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Abstract

Coalition formation is a fundamental approach to
multi-agent coordination. In this paper we address
the specific problem of coalition structure gener-
ation, and focus on providing good-enough solu-
tions using a novel heuristic approach that is based
on data clustering methods. In particular, we pro-
pose a hierarchical agglomerative clustering ap-
proach (C-Link), which uses a similarity criterion
between coalitions based on the gain that the sys-
tem achieves if two coalitions merge. We empir-
ically evaluate C-Link on a synthetic benchmark
data-set as well as in collective energy purchasing
settings. Our results show that the C-link approach
performs very well against an optimal benchmark
based on Mixed-Integer Programming, achieving
solutions which are in the worst case about 80%
of the optimal (in the synthetic data-set), and 98%
of the optimal (in the energy data-set). Thus we
show that C-Link can return solutions for problems
involving thousands of agents within minutes.

1 Introduction
The formation of collectives or coalitions is central to many
practical applications that involve coordinating large numbers
of agents as in emergency management scenarios [Ramchurn
et al., 2010], surveillance and security applications and col-
lective purchasing of goods or services [Vinyals et al., 2012].
Coalition formation typically involves three key computa-
tional challenges: i) coalition value calculation and optimisa-
tion (i.e., evaluating the worth of each coalition and optimis-
ing the actions of individual members), ii) coalition structure
generation (CSG) (i.e., partitioning the set of agents into the
most beneficial coalitions) and iii) Pay-off Distribution (i.e,
dividing the rewards of coalitional actions among the mem-
bers). In this paper we focus on CSG, which involves parti-
tioning the set of all agents so as to maximise the sum of the
values (as given by a characteristic function) of the chosen
coalitions.
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To date, a number of approaches employed in this do-
main aim to solve the CSG problem optimally, ranging
from Mixed-Integer programming to Branch-and Bound tech-
niques [Rahwan et al., 2009] through Dynamic Programming
(DP) [Yun Yeh, 1986; Rahwan and Jennings, 2008b]. How-
ever, none of these solutions are scalable given that the input
to the CSG problem is exponential in the number of agents
(O(nn)). Hence these optimal approaches can handle rela-
tively small sets of agents (i.e., fewer than 30 [Rahwan et al.,
2009]). Recent approaches [Voice et al., 2012] exploit so-
cial relationships among the agents to restrict the set of fea-
sible coalitions, and by so doing they can optimally solve
the CSG problem for about 50 agents in sparse networks.
However, while this is a significant improvement, it cannot
claim to solve CSG problem in practical applications, such
as, for example, collective purchasing, where thousands of
agents might be involved1. In contrast, here we focus on pro-
viding good-enough solutions (near-optimal) using heuristic
sub-optimal approaches. Along this line, previous approaches
include Genetic Algorithms [Sen and Dutta, 2000] and swarm
intelligence [Dos Santos and Bazzan, 2012], but these typi-
cally do not provide guarantees on convergence and solution
quality for generic CSG problems and depend on several do-
main specific parameters to be tuned by the system designers.

Against this background, we propose the use of data clus-
tering algorithms, that aim to partition a data-set into groups
(or clusters), based on the concept of similarity: objects in
the same group should be similar, whereas objects belong-
ing to different groups should be dissimilar. Clustering ap-
proaches offer a wealth of solutions that have been developed
and empirically validated in practical applications involving
large amount of data (e.g., thousands of data points) [Jain and
Dubes, 1988; Theodoridis and Koutroumbas, 2008]. Now, a
key challenge in this context is the formulation of an appro-
priate similarity criterion so that the data can be clustered
in a meaningful way. Hence, here we propose a suitability
function for the CSG problem that, based on the character-
istic function, specifies which coalitions (i.e., clusters in the
context of data clustering) are most appropriate for merging,
and whether merging them is beneficial.

