Proceedings of the 2005 IEEE
International Conference on Robotics and Automation
Barcelona, Spain, April 2005

Task Assignment with Dynamic Perception and Constrained
Tasks in a Multi-Robot System

A. Farinelli, L. Iocchi, D. Nardi, V. A. Ziparo
Dipartimento di Informatica e Sistemistica
University of Rome “La Sapienza”

Via salaria, 113 00198 Rome, Italy
last-name @dis.uniromal.it

Abstract—In this paper we present an asynchronous dis-
tributed mechanism for allocating tasks in a team of robots.
Tasks to be allocated are dynamically perceived from the en-
vironment and can be tied by execution constraints. Conflicts
among team mates arise when an uncontrolled number of
robots execute the same task, resulting in waste of effort and
spatial conflicts. The critical aspect of task allocation in Multi
Robot Systems is related to conflicts generated by limited
and noisy perception capabilities of real robots. This requires
significant extensions to the task allocation techniques devel-
oped for software agents. The proposed approach is able to
successfully allocate roles to robots avoiding conflicts among
team mates and maintaining low communication overhead.
We implemented our method on AIBO robots and performed
quantitative analysis in a simulated environment.

Index Terms— Multi-Robot Systems, Coordination, Task
Assignment.

1. INTRODUCTION

The problem of assigning tasks to a group of entities
acting in a dynamic environment is a fundamental issue
for both Multi Agent Systems (MAS) and Multi Robot
Systems (MRS) and is relevant to several real world
applications.

The growing complexity of applications for MAS and
MRS requires novel solutions for task assignment, which
are able to address specific features posed by the domain,
such as dynamic task evolution and strict requirements on
communication and constraints among tasks to be executed.
In most real world applications involving MRS, tasks to be
assigned cannot be inserted into the system in a centralized
fashion, but are perceived by each entity during mission
execution. This issue has a big impact on the task allocation
process and at the same time is strictly dependent on
perception capabilities of entities involved.

Perception capabilities play a fundamental role in every
application involving robots and significantly constraint the
design of the task assignment technique. In particular, as
a difference with software agents, robots have noisy and
limited perception of the surrounding environment. For
example, robots may need to correctly identify objects with
similar shape and color. This requires one to consider, in the
data association process, properties that can change with
time (such as object position in the working environment).
Consequently erroneous are frequent, which can easily lead
to conflicts in the task allocation process. Conflicts on tasks
to be accomplished can cause significant inefficiencies of

0-7803-8914-X/05/$20.00 ©2005 IEEE.

the overall system due to the complexity of acting in a real
world environment.

Task assignment approaches developed for MAS (such as
[4], [8], [9]) usually do not take into account the perception
capabilities of entities involved in the task allocation pro-
cess, thus such techniques are not well suited for our refer-
ence scenarios. As for MRS, previous approaches proposed
for task assignment include: i) Sequential task assignment
[6] where tasks are allocated to robot sequentially as they
enter the system. ii) Iterative task assignment [7], [13]
where all tasks present in the system are allocated from
scratch at each time step. iii) Reactive task assignment
[10], where each member of the team decides whether
to employ itself in accomplishing a task, without (re)-
organizing the other members activity. While, in all these
works the perception capabilities of robots influence the
allocation method proposed, the authors do not explicitly
investigate the problem of conflicts in the allocation process
due to dynamic task generation.

In this paper we take a significant step towards the inte-
gration of dynamic task perception and distributed, conflict
free, task assignment for a robotic system. We present
an approach to distributed task assignment that allows to
assign dynamically perceived tasks in a team of robotic
agents, while avoiding conflicts among team members. Our
reference scenario has the following characteristics: i) tasks
are discovered and created during mission execution; ii)
tasks may require multiple agents to perform them, and
such agents must synchronize their actions; iii) agents may
perform one or more tasks, but within resource limits; iv)
too many agents fulfilling the same task lead to conflicts
that need to be avoided; v) properties that distinguish tasks
can vary over time.

