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Abstract. Biclustering, which can be defined as the simultaneous clus-
tering of rows and columns in a data matrix, has received increasing
attention in recent years, particularly in the field of Bioinformatics (e.g.
for the analysis of microarray data). This paper proposes a novel biclus-
tering approach, which extends the Affinity Propagation [1] clustering
algorithm to the biclustering case. In particular, we propose a new ex-
emplar based model, encoded as a binary factor graph, which allows
to cluster rows and columns simultaneously. Moreover, we propose a li-
near formulation of such model to solve the optimization problem using
Linear Programming techniques. The proposed approach has been tested
by using a well known synthetic microarray benchmark, with encouraging
results.

1 Introduction

Unsupervised learning, also known as clustering, is an active and historically
fecund research area, which offers a wide range of solution techniques [2]. In
recent years, the interest of the research community has been focused also on a
particular kind of clustering problems, the so-called biclustering, also known, in
other scenarios, as co-clustering. This term encompasses a large set of techniques
generally aimed at “performing simultaneous row-column clustering” [3].

Bi-clustering techniques have been applied in different scenarios, such as doc-
ument analysis [4], scene categorization [5], and, most importantly, expression
microarray data analysis – see the reviews [3,6,7]. In this last scenario, the -
starting point is a matrix whose rows and columns represent genes and experi-
ments, respectively. Each entry measures the expression level of a particular gene
in a particular experiment. The classical analysis in this scenario is to cluster
genes, with the aim of discovering which genes show the same behavior over all
the experiments – this permitting the discovery of co-regulation mechanisms.
However, a more interesting question can be raised: are there genes that share
similar expression only in a certain subset of experiments? Addressing this is-
sue, which can not be faced using a standard clustering approach, can provide
invaluable information to biologists, and represents the main goal of biclustering
approaches.

Different biclustering techniques have been proposed in the past [3,6,7], each
one characterized by different features, such as computational complexity, ef-
fectiveness, interpretability and optimization criterion . Many of such previous
approaches are based on the idea of adapting a given clustering technique to the
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biclustering problem, for example by repeatedly performing experiments and
genes clustering [8,9].

This paper follows the above-described research trend, and proposes a novel
biclustering algorithm, which extends and adapts to the biclustering scenario the
well known Affinity Propagation (AP) clustering algorithm [1]. This technique,
which is based on the idea of iteratively exchanging messages between data points
until a proper set of representatives (called exemplars) are found, has shown
to be very effective (in terms of clustering accuracy) and efficient (due to its
fast learning algorithm) in many different application scenarios, including image
analysis, gene detection and document analysis [1]. In Affinity Propagation the
clustering problem is formulated as an objective function and a set of constraints;
the objective function summarizes the intracluster-similarity and the constraints
guide the grouping of the points to a valid solution. Specifically, the objective
function and the constraints are encoded as a binary factor graph [10], and the
objective function is optimized by using the max-sum message passing algorithm
[1,10].

Even if some variants of the AP approach have been applied to the microarray
scenario – see for example [11,12] – its use in the biclustering context remains
somehow unexplored, with few papers recently published (such as [9], and [13]).
In particular, in [9] the AP model is used as the clustering module in an ite-
rative rows and columns clustering scheme [8]: however no modifications to the
basic AP model has been introduced, which is still used as a standard clus-
tering method. In contrast, [13] proposes an exemplar-based strategy to find
biclusters. However, while such approach shares many similarities with AP (e.g.,
it is exemplar-based and encodes the problem as a factor graph), a crucial dif-
ference is that the proposed factor graph is not binary thus drifting away from
the spirit of the original AP scheme, which exploits the binary nature of the
factor graph to derive efficient and fast update messages [14].

In this paper we propose an extension of the Affinity Propagation model,
which i) is based on a binary factor graph, and ii) directly performs biclustering.
In particular we extend the AP model in two ways: i) we consider as datapoints
to be analysed the single entries of the input data matrix, instead of the classi-
cal row/column vector; ii) we add to the model a constraint which forces points
belonging to the same cluster to represent a valid bicluster (namely all points
of a subset of rows and columns). Given the new factor graph, a possible solu-
tion to optimize the objective function is to resort to the max-sum algorithm
[1,10]. However, given the high number of cycles present in the factor graph, the
max-sum algorithm is likely to produce poor quality solutions [15]. Therefore
we derived an alternative linear formulation of the optimization problem, and
use Linear Programming techniques to find the optimal solution of our model.
Finally, while the space complexity of the model and the time complexity of
the algorithm are both polynomial in the number of entries of the data ma-
trix, the number of variables and constraints that our model introduces is very
large (i.e., O(n2m2) variables and O(n3m3) functions for an input matrix with n
rows and m columns). Hence, storing our model for typical biclustering matrices
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(which can contain hundreds of rows/columns) is an issue. Consequently, we
derived an aggregation methodology, which groups results obtained on smaller
matrices: this allows the evaluation of the proposed approach on a standard ex-
pression microarray benchmark [6]. Obtained results confirm the potentials of
the proposed method.