In more detail, this work advances the state of the art in
the following ways: i) we provide a general methodology

1http://www.whichbigswitch.co.uk/closed/



to apply clustering techniques to coalition formation. Our
key contribution here is to propose a suitability function for
coalitions based on the gain that two coalitions would achieve
if they merge; ii) we propose an agglomerative hierarchical
clustering approach (C-Link) that starts off from singleton
coalitions and iteratively merges the most suitable pairs of
coalitions. The criterion to evaluate whether coalitions should
be merged is based on the above-mentioned gain. In particu-
lar, we devise different criteria taking inspiration from stan-
dard clustering approaches such as single-link, complete-link
and average-link, which consider only the value of coalitions
of size two (e.g., they require a specification of the charac-
teristic function only for pairs of agents). Moreover, we pro-
pose a new criterion (gain-link) which takes advantage of the
full characteristic function significantly improving the qual-
ity of solutions; iii) we validate C-Link on a synthetic data-set
based on [Rahwan et al., 2009] and on a specific coalition for-
mation problem where users can form groups to buy energy
at discounted prices [Vinyals et al., 2012]. In this scenario
we use real energy consumption data collected from a set of
households. We compare the above-mentioned techniques
against an optimal benchmark approach based on Mixed-
Integer programming (implemented using CPLEX). In our
empirical evalutions, C-Link is shown to provide high qual-
ity solutions, about 98% of the optimal on the energy data-set
and 80% of the optimal on the synthetic data-set. Moreover,
we show that, in general, clustering approaches require much
less memory and time to achieve good-enough solutions and
therefore provide the first benchmarks for large-scale approx-
imate CSG algorithms. Crucially, the C-Link approach can
provide solutions for problems involving thousands of agents
(more than 2500) in a few minutes (about 4).

The rest of the paper is structured as follows: Section 2
provides necessary background on coalition structure gener-
ation and data clustering while Section 3 details our C-Link
approach. Section 4 presents our empirical evaluation and
Section 5 concludes.

2 Background and related work
Here we provide a formalization of the CSG problem and a
brief overview of most prominent data clustering approaches.

2.1 The Coalition Structure Generation Problem
Formally speaking, the optimal coalition structure generation
problem finds the solution to:

arg max
CS∈CS

∑
C∈CS

v(C) (1)

where CS is the set of all partitions of the set of N agents
A = {a1, · · · , aN}, CS ∈ CS is a coalition structure (i.e.,
CS ⊆ 2A) where for any Ci, Cj ∈ CS, with i 6= j,
Ci ∩ Cj = ∅ (i.e., no agent is assigned to more than one
coalition) and ∪C∈CSC = A (i.e., each agent is selected in
at least one coalition). Finally, v(C) ∈ < is the characteristic
function, which specifies a value (that may represent a cost or
profit) for each coalition. A key property of the characteristic
function is that the value it defines for one coalition is inde-
pendent of the memberships of any other coalition selected in

the coalition structure. Specifically, we assume no externali-
ties. This property allows us to look at each coalition in isola-
tion and therefore evaluate the benefits of merging one coali-
tion with another using simple arithmetic operations. Given
this, we can exploit this function in a similarity criterion that
can be, in turn, used in large-scale data clustering algorithms
which we describe next.

2.2 Data Clustering Approaches
Data Clustering approaches can be broadly divided
in two main families: hierarchical clustering (e.g.,
single/complete/average-link) and partitional clustering
(e.g., k-means) [Jain and Dubes, 1988].

In hierarchical clustering, data is arranged in layers of par-
titions, where each partition is merged in a partition of the
subsequent layer. Hence, a hierarchical clustering can be con-
veniently represented by a dendrogram, a tree structure that
consists of layers of nodes, each representing a cluster, where
lines connect clusters that are merged in the next layer (see
Figure 1(a)). Agglomerative clustering approaches (such as
single/complete/average-link) start from clusters formed of
single data points and iteratively merge the most suited pair of
clusters, where the suitability function depends on a criterion
of similarity defined for the clusters. The merging process
always results in a single cluster containing all the elements
of the initial data-set. Hence to obtain the best suited data
partition, the system designer must choose when to stop the
merging process, i.e., at which level the dendrogram should
be cut. This is typically a complex, domain dependent prob-
lem for which no general solution exists.

In contrast, partitional clustering techniques consider only
a single partition of the data, starting from an initial solution
that is iteratively refined. As such, they are more efficient in
terms of memory and computation and hence they are typi-
cally preferred for applications involving very large data-sets
(e.g., millions of data points). However, the most widely used
partitional clustering approaches (such as, for example, the
popular k-means clustering) are dependent on several system
parameters (e.g., the number of groups to be formed) and on
the choice of the initial solution.