The basic idea of our approach is derived from previous
works on token passing for task assignment which have
been proved to be well suited for task allocation in similar
scenarios [11]. Tokens are used to represent tasks that
must be executed by the agents, and each team member
creates, executes and propagates these tokens based on its
knowledge of the environment. The basic approach relies
on the assumption that one token is associated to every task
to be executed and that the token is maintained only by the
agent that is performing such a task. If the agent is not in
the condition of performing the task it can decide to pass
the token on to another team member. Such method assigns

1535

tasks using only a broad knowledge of team mates, sharing
a minimal set of information among team members. Such
approach ensures that task allocation is highly reactive and
requires a low communication overhead.

To apply such method on a system composed of physical
robots this paper introduces the new concept of dynamic to-
ken generation. In fact, tokens are not statically predefined,
but generated on-line during mission execution as result of
robots perceptions. An asynchronous distributed algorithm
is used to detect and solve conflicts due to simultaneous or
erroneous task perception by several robots. Our approach
guarantees a conflict free allocation of exactly n agents for
each task.

We tested our approach with a team of robots involved in
a foraging task (see [3] for a description of MRS testbeds).
The robots have to collect several objects scattered in the
environment. The collection of each object requires that
exactly two robots help each other to grab it (a helper robot
and a collector robot). After the grabbing phase, only one
robot is needed to transport the object. Object number and
position in the environment is not known, thus enforcing
task discovery through perception. Moreover, objects are
identical so they can only be distinguished by their position
in the environment; therefore robots must consider, in the
data association process, properties that change over time.

It is important to highlight that this is a quite complex
scenario for MRS coordination, that takes into account
specific characteristics of a real-time environment (e.g.
indistinguishable objects), that are not usually considered
in Multi-Agent Systems. Moreover, these features have
required the definition of a new task assignment problem
and associated solutions, that are not taken into account in
previous works (e.g. [1], [11]).

We have implemented and tested the proposed approach
with a team of AIBO robots collecting colored wheeled
bars scattered in the environment. Moreover, in order to
present a quantitative analysis of our approach, we have
used a simulator, that accurately emulates MRS behaviors
in dynamic environments, and allows to run extensive
experiments. The reported results show that the proposed
approach is able to allocate exactly n robots to each task,
avoiding possible conflicts with other team mates, while
maintaining a very low communication bandwidth.

1I. PROBLEM DEFINITION

The problem of assigning a set of tasks to a set of entities
can be easily framed as a Generalized Assignment Problem
(GAP) [12]. However, while the GAP is well defined for
a static environment, where agents and tasks are fixed
and capabilities and resources do not depend on time, in
several real world applications it is useful or even necessary
to solve a similar problem where the defined parameters
changes with time.

Indeed several methods for dynamic task assignment
implicitly take into consideration such an aspect, providing
solutions that consider the dynamics of the world and
derive a task allocation that approximate solutions of the
GAP problem at each time steps [5], [10], [14].

1536

The problem we will address in this paper differs from
the GAP formulation in two main respects: i) tasks to be
accomplished can be tied by constraints, ii) the set of tasks
is not known a priori when the mission starts, but it is
discovered and dynamically updated during task execution.

We will use the following notation: E = {e;...e,}
denotes the set of entities. While in general also entities
involved in the task assignment process can vary over time,
in this contribution we focus on a predefined static set of
entities. I' represents the set of tasks and is dependent
on time with I'y = {71...7,}, where m(t) is the
number of tasks at time ¢. Each task is a set of roles
or operations 7;{r}...r¥}, with k varying from task to
task. For example, the Task lift object O comprises two
roles: collect O and support collection of O. Notice, that
each operation can comprise a set of sub-operations and so
on; for the sake of simplicity we will consider only two
levels of the possible hierarchy. Each entity has different
capabilities for each task and different resources available.
We express the capabilities and the resources depending
on time with Cap(e;, r¥,t), Res(e;, r¥,t), and ez.res(t).
Where Cap(e;, rf) represents the reward for the team when
agent e; performs role rf at time ¢, Res(e;, r;‘) represents
the resources needed by e; to perform r;? at time ¢, while
e;.res(t) represents the available resources for e; at time
t.

