message to all its team mates and update its ATS (Algorithm 1 OnTaskAc-
complishment). Each team member when receiving a message updates its local
structures as explained in Algorithm 1, OnMsgReceived. Whenever a task is

Task Assignment with Dynamic Token Generation 7

perceived, a new token is generated only if that task is not present in the
KTS. After tokens have been processed (Algorithm 1, TokenManagement)
the TmpTkS is copied in the TkS . Assuming that messages cannot get lost,
Algorithm 1 guarantees that when an agent a perceives a task T , that has
already been discovered before (i.e. that is present in the KTS), it will not
create new tokens for it, correctly assuming that someone else already has the
token(s) for T .

Notice that OnPercReceived, OnMsgReceived and OnTaskAccomplish-
ment are asynchronous procedures, triggered by particular events; theoret-
ically all the possible interleaving of their execution could occur, however, if
we assume that each procedure is atomic (which is a reasonable assumption
since no synchronization among agents is involved), we can guarantee that
there will never be two tokens referring to the same task in the system for a
time longer than the time required for the Announce messages to reach all the
team members. In fact, as explained above conflicting tokens may be created in
case of Contemporary task discovery or due to Messages asynchrony.

The problem of Contemporary task discovery is considered and solved
by procedure OnMsgReceived: when agents receive the announce messages the
one with a lower static priority, represented in the procedure by the lower Id
number, will delete the token for task t from TmpTkS, solving the conflict;
if t is already being executed by the agent with lower static priority, it will
stop its execution yielding to the higher priority agent the possibility to exe-
cute the task. The problem arising due to Messages asynchrony is avoided
thanks to the distinction between temporary tokens (stored in TmpTkS) and
normal tokens (stored in TkS). In fact, assuming that the time needed for
an announce message to reach all the agents is less than one simulation step
(i.e. assuming that messages are synchronized with agents execution) the use
of a Temporary Token Set guarantees that the conflicts will be detected and
avoided. Otherwise, a higher communication overhead is needed in order to
recover from such conflicts.

Setting a static fixed priority among agents can obviously result in non
optimal behavior of the team, for example assuming that Cap(e1, rj , ti) >
Cap(e2, rj , ti) following the static priority, we yield to the less capable agent
the access to the task rj . However, while theoretically the difference among
capabilities can be unbounded, generally, when tasks are discovered using
perception capabilities agents perceive tasks when they are close to the object
location, (e.g. if two fire fighters perceive the same fire their distance from
the fire is comparable) and therefore the loss of performance due to the use
of a fixed priority is limited.

Once a token has been created and added to the TkS the token-based
access to values requires that each agent decides whether to execute the tasks
represented by tokens it currently has or to pass the tokens on. The token
management procedure of Algorithm 1 describes how tokens are processed:
each agent erases from its TkS the accomplished task set ATS, then it chooses
a set of tokens it can execute (ChooseTokenSet(TkS)). Each agent follows a

8 Alessandro Farinelli, Luca Iocchi, Daniele Nardi, and Fabio Patrizi

greedy policy in this decision process, i.e. it tries to maximize its utility given
the tokens it currently can access and its resource constraints. However, each
agent in its decision consider whether it is in the best interest of the team for
it to execute the tasks represented by its tokens. The key question is whether
passing the token on will lead to a more capable team member taking on
the token. Using probabilistic models of the members of the team and the
tasks that need to be assigned, the team member can choose the minimum
capability the agent should have in order to take on a token. Each agent sends
the remaining tokens to its team mates, following a round robin policy and
copies the TmpTkS in the TkS. Finally, each agent chooses the best task (e.g.
for fire fighters could be the nearest fire) among the TokenSet it currently
has (ChooseTask(TokenSet)) and starts the task execution.

4 Experiments and Results

We tested our task assignment approach in the RoboCup Rescue environment
[5]. RoboCup Rescue provides an ideal simulation environment to test alloca-
tion strategies for team comprised of rescue agents. We focus on a real city
map of Foligno in Italy [9], so as to test the performance of our approach in a
realistic disaster rescue environment and where agents must navigate narrow
streets and passages. Here, a team of fire brigades must fight fires in real-
time, while facing the uncertainty of fire spreading and the dynamism that
arises due to several factors: (i) agent has a limited view of the world, and do
not know in advance fires initial positions (ignition points); (ii) the way fires
spread can not be precisely predicted; (iii) agents can be blocked in narrow
passages.