Here we adopt hierarchical agglomerative clustering for
three key reasons: i) the behaviour of hierarchical clustering
approaches is not dependent on any initialization or system
parameter; ii) the efficiency typical of partitional clustering is
not crucial here, as the number of agents that our approach
can handle is already significantly beyond the capability of
current coalition formation approaches; iii) in our approach
the stopping criterion for the cluster merging process is auto-
matic as we will detail in section 3.2.

3 The Coalition Link approach
The coalition link (C-Link) algorithm follows the Generalised
Agglomerative Scheme (GAS) for clustering (See [Theodor-
idis and Koutroumbas, 2008] Chapter 13.2) which, starting
from a set of agents, aims to produce a sequence of nested
partitions CS0, CS1, · · · , CSL. Following [Jain and Dubes,
1988], we define that a partition CSi is nested into a partition
CSj if every component ofCSi is a subset of a component of
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Figure 1: Figure (a) shows an exemplar dendrogram representing a possible hierarchical clustering process for
10 agents. The horizontal dashed line represents a cut of the dendrogram and defines the coalition structure
{{a6, a7, a2, a9, a3}, {a1}, {a5, a8, a10}, {a4}}. Figures (b) and (c) describe an artificial example where the optimal coali-
tion structure is {{a1}, {a2}, {a3, a4}} and show one update step for the gain-link method: (b) shows the dendogram and (c)
shows how the PA matrix evolves.

CSj . Next we provide a pseudo-code description of C-Link
and discuss its main features.

3.1 The C-Link algorithm
The C-Link approach is described in Algorithm 1. Essen-
tially, the algorithm is based on the definition of a suitability
function sf(Ci, Cj) that indicates how convenient it is for
two coalitions Ci, Cj ∈ CS to be merged. The approach iter-
atively updates the Partition Suitability matrix PS(t), which
stores the value sf(Ci, Cj) in the entry (i, j) (13–17).

In more detail, the approach starts from the completely dis-
joint case: a partition where every coalition is composed of a
single agent (line 1), and initializes the PS matrix with suit-
ability of agent pairs (lines 2–5). Then, at every iteration, we
compute the most suitable pair of coalitions (see lines 6,7 and
18,19); if merging a coalition pair is good for the system (line
9), such coalitions are removed from the current partition and
replaced with their union, in order to define the next level of
the hierarchy (lines 11–13). Otherwise the algorithm stops,
and the current partition is returned.

Now, a key element for the C-Link approach is the defini-
tion of the suitability function. In the context of CSG, a natu-
ral way to define the suitability is to use the concept of gain,
which reflects how useful it is for the system if two coali-
tions merge. In more detail, given two coalitions Ci an d Cj ,
their gain G(Ci, Cj) can be defined, using the characteristic
function v, as follows:

G(Ci, Cj) = v({Ci ∪ Cj})− v(Ci)− v(Cj) (2)

In other words the gain indicates how well two coalitions stay
together with respect to how well they are before joining.

Given the concept of gain we explore different methods to
define the concept of suitability for a pair of coalitions. In
particular, we investigate methods which are based on classi-
cal concepts used in data clustering (single/complete/average-
link) and which require the computation of the gain only
for pairs of agents. Moreover, we provide a novel approach
(gain-link) that uses directly the definition of gain between
coalitions. In more detail, we investigate three definitions
for the suitability function that are inspired respectively by
the well known single-link (SL), complete-link (CL), and
average-link (AL) versions of the clustering algorithms:

Input: A: the set of agents, sf(·): the suitability function.
Output: CSopt the optimal partition ofA

// Initialize partitions to singletons
1: CS(0) = {{a1}, {a2}, · · · , {aN}}

// Initialize PS for each agent pair
2: for i,j = 1 to N, i 6= j do
3: PS(0)(i, j) = sf({ai}, {aj})
4: end for

// Initialize self suitability to−∞
5: ∀i, PS(0)(i, i) = −∞

// Compute and store the best indices and best suitability
6: ı̂, ̂ = arg maxi,j PS