A dynamic allocation matrix is used to establish task
assignment, denoted by A;; in A, O 1 if and
only if the agent ¢; is assigned to task r¥ at time ¢.
Furthermore, to represent constraints, we define o< as the
set of relationships which hold among roles. Consequently,
the problem is to find a dynamic allocation matrix that
maximizes the following function

FA) =33 Val(es, rf,0a,t) (1)
t ik

with:

Cap(e;, ré?, t) if Cond

Val(ci,r;?,lxl,t) = {0 2)

otherwise

subject to:
m(t)
Vivi Z Res(ei,rf,t) X oy ph g < e;.res(t) (3)

j=1

ViV € {0,...,m(t)} Z“cmf-,t <1 (4)

where Cond is true when constraints relative to r;‘ are
satisfied.

Constraints can possibly be of several types (OR, XOR,
AND), in this paper we focus only on AND constraints.
When an AN D constraint holds among a group of roles,
each agent cannot perform any role if all the other roles are
not being performed simultaneously by some other team
mates. We write an AND constraint as AND* = {r,}
therefore <= {AND!...AND?®}. If a role r, € AND?
then the equation describing Cond is:

Cond = Z > G, vk = |AND? (5)
t rfeAND;
Notice that if the role is unconstrained, |[AND*| = 1,

then Val(e;, r¥,0q,t) = Cap(es, r¥.t) x a,, ,x ,» as above.
Agents have only a local view of the environment, thus we
define two sets: LOT; 4, which is the task set locally known
to agent ¢ at time ¢ (Locally Observed Tasks), and GOT; =
\J; LOT;,; which is the union of tasks locally known to
each agent ¢ at time ¢ (Globally Observed Tasks). The
LOT; ; is built by each agent based on its local perception
thus we can write LOT;;, = Mem(LOT;;_1,0(i,t))
where O(i,t) : AxTime — P(I'x{0,1}). Given an agent
a and a time step ¢, O(i,t) returns a set of pairs < 7,1 >
if task 7 is active and visible for agent a at time step ¢,
and < 7,0 > if task 7 is visible for the agent but is not
active. An active task is a new perceived task that needs to
be accomplished. Notice that assuming that the observation
function is able to distinguish between active and non active
tasks is quite a strong assumption; for example, in our
reference scenario, objects are similar in shape and color
and the distinction is made using object position, knowing
if an object is being moved by another team mate is not
a trivial problem. Thus, in this contribution we consider
cases where the observation function can fail in deciding
whether a detected object is to be considered active, and
explicitly address this problem in the coordination method.

The Mem function integrates observation for an agent
during the mission execution. We assume that the Mem
function add newly discovered tasks and is able to remove
non active tasks from the Locally Observed Tasks set. We
define LRS;; = {'rﬂuei’r@:t = 1} (Local Roles Set) and
GRS, =J; LRS; which are the currently assigned roles
(Global Roles Set). An allocation for a D-GAP problem is
the set Alloc = {LRS;,}. The global constraints 4 can be
then expressed as

(VLRS:: =0 (6)

We define a non conflicting allocation as an allocation for
which the following holds:

VE(\LRSi =0)

I1II. TOKEN PASSING APPROACH FOR ROLE
ALLOCATION

The main idea of the token passing approach is to regu-
late access to task execution, through the use of tokens, i.e.
only the agent currently holding the token can execute the
task. Following this approach the communication needed
to guarantee that each task is performed by one agent at
time is dramatically reduced.

If a task can benefit from the simultaneous execution
of several agents, one possible strategy is to create several
tokens referring to the same task. However, when tokens
are perceived and generated by agents during mission

execution conflicts on tasks may arise due to the fact that
several agents may perceive the same task; and thus create
an uncontrolled number of tokens leading too many agents
to execute the same role. Moreover, an explicit procedure
is needed to enforce AND constraints among roles. In the
following, we present and discuss our approach to ensure
that exactly n agents perform the same role simultaneously,
thus solving both the issues previously highlighted.

A Tlask is characterized by the physical objects (or
events) that the agent perceives, therefore given a per-
ceived object o we define the related task 7(0). We
associate a token to each role comprising a task to be
accomplished, thus for the object o we will have (o) =
{r(0)'...7(0)*}. In particular, in our reference scenario,
when a new object obj is found we need two robots
cooperating to grab the object, therefore we have a task
Move(obj) and two roles (and thus two tokens) for this
task: {collect(obj), support(obj)}.