To show that the algorithm presented in section 3 does actually avoid
conflicts of both types, we implemented three different kinds of allocation
strategies. The first strategy, referred to as Token Passing (TP), is a plain
implementation of the token based approach algorithm, no announce proce-
dure is used, but agents record in a Known Fire List the fires they perceive to
avoid that different agents create two tokens for the same fire. This strategy
does not enforce any constraint on the maximum number of agents simulta-
neously fighting the same fire. The second strategy, referred to as TP with
Announce (TPA-n), makes use of the announce procedure to enforce that no
more than n agents are simultaneously fighting the same fire, however this
strategy does not address the second kind of conflict type, therefore situa-
tions in which agents can try to fight already extinguished fires may arise.
The third strategy, referred to as TPA-n with AccomplishedTask (TPAA-n),
makes use of the announce and AccomplishedTask messages, avoiding both
types of conflicts.

In all the strategies the processing token procedure is the same and the
capability to execute a task is computed considering the distance between the
fire fighting agent and the fire, and whether the agent is blocked in a narrow

Task Assignment with Dynamic Token Generation 9

passage. If an agent is blocked, it sends out the task it is currently executing
and choose a different task from its set. The set of tasks to be executed is
computed choosing the nearest fire f and keeping up to K fires whose distance
from f is lower than a fixed Threshold T . The Threshold T and the number of
tokens each agent can retain is statically defined, and is computed considering
global information, such as the number of agents involved in the simulation
and their distribution on the map. For a detailed discussion on how this static
values can be computed we refer to [11].

We tested each strategy in different operative conditions, changing the
extinguish power the fire fighting agents have. We start each simulation from
the same initial configuration, comprised of 10 fire fighting agents and 18
ignition points distributed as shown in Figure 1;

In this experiments we assume that messages cannot be lost, and that their
delay is not higher than a simulation step (i.e. agent execution is synchronized
with message passing), moreover we set the number of tokens to be created for
each task to be a fixed number (three in the performed experiments); while
it is possible to dynamically change this number during mission execution
depending on the environment situation, in these experiments we focus on
studying how conflicts influence performance of fire fighting agents, leaving
the problem of how many tokens would be needed for each task and how to deal
with possible lost messages and unpredictable delays to later investigation.

We extracted from the performed experiments the extinguish time, as the
time needed to put out all the fires, the number of point to point messages
exchanged among agents per time step, the number of broadcast messages sent
by agents per time step, the total traveled distance per agent and finally the
total number of conflicts, as the number of times during the entire simulation
that more than three agents have the same fire as target.

TP TPA-3 TPAA-3

Ext. Time 67 [0.7] 59.63 [16.6] 50.62 [2.5]

Ptp Msg per time step 1.4 [0.04] 1.8 [0.56] 1.7 [0.053]

Bcast Msg per time step 0 [0] 0.68 [0.63] 1.63 [0.13]

Trav. Dist. per agent 2495 [198] 3201 [527] 2221 [195]

Conflicts 26.62 [1.92] 0 [0] 0 [0]

Table 1. Results obtained averaging 10 simulations

In Table 1 we report results obtained from the simulations performed. Each
reported value is the average obtained from ten repetitions of the simulation
with the same operative conditions, along with the computed standard devia-
tion (reported between brackets). From the table it is possible to see that the
TPAA-3 strategy consistently outperform the TP strategy with a higher but
still acceptable amount of messages. Moreover, the traveled distance for each

10 Alessandro Farinelli, Luca Iocchi, Daniele Nardi, and Fabio Patrizi

Fig. 1. Foligno Map used in the experiments

agent is smaller on average, showing that better results are reached with a
smaller waste of resources. The performance of TPA-3 strategy are on average
in the middle with respect to TP and TPAA-3, however this strategy is char-
acterized by a very high variance specially regarding the extinguish time and
traveled distance. The high variance is due to the fact that the strategy does
not avoid the second type of conflicts, possibly generating consistent resource
wasting.

In the performed experiments we have used values for extinguish power
ranging from 6000 (water unit per minute) and up to model situations where
it is useful that the agents allocation is balanced among the different tasks.
Indeed, we found that the similar relationships among strategies hold increas-
ing the extinguish power from 6000 (results reported in table 1) to 8000 and
10000.

5 Conclusions and Future works

Task allocation is a very widely studied area and several approaches have been
presented in literature addressing different issues and techniques ranging from
forward looking optimal model [8], to market or auction based techniques
[16, 4], to symbolic matching [15] and Distributed Constrained Optimization

Task Assignment with Dynamic Token Generation 11

Problem based algorithms [6]. However, the growing complexity of application
for MAS and MRS requires novel solutions for task assignment, which are
able to address specific features posed by the domain, such as dynamic tasks
evolution, strict constraints on communication and soft real time constrained
to be met.

Token based approach have been proved to be well suited for task al-
location in such scenario [13, 1], however the specific problems of dynamic
token generation and conflicts resolution have not been considered yet. In
this paper we take a step in this direction proposing an extension to the token
approach able to address this issue while keeping a reasonably low communi-
cation overhead. Moreover, we present first experimental results obtained for
our approach, showing that it is actually applicable in a rescue scenario and
is able to resolve conflicts improving the performances of the rescue teams.