(0)(i, j)

7: p̂a = maxi,j PS
(0)(i, j)

8: t = 0
// Main Loop: stop if best suitability is negative or the grand coalition was formed

9: while (p̂a ≥ 0) AND (|CS(t)| > 1) do
10: t = t + 1;

// Update Partition: remove the two coalitions that should be merged and add
the merged coalition

11: define Cı̂̂ = Cı̂ ∪ Ĉ

12: CS(t) = CS(t−1) \ Cı̂ \ Ĉ ∪ Cı̂̂

// Update PS(t)

13: Delete rows and columns of PS(t) relative to Cı̂ and Ĉ, add one row and
one column for Cı̂̂.
// Compute suitability for each coalition Ck with the newly formed coalition
Cı̂̂

14: for Ck ∈ CS(t), Ck 6= Cı̂̂ do
15: PS(t) (̂ı̂, k) = PS(t)(k, ı̂̂) = sf(Cı̂̂, Ck)

16: end for
// Set self suitability to−∞

17: PS(t) (̂ı̂, ı̂̂) = −∞
// Update best indices and best value of suitability

18: ı̂, ̂ = arg maxi,j PS
(t)(i, j)

19: p̂a = maxi,j PS
(t)(i, j)

20: end while
21: return CS(t)

Algorithm 1: C-Link algorithm.

sfSL(Ci, Cj) = max
ah∈Ci,al∈Cj

(G({ah}, {al})) (3)

sfCL(Ci, Cj) = min
ah∈Ci,al∈Cj

(G({ah}, {al})) (4)

sfAL(Ci, Cj) =
1

|Ci| · |Cj |
∑

ah∈Ci,al∈Cj

(G({ah}, {al})) (5)

These definitions are appealing for efficiency because they
require the computation of the characteristic function only for
pairs of agents.



However, since for the CSG setting considering only pair-
wise relations may result in poor performance, we also pro-
pose the gain-link function (GL), which directly uses the def-
inition of gain (2):

sfGL(Ci, Cj) = G(Ci, Cj) (6)

Notice that, the definition of suitability based on the gain
naturally provides an automatic stopping criterion for the C-
Link algorithm: the algorithm stops if there is no advantage
in joining together the “most suitable” pair of coalitions, i.e.,
the best pair has a negative suitability. This is a crucial differ-
ence between GAS and C-Link, as the GAS scheme always
produces a full dendrogram (i.e., from the singleton to the
grand coalition), and given the dendrogram, deciding where
to place a cut to obtain the “best” clustering is a key, domain
dependent issue (see [Theodoridis and Koutroumbas, 2008]
Chapter 13.6).

Figure 1 shows an exemplar matrix update step for our C-
Link approach (using GL). In particular, Figure 1(b) shows
the dendrogram and Figure 1(c) the update of the PS ma-
trix. Here we assume the optimal coalition structure is
{{a1}, {a2}, {a3, a4}} and hence our approach evaluates all
the possible coalitions of size two, computing the values re-
ported in the left-hand side matrix in Figure 1(c). Now, the
best option is to form the coalition {a3, a4} and hence the
algorithm updates the PS matrix as shown in the right-hand
side of Figure 1(c). Notice that in this matrix all elements are
negative and hence the algorithm would stop processing.

3.2 C-link analysis and Discussion
The main properties of C-Link are the following: i) C-Link
always converges in at most N steps (where N is the number
of agents). This is because C-Link removes one element at
each iteration and stops if the grand coalition forms (or if the
best suitability is negative). ii) Gain-link is anytime. Gain-
link performs at most one merge at each step, and it performs
the merge only if the gain is positive. Hence the sum of the
values of the coalitions in each partition will never decrease.
Notice that this property does not hold, in general settings, for
the other approaches (i.e., single/complete/average-link), as
those approaches use, as suitability function, an estimation of
the gain based only on pairwise relations. iii) C-Link always
returns the grand coalition for super additive functions (i.e.,
it gives an optimal solution). If the characteristic function is
super additive the gain (as defined in equation 2) cannot be
negative. Hence, the entries of PS(t) for all the suitability
functions defined in previous section and for all t are non-
negative. Consequently, the approach stops only when the
grand coalition is formed (i.e., |CS(N)| = 1).