To prevent possible conflicts, that may arise during
mission execution, we have to guarantee that no more than
n tokens are created for the same role. The main idea of
the proposed algorithm is that when an agent perceives
an object, it records this information in a local structure
and announces the presence of the object to all its team
mates. Moreover, whenever an agent accomplishes a task,
it announces to the entire team task termination, and each
of the team members removes the tokens referring to the
accomplished task from its local structures.

Using this approach conflicting tokens can still be cre-
ated for three main reasons: i) Simultaneous task discov-
ery: two agents e; and eo perceive a new task 7, creating a
set of tokens Tk(t,1)..Tk(t, s) exactly at the same time,
such that both agents will have different tokens referring
to the same task. ii) Messages asynchrony: messages are
not guaranteed to arrive in a predefined order; Suppose
an entity observes a new object, creates a new token for
a specified role and decides to pass the token on. If the
token reaches a team member before the new perception
announcement, the team member can decide to perform the
role possibly conflicting with other team mates. iii) Errors
in active object detection: if the observation function fails
in the recognition of an active object, a team member can
decide to allocate itself to a role that is already being
carried on by someone else.

In the following, we describe our approach to avoid
conflicts during mission execution and further details of
the token passing process.

A. Distributed conflict detection

Simultaneous task perception and message asynchrony
are addressed using a distributed approach for conflict
detection and a predefined global policy that orders all
the team mates. Each agent maintains in a local structure
called Invalid Token Set (/7'S) all the detected conflicting
tokens. Each new announce is registered in the Known Task
Set (K'1'S) maintaining the announcer agent information.
Tokens are added in the I7'S structure when an announce
message for an already known object is received and the

1537

announce(0,Al) 2

KIS announce(0,A2) 4
_OATT
0OA24
IRS

/ KTS

T(oy Al 0A21
4 IRS
T(o) Al
announce(0,A2)
OAT2 T(o) Al
0A24
Fig. 1. Distributed conflict detection

announcer agent has a lower priority as compared with
the agent that already announced the object detection. If
a higher priority agent announces the same object, then
the KT'S is updated. An example of possible execution of
this procedure is reported in Figure 1. Numbers on arrows
correspond to time step at which messages are received by
agents. The square represents the object and arrows starting
from the square represent object perception. K7'S is the
Known Task Set and I RS is the invalid role set. Notice that
K'T'S contains also information on the creator agent. As
shown in Figure 1, all agents share the same /RS without
need of any further communication.

Setting a static fixed priority among agents can obviously
result in non optimal behavior of the team; for example,
assuming that Cap(ey, 75, t) > Cap(es, ¥, t) following a
static priority based on id, we yield to the less capable
agent the access to the task r;” While in principle the
difference among capabilities can be unbounded, generally,
when tasks are discovered using perception capabilities,
agents perceive tasks when they are close to the object
location, (e.g. if two robots perceive the same object their
distance from the object is comparable); therefore, the loss
of performance due to the use of a fixed priority is small.

B. Avoiding failures in active task recognition

Suppose that when a collector robot moves an object,
another robot observes the same object, This robot will
consider the object as a new task to accomplish starting a
new allocation process for the task and possibly conflicting
with the collector robot.

To address this problem we partition the working envi-
ronment using a regular grid. While an object is perceived
inside a cell of the grid it is considered as the same task.
Suppose a robot observes the moved object and starts the
allocation of a new task; when the collector robot is reached
by an announce message for the object creation, it can
detect that the new task is actually the one it is performing
and declare the new created task as invalid. The collector
robot will then announce the task invalidation to all its
team mates sending an InvalidTask message in broadcast.
Tasks are considered invalid only for a given amount of
time. This is needed to avoid that collector robots passing

near other (active) objects invalidate them for the whole
mission execution.

C. Token passing process

While we do not report here the complete algorithm we
give some further details to clarify how the token passing
process is used to assign roles to team members.