Several other issues need to be further addressed, in particular we intend
to test our algorithm with different types of rescue teams, such as ambulances
or police force. The ambulance case is particularly interesting because it is
important to enforce the constraint that only one agent can take care of a
civilian, since no further benefit can be given to the team by having more
than one ambulance trying to pick up a civilian, therefore we plan to further
test our approach with ambulances. When dealing with different forces type
constrained tasks comes into play, for example an ambulance agent could need
to have a blocked road freed to pick up a civilian by a police agent, and an
evaluation of our approach in such situation is particularly interesting. Finally,
in our working scenario we assumed that no messages can be lost, this is quite
a strong assumption, that can be easily violated in real world applications,
therefore an interesting extension of our method will be devoted to explicitly
deal with such situations.

Acknowledgment

This effort was partially funded by the U.S. Air Force European Office Of
Scientific Research under grant number 033065 and by project “Simulation
and Robotic Systems for intervention in emergency scenarios” within program
COFIN03 of the Italian MIUR, grant number 2003097252

References

1. A. Farinelli, P. Scerri, and M. Tambe. Allocating and reallocating roles in very
large scale teams. In First Int. Workshop on Synthetic Simulation and Robotics
to Mitigate Earthquake Disaster, Padua, Italy, July 2003.

2. A. Farinelli, P. Scerri, and M. Tambe. Building large-scale robot systems:
Distributed role assignment in dynamic, uncertain domains. In Representa-
tion and approaches for time-critical decentralized resources/role/task allocation
(AAMAS WorkShop), 2003.

12 Alessandro Farinelli, Luca Iocchi, Daniele Nardi, and Fabio Patrizi

3. B. Gerkey and J. M. Matarić. Multi-robot task allocation: Analyzing the com-
plexity and optimality of key architectures. In Proc. of the Int. Conf. on Robotics
and Automation (ICRA’03), Taipei, Taiwan, Sep 14 - 19 2003.

4. L. Hunsberger and B. Grosz. A combinatorial auction for collaborative planning.
In Proceedings of the Fourth International Conference on Multi-Agent Systems
(ICMAS-2000), pages 151–158, 2000.

5. H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsubara.
RoboCup: A challenge problem for AI. AI Magazine, 18(1):73–85, Spring 1997.

6. Roger Mailler, Victor Lesser, and Bryan Horling. Cooperative negotiation for
soft real-time distributed resource allocation. In Proceedings of AAMAS’03,
2003.

7. P. J. Modi, H. Jung, M. Tambe, W. M. Shen, and S. Kulkarni. A dynamic
distributed constraint satisfaction approach to resource allocation. Lecture Notes
in Computer Science, 2239:685–700, 2001.

8. R. Nair, T. Ito, M. Tambe, and S. Marsella. Task allocation in robocup rescue
simulation domain. In Proceedings of the International Symposium on RoboCup,
2002.

9. D. Nardi, A. Biagetti, G. Colombo, L. Iocchi, and R. Zaccaria. Real-
time planning and monitoring for search and rescue operations in large-
scale disasters. Technical report, University ”La Sapienza” Rome, 2002.
http://www.dis.uniroma1.it/~rescue/.

10. L. E. Parker. ALLIANCE: An architecture for fault tolerant multirobot coop-
eration. IEEE Transactions on Robotics and Automation, 14(2):220–240, April
1998.

11. P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe. Allocating roles in extreme
team. In AAMAS 2004 (Poster), New York, USA, 2004.

12. P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe. Token approach for role
allocation in extreme teams: analysis and experimental evaluation. In 13th
IEEE International Workshops on Enabling Technologies: Infrastructures for
Collaborative Enterprises (WETICE-2004)., Modena, Italy, 2004.

13. P. Scerri, D. V. Pynadath, L. Johnson, Rosenbloom P., N. Schurr, M Si, and
M. Tambe. A prototype infrastructure for distributed robot-agent-person teams.
In In Proceedings of AAMAS, 2003.

14. D. Shmoys and E. Tardos. An approximation algorithm for the generalized
assignment problem. Mathematical Programming, 62:461–474, 1993.

15. G. Tidhar, A. S. Rao, and E. A. Sonenberg. Guided team selection. In Proceed-
ings of the Second International Conference on Multi-Agent Systems, 1996.

16. R. Zlot, A Stenz, M. B. Dias, and S. Thayer. Multi robot exploration controlled
by a market economy. In Proc. of the Int. Conf. on Robotics and Automation
(ICRA’02), pages 3016–3023, Washington DC, May 2002.