In terms of computational complexity, following the analy-
sis of GAS reported in [Theodoridis and Koutroumbas, 2008]
we can show that the C-link approach requires in the worst
case O(N3) operations.

As for memory requirements, the C-Link approach must
store the PS matrix which has N2 entries. Hence space-
wise the complexity of C-Link is O(N2). However, if
the characteristic function is specified in a tabular form
(i.e., we store one value for each possible coalition as in

Section 4.2), the memory storage for gain-link is expo-
nential in the number of agents (O(2N )), as it requires
the values of coalitions of any size, while for the other
approaches (e.g., single/complete/average-link) it remains
polynomial(O(N2)), as they require only the values for coali-
tions of size two.

To further understand the behaviour of the C-Link ap-
proach it is useful to compare its execution to the operations
performed by the Dynamic Programming approach on the
coalition structure graph (see Figure 2 for an example) [Rah-
wan and Jennings, 2008a]. The DP approach first evaluates
every possible movement on the graph (i.e., every possible
split for coalitions of every size), then it starts from the bot-
tom node (i.e., the grand coalition) and moves upwards until
an optimal node is reached (i.e., a node from which no split-
ting is beneficial). Compared with the DP approach our C-
Link approach is essentially a myopic version that progresses
top down (i.e., from singleton coalitions towards the grand
coalition). In fact, at each level the C-link approach only eval-
uates possible merges of coalition pairs and once a coalition
is formed it will never be split, hence the approach can be
trapped in local maxima of the objective function. Neverthe-
less, the results we discuss in the next section show that the
performance of the approach are extremely promising.

{1},{2},{3},{4}

{1},{2},{3,4} {3},{4},{1,2} {1},{3},{2,4} {2},{4},{1,3} {1},{4},{2,3} {2},{3},{1,4}

{1},{2,3,4} {1,2},{3,4} {2},{1,3,4} {1,3},{2,4} {3},{1,2,4} {1,4},{2,3} {4},{1,2,3}

{1},{2},{3},{4}

Figure 2: A diagram of the coalition structure graph for 4
agents. The downwards arrow shows the path followed by
our approach.

4 Empirical Evaluation
Having described and analysed our approach we now present
the empirical evaluation of C-Link. In what follows, we first
discuss the methodology we use for comparison and then
present results obtained in two settings: a synthetic bench-
mark data-set where the values of coalitions structures are
normally distributed [Rahwan et al., 2009] and the collective
energy purchasing scenario [Vinyals et al., 2012].

4.1 Evaluation Methodology
The main goals of the empirical evaluation are: i) to validate
the applicability of the C-link method in large scale systems,
ii) to evaluate the performance loss due to the myopic nature
of the approach, and iii) to assess the relative performance of
the different suitability functions defined in Section 3.1.

Hence, we compare the four variants of the C-link ap-
proach with an optimal benchmark algorithm based on
Mixed-Integer programming and we compute two main per-
formance indicators: the total gain value and the averaged
gain ratio. The total gain value Gm is computed as: Gm =∑

C∈CSm V (C)−
∑

a∈A V (a)∑
a∈A V (a) , where m is a coalition formation



method and CSm the coalition structure that the method re-
turns. This indicator measures how valuable it is for the sys-
tem to form the computed coalition structure as opposed to
singleton coalitions.

The averaged gain ratio is computed as: G
m

Gopt , where Gopt
is the optimal value (computed with the benchmarking algo-
rithm). This indicator measures how far the value of the com-
puted solution is from the optimal, and it is our main perfor-
mance indicator.

All the heuristics are implemented in MATLAB and ex-
ecuted on a Intel(R) Core(TM)2 Duo CPU, 1.40GHz, with
3GB of memory. The optimal algorithm is implemented us-
ing the CPLEX library (V12.4) and Java, and it is executed on
a Intel(R) Core(TM) i7 CPU, 2.80GHz, with 8GB of memory.