Once a token has been created the token-based access to
values requires that each agent decides whether to execute
the tasks represented by tokens it currently has or to pass
the tokens on. Each agent follows a greedy policy in this
decision process, i.e. it tries to maximize its utility given
the tokens it currently can access, its resource constraints
and a broad knowledge on team composition (see [11] for
further details).

When roles are tied by AND constraints, following this
procedure will lead to potential deadlocks or inefficiencies.
For example, consider two tasks, ; and 7y, that need to be
simultaneously performed. When a team member « accepts
task r;, it may reject other tasks that it could potentially
perform. If there is no team member currently available
to perform task 7, a must simply wait. Thus, an explicit
procedure to enforce the AND constraints among roles
is needed. The general idea is to use potential tokens to
represent tokens that are tied by AND constraints. Potential
tokens retain agents; when an agent receives a potential
token it can perform other roles (i.e. the potential token
does not have impact on the current resource load of the
agent). However, when a lock message arrives the agent is
forced to execute the role.

IV. EXPERIMENTS AND RESULTS

We implemented and tested the described method on the
Sony AIBO robots. Our reference scenario is formed by a
set of robots that need to perform a synchronized operation
on a set of objects scattered in the environment. For each
object two robots are needed to perform synchronized
operations, while only one robot is needed to accomplish
the task. In particular, robots have to collect a set of
identically colored wheeled-bars. Each bar, to be correctly
transported, requires one robot to grab it, blocking the
center of the bar with its head. However, since robot
perception is very noisy and unreliable, it is very hard for
the grabbing robot to precisely estimate the position of the
bar. In particular, if the robot hits the bar trying to reach
the grabbing position, the bar will roll away from the robot.
To avoid this, a second robot (the supporting robot) helps
in the grabbing phase blocking the bar and preventing it to
roll away from the grabbing robot. Once the bar has been
grabbed, the supporting robot moves away from the bar
and is ready to be allocated to a different task, while the
grabbing robot can transport the grabbed bar in the desired
position

In order to successfully operate in this scenario, three
main components are required: 1) self-localization, 2)
action synchronization, and 3) object recognition. To put
emphasis on coordination issues, we have used an engi-
neered environment, borrowed from the RoboCup Legged

1538

League!, that is a rectangular field with six landmarks in
known positions where every landmark is clearly distin-
guishable by its color. In this way it is possible to imple-
ment a simple and effective landmark-based localization
method.

Action synchronization has been realized through
communication-based actions that exchange synchroniza-
tion information among robots.

Finally, the identification of objects to collect (colored
bars) is again based on colors, but since there are many
objects with the same color in the environment, also their
absolute position in the field must be computed, in order to
distinguish these objects. Note that these information are
subject to errors due to noisy perception and imprecise self-
localization, that can lead to false positives in task detec-
tion. To avoid this problem, we filter the absolute position
of objects using a very conservative policy; moreover, we
use active perception to ensure the correctness of the obser-
vations. In fact, due to the poor reactiveness in perception,
if an object is incorrectly perceived while moving to the
expected position of the current task, situations in which
erroneous tasks are generated may occur. Therefore, once
the robot is close enough to the object, it interleaves object
tracking with landmark pointing action for self-localization
in order to identify the object and understand if it is the
one associated with his task. Although this makes the
system more robust to false positives we cannot assume
their absence. Thus, if during the execution of a role a
robot realizes that an announced object is a false positive,
it has to invalidate the corresponding task with an Invalid
Role message.

Because of the small amount of messages needed by
our coordination method, we conveniently adopt the TCP
protocol, so that we do not have to manage message loss.

Since tasks to be accomplished are complex and we can
not assume instantaneous actions nor deterministic effects,
a reactive module is in charge of controlling the task
execution, identifying action failures during their execution,
and specifying ad-hoc recovery procedures.

The implementation on AIBO robots has shown the
feasibility of the approach on robots with limited computa-
tional resources. In particular, we experienced no network
problems, thanks to the low bandwidth required by the
coordination mechanism presented here.

Moreover, in order to have a consistent data set to
analyze, we used a general simulation framework, that has
been developed for reproducing the behavior of a robot
in a dynamic environment [2]. More specifically, each
robot is simulated in a separate process, that integrates
different components (perception, localization, navigation,
action execution, planning, and coordination). Processes
emulating robots communicate among them and with a
global module that provides sensorial information. Finally,
a graphical application is used to display the status of the
robots and of the environment. The simulator accurately
reproduces the problems arising in the real experiments (i.e.

I'See web site http://www.openr.org/robocup

1539

noisy perception, non-deterministic action execution, etc),
thus allowing for a realistic analysis of the performance of
the robots in a dynamic environment.

Supporter robot

Collector robot @ o
————)

Collectorrobot @ @ o ®
Supporter robot °

°

Supporter robot @)

o

Collector robot

Fig. 3. Four robots almost
completing their tasks

Fig. 2. Four robots correctly
allocated to two tasks

In Figures 2 and 3 we report an example of task
execution: four robots are cooperating in the foraging task
with three objects involved. In Figure 2 the four robots (rep-
resented as large circles) correctly performed the initial task
allocation and are moving toward two objects (represented
as smaller circle), satisfying the AND constraint; small dots
represent the paths robots have planned. In Figure 3 two
objects have already been collected, and the last object is
being grabbed by two robots; the current supporter robot
was a former collector coming back from the collect area,
and the current collector was a former supporter. The other
two robots are correctly unassigned and will begin their
search procedure to check that no active objects are present
in the working area.

For a quantitative evaluation of our approach we have
identified a set of initial configurations varying the number
of robots involved in the foraging task. We let the system
run until all the tasks have been accomplished and then we
measure the time needed to accomplish the task and the
number of exchanged messages. Note that the simulation
system introduces perception noise that leads to conflicts
and enforces that the grabbing phase must be performed
by exactly two robots that synchronize their actions, thus
the task is accomplished only if conflicts are correctly
solved and robots synchronize their actions for every
object in the environment. All performed experiments have
terminated, thus showing that the algorithm successfully
manage conflicts and that AND constrained roles do not
cause deadlocks, always converging to a valid allocation.

]

Fig. 5. Messages exchanged per

.

0

s s

Fig. 4. Average time for com-

pletion measured in second, x-
axis is number of agents; results
averaged over 20 simulations

second per agent, x-axis is num-
ber of agents; results averaged
over 20 simulations

In Figures 4 and 5 we report the results obtained for two,
four, five and seven robots and three objects. In the exper-
iments all robots can perceive all objects, thus generating
the highest number of possible conflicts. Figure 4 shows
an interesting behavior with respect to time for completion:
the time needed by agents to accomplish all tasks decreases
when the number of agents increases, but when too many
robots are present in the working environment performance
degrades due to spatial conflicts. The results suggest that
there is an optimal number of robots to accomplish the task
beyond which, adding more robots to the system decreases
the overall performance, if we leave the number of tasks
and the size of the working environment fixed.

Figure 5 shows that the number of messages exchanged
per agent per second is very small for all the experiments.
Consider that coordination methods based on iterative task
assignment (such as [7], [13]) for a similar application with
n agents and m tasks would require nm messages for each
agent at each time step; while in token based approaches
it remains bounded with respect to the number of agents
(with a fixed number of tasks) [11].

The variable number of messages with respect to team
size is due to two main factors: i) the number of messages
may increase with the team size because of a higher number
of conflicts; ii) the number of messages may increase due
to the number of cycles of not allocated tokens. In fact,
when tokens are refused by all the agents, they wait a given
amount of time and then they are reinserted into the system.

The spike present in the configuration with four agents is
due to the second factor; in fact, in the configurations with
four and five agents the number of tokens in the system
is the same, but in the first case we have more cycles,
because there are less agents. However, cycles due to not
allocated tokens can be reduced tuning the waiting time.
Moreover, the messages exchanged to resolve conflicts
do not impact on the system communication overhead
in normal situations. Based on the general behavior of
token based approaches and on the above considerations
we expect the method to be scalable with respect to team
size.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we have presented a distributed asyn-
chronous algorithm for task assignment in dynamic envi-
ronment. The presented approach is based on token passing
for role allocation and successfully achieves the integration
of the task assignment approach with object perception
from the environment. The approach can detect and solve
conflicts in role execution and provide correct allocation
for constrained roles.