4.2 Normally Distributed Coalition Structures
Here we report and discuss results using one of the hardest
characteristic function benchmarks proposed by [Rahwan et
al., 2009], namely the Normally Distributed Coalition Struc-
tures (NDCS). The authors showed that NDCS can be gener-
ated as follows: V (C) ∼ N (µ, σ) where C is the coalition,
µ = |C| and σ =

√
|C|.2

Figure 3, reports the averaged gain ratio for the four C-
Link variants, varying the number of agents from 10 to 18.
We stop at 18 agents because our CPLEX implementation
runs out of memory when adding more agents. Results are
averaged over 100 repetitions of experiments with 100 dif-
ferent instantiations of the characteristic function. Error bars
report the 95% confidence interval.3 Based on these results
we can see that gain-link achieves solutions which are, in the
worst case, about 80% of the optimal, moreover the averaged
gain ratio is almost constant with respect to the number of
agents. As for the comparison with the other C-Link variants,
gain-link clearly shows superior performance; average-link
and complete-link have comparable performance and single-
link clearly performs the worst (less than 20% of the optimal).
This behaviour can be explained by considering the update
rules that define these approaches. In particular, complete-
link sets the suitability between Ci and Cj as the worst pair-
wise case (the minimum of suitability between all possible
pairs of agents in Ci, Cj). Hence, two groups are likely to
be joined together only if for all pairs of agents we have a
high suitability, that is a coalition is formed only if it is con-
venient for all agent pairs. A similar reasoning applies to the
average-link scheme. In contrast, single-link uses the max-
imum operator, hence if two agents of two different groups
work very well together the two groups will be merged no
matter how well the other agents fit. Consequently, single-
link tends to form big coalitions (as Table 1 confirms) and
does not properly take into account the synergies between
groups of agents that are bigger than two. Finally, notice that,
since here we specify the characteristic function in tabular
form, as mentioned in Section 3.2 the memory requirement of

2NDCS ensures that the search process is not biased towards
coalitions of smaller sizes (as it is the case with the normal and uni-
form distributions proposed in [Larson and Sandholm, 2000])

3When the error bars do not overlap, the null hypothesis can be
validated with α = 0.05.

gain-link is exponential in the number of agents (i.e., O(2N ))
while all the other approaches must only store the character-
istic function for agent pairs. Consequently, the average-link
and complete-link approaches might be valid alternatives for
scenarios where storing the characteristic function is an issue.
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Figure 3: NDCS: Averaged Gain Ratio when varying the
number of agents.

4.3 Collective Energy Purchasing Domain
We now turn to the empirical results obtained in the collec-
tive energy purchasing domain. We consider here a scenario
where energy consumers form groups to purchase energy at
better prices [Vinyals et al., 2012].

In particular, in this setting each agent is characterized by
an energy consumption profile that represents its energy con-
sumption throughout a day. In more detail, a profile records
the energy consumption of a household at fixed intervals (ev-
ery half hour in our case). Hence each profile is a vector of
T elements (where T = 48 in our case). In the following
experiments we use a set of energy profiles collected, over a
month, from 2732 households in UK.

The characteristic function of a group of agents is the to-
tal payment that the group would incur if they buy energy as
a collective. A collective of agents buys its aggregated de-
mand (i.e., the point-wise sum of energy profiles) in the elec-
tricity market and optimizes its buying strategy by exploiting
reduced tariffs available in the forward market.4

In particular, following [Vinyals et al., 2012] the character-
istic function is defined as:

v(S) =

T∑
t=1

q̂tS(S) · pS +N · q̂F (S) · pF + κ(S) (7)

where pS and pF represents the unit price of energy in the
spot and forward market respectively5, q̂F (S) stands for the
time unit amount of electricity to buy in the forward market
and q̂tS(S) for the amount to buy in the spot market at time
slot t. These quantities are the ones that optimise the buying
strategy of the group while satisfying the group electricity
demand:

4In the forward electricity market agents can buy energy bulks in
advance at reduced tariffs (see [Voice et al., 2011])

5Unit prices are negative values to reflect the direction of pay-
ment; following [Vinyals et al., 2012] in our experiments we fixed
pS = −80 and pF = −70.
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Figure 4: Energy Experiment, results for the Averaged Gain Ratio varying: (a) the number of agents (γ = 1.3); (b) the
parameter γ (18 agents). Figure (c) reports run time (seconds) with the y-axis in logarithmic scale.

qtS(S) + qF (S) ≥ etS ∀t = 1 . . . T (8)

In other words, to compute the characteristic function for a
coalition S one has to solve a maximization task so as to op-
timize the buying strategy of the group. However, this maxi-
mization task is not a computational bottleneck for our coali-
tion formation problem as it can be easily solved by using a
linear programming approach (with a linear number of con-
straints) or the ad-hoc procedure proposed in [Vinyals et al.,
2012]. In our experiments we use this second method.

Finally, κ(S) stands for a coalition management cost that
depends on the size of the coalition and captures the intuition
that larger coalitions are harder to manage. The definition of
this cost depends on several low level issues (e.g., the power
network capacity of customers in the groups, legal fees, and
other costs associated to group contracts etc.), hence a precise
definition of this term goes beyond the scope of the present
paper. Here we use κ(S) = −|S|γ to introduce a non-linear
element that penalizes the formation of big coalitions, so that
the grand coalition is not always the best coalition structure.

In all the following experiments, the results are averaged
over 100 repetitions and in each run, a group of agents is
randomly sampled from the whole data-set (the size of this
groups is specified for each experiment). As before the error
bars represent the 95% confidence interval.

As can be seen (see Figure 4(a)), the results confirm the be-
haviours discussed in Figure 3, but here the averaged gain ra-
tio is significantly higher with gain-link consistently achiev-
ing solutions which are very close to the optimal (98% of the
optimal in the worst case). Notice that in this domain gain-
link does not need to store the values of the characteristic
function for all the possible coalitions, as this can be com-
puted using equation 7. Hence, gain-link in this case is defi-
nitely the best possible approach among the ones we tested.

To evaluate the sensitivity of the approaches to the γ pa-
rameter we fixed the number of agents to 18 and varied γ. Re-
sults reported in Figure 4(b) largely confirm the behaviour of
gain-link, complete-link and average-link and show that the
approaches are not sensitive to this parameter. In contrast,
single-link shows a strong decrease in performance when γ

increases. This is because as mentioned before (see Section
4.2), single-link tends to form big coalitions that get penal-
ized when the γ parameter is increased (see Table 1).

Finally, Figure 4(c) (note the y-axis is in log-scale) reports
the run-time for gain-link and the optimal Mixed-Integer pro-
gramming approach, increasing the number of agents from 10
to 2732 (i.e., the size of the whole data-set). Thus, gain-link
is shown to provide solutions for thousands of agents in few
minutes (about 4 minutes for 2732 agents). Moreover, the
total gain value (not reported here) remains almost constant
while increasing the number of agents. This shows that gain-
link can provide high quality solutions even when the number
of agents increases to thousands.

Optimal Gain L. Single L. Comp. L. Avg L.
Coal. Numb. 7.9700 7.7700 1.7100 8.1900 7.0200

Avg Size 2.4166 2.4836 12.7350 2.2702 2.6717
Max Size 4.4700 5.1500 17.2900 4.1900 5.5300
Min Size 1.1500 1.1500 8.9900 1.0400 1.1000

Table 1: Statistics for coalitions in the energy domain (18
agents, γ = 1.3). Notice that single-link forms big coali-
tions, while gain-link forms coalitions that have a very similar
structure to the ones formed by the optimal approach

5 Conclusions
In this paper we focus on providing good-enough solutions
to the CSG problem. Specifically, we draw the parallels be-
tween the CSG problem and data clustering proposing a novel
scalable heuristic called C-Link. We compare C-Link against
other clustering heuristics and an optimal CSG algorithm.
Our experiments show that C-Link outperforms these heuris-
tics and can provide high-quality solutions (at least 80% of
the optimal) in both synthetic and real-world applications,
solving problems with thousands of agents in few minutes.

When taken together, the analysis of various clustering ap-
proaches and our empirical results provide the first bench-
marks for large-scale approximate coalition structure genera-
tion and open up several promising future directions that in-
clude a theoretical study of performance bounds for specific
characteristic functions as well as the investigation of other
clustering schemes (e.g., partitional clustering).
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