The experiments performed show that our approach is
able to effectively assign tasks to robots, while avoiding
conflicts among team members. Moreover, the solutions
adopted to implement the described coordination method
on the Sony AIBO robots are well suited in a complex
reference scenario. Finally, the quantitative evaluation per-
formed in the simulated environment shows that the method
successfully allocates tasks to agents in different operative

1540

conditions, while maintaining a very low communication
overhead.

As future work an interesting extension would be to dy-
namically change the number of robots involved in the task
allocation process and to optimize the allocation process by
deciding whether to accept tokens and whom to pass tokens
based on probabilistic models of team members.

VI. ACKNOWLEDGMENT

This effort was partially founded by project “Simula-
tion and Robotic Systems for intervention in emergency
scenarios” within program COFINO3 of the Italian MIUR,
grant number 2003097252 and partially sponsored by the
Air Force Office of Scientific Research, Air Force Material
Command, USAF, under grant number FA8655-03-1-3A46.
The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Air Force Office of Scientific
Research or the U.S. Government.

REFERENCES

[1] E Cottefoglie, A. Farinelli, L. Iocchi, and D. Nardi. Dynamic
token generation for constrained tasks in a multi-robot system. In
International Conference on Systems, Man and Cybernetics, The
Hague,The Netherlands, 2004.

[2] A. Farinelli, G. Grisetti, and L. locchi. Spqr-rdk: a modular
framework for programming mobile robots. In Nardi et. al, editor,
Proc. of Int. RoboCup Symposium 2004, pages 653—660. Springer
Verlag, 2005.

[3] A. Farinelli, L. Iocchi, and D. Nardi. Multi robot systems: A
classification based on coordination. IEEE Transactions on System
Man and Cybernetics, part B, 34(5):pp. 2015-2028, October 2004.

[4] S. Fitzpatrick and L. Meetrens. Distributed Sensor Networks A
multiagent perspective, chapter Distributed Coordination through
Anarchic Optimization, pages 257-293. Kluwer Academic, 2003.

[5] B. Gerkey and J. M. Matari¢. Multi-robot task allocation: Analyzing
the complexity and optimality of key architectures. In Proc. of the
Int. Conf. on Robotics and Automation (ICRA’03), Taipei, Taiwan,
Sep 14 - 19 2003.

[6] B. Gerkey and M. J. Matari¢. Principled communication for dynamic
multi-robot task allocation. In Proceedings of the Int. Symposium
on Experimental Robotics, Waikiki, Hawaii, December 2000.

[7]1 L. Iocchi, D. Nardi, M. Piaggio, and A. Sgorbissa. Distributed
coordination in heterogeneous multi-robot systems. Autonomous
Robots, 15(2):155-168, 2003.

[8] Roger Mailler, Victor Lesser, and Bryan Horling. Cooperative
negotiation for soft real-time distributed resource allocation. In
Proceedings of AAMAS’03, 2003.

[9] P.J. Modi, P. Scerri, Shen W. M., and M. Tambe. Distributed Sensor
Networks A multiagent perspective, chapter Distributed Resource
Allocation, pages 219-256. Kluwer Academic, 2003.

[10] L. E. Parker. ALLIANCE: An architecture for fault tolerant multi-
robot cooperation. [EEE Transactions on Robotics and Automation,
14(2):220-240, April 1998.

[11] P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe. Token approach
for role allocation in extreme teams: analysis and experimental
evaluation. In /3th IEEE International Workshops on Enabling Tech-
nologies: Infrastructures for Collaborative Enterprises (WETICE-
2004)., Modena, Italy, 2004.

[12] D. Shmoys and E. Tardos. An approximation algorithm for the gen-
eralized assignment problem. Mathematical Programming, 62:461—
474, 1993.

[13] B. B. Werger and M. J. Mataric. Broadcast of local eligibility for
multi-target observation. In DARSO00, pages 347-356, 2000.

[14] R.Zlot, A Stenz, M. B. Dias, and S. Thayer. Multi robot exploration
controlled by a market economy. In Proc. of the Int. Conf. on
Robotics and Automation (ICRA’02), pages 3016-3023, Washington
DC, May 2002.

	MAIN MENU