The remainder of paper is organized as follows: Sect. 2 presents Affinity Prop-
agation, the starting point of our model; the proposed approach is then described
in Sect. 3 and Sect. 4, whereas the experimental evaluation is given in Sect. 5;
finally Sect. 6 concludes the paper.

2 Affinity Propagation

Affinity Propagation (AP) is a well known clustering technique recently proposed
by Frey and Dueck [1]. The efficacy of this algorithm (in terms of clustering
accuracy) and efficiency (due to the fast resolution) have been shown in many
different clustering contexts [1].

The main idea behind AP is to perform clustering by finding a set of exemplar
points that best represent the whole data set. This is obtained by representing
the input data as a factor graph [16]: a bipartite graph that encodes an objective
function as an aggregation (e.g., a sum) of functions (typically called factors).
In the graph, the nodes (circles) define the data points and the factors (squares)
are functions defined over a subset of nodes – for details please refer to [10]. The
objective function is then optimized by running an iterative message passing
approach, which, in the typical task of maximizing a sum of functions, is the
max-sum algorithm [10].

In particular, in Affinity Propagation the factor graph is composed by two
parts: the first encodes the choice of the points and their exemplars via a binary
matrix C, where an entry C(i, j) = ci,j is set to one if the point i chooses j
as exemplar. This choice is ruled by the pairwise similarity values si,j , which
define the similarity between each pair of points i and j. The values si,i, given
as an input, represent the preference for point i of being itself an exemplar: such
choice influences the final number of clusters, which is automatically found by
the algorithm. The second part of the factor graph define two constraints, which
ensure to retrieve only valid solutions:

1. 1-of-N constraint : every point has to chose one, and only one, exemplar. This
can be represented by a function I over n nodes:

Ii =

{
0, if

∑n
i=1 ci,j = 1

−∞, otherwise
(1)

where n is the number of the points;

2. Exemplar consistency constraint : if a point is chosen as an exemplar by some
other data point, it must choose itself as an exemplar. This constraint avoids
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circular choices (“a” chooses “b”, “b” chooses “c”, “c” chooses “a”) and can
be represented by a function E over n nodes:

Ej =

{
−∞, if cjj = 0 and

∑n
i=1 ci,j ≥ 1

0, otherwise
(2)

where n is the number of data points.

Note that we have as many I and E functions as the number of data points in
input. Figure 1(a) reports the factor graph used in AP.
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Fig. 1. Factor Graph for Affinity Propagation (a) and the proposed Factor Graph for
Biclustering (b)

The objective function expressed by the AP factor graph is the sum of all
the factors, i.e., the constraints expressed in Equations (1) and (2) and the sum
of all similarity functions S(i, j) which are defined as the similarity value si,j
multiplied by the variables ci,j .

F =

n∑
i=1

n∑
j=1

sij · cij +
n∑

i=1

Ii +

n∑
i=1

Ej (3)

3 The Proposed Approach

In this section the proposed approach is presented. In general terms, given a data
matrix D = (dij)i∈N,j∈M , with N set of rows (|N | = n) and M set of columns
(|M | = m), a bicluster B = (dij)i∈T,j∈K is a submatrix of D, for T ⊆ N and
K ⊆ M , which meets specific spatial constraints ruled by a certain similarity
criterion. Here we assume that different biclusters do not overlap1.

1 i.e. each element of the data matrix must belong to a unique bicluster.
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In our approach, instead of considering as basic elements the rows and the
columns, we directly consider the single entries of the input data matrix. Starting
from {dij}i∈N,j∈M , we look for biclusters as sets of “coherent” entries of the
matrix respecting the specific spatial constraint. To obtain this, we re-define
the factor graph of Affinity Propagation: in particular, we have one variable
for each pair of entries of the data matrix D to encode the exemplar choice;
moreover, we introduce a constraint to ensure that points that belong to the same
cluster represent a bicluster. In what follows, we define our model, specifying the
variables, the constraints and the objective function, and motivate the use of an
LP optimization approach.

3.1 The Model

Variables. Our goal is to cluster the single entries of the data matrix: therefore
we encode the exemplar chosen by each entry of the data matrix D with a four-
dimensional Boolean matrix, where an entry C(i, j, t, k) = cijtk is 1 if the point
in position (i, j) of the matrix chooses (t, k) as its exemplar. For reasons which
will be clearer later, we replace the indices of the second point with a single value
(z = 1, 2, 3, · · · , n ·m) obtaining a three-dimensional structure C(i, j, z); again,
a variable cijz is set to 1 if the point (i, j) chooses the point z as its exemplar.
As in Affinity Propagation, this choice is based on a certain similarity matrix S,
which now encodes the similarities between every pair of entries (i, j) and (t, k)
of the input data matrix. As for C, we rearrange this four-dimensional matrix
in a three dimensional one S(i, j, z).

Functions. Following Affinity Propagation, we include in our model the con-
straint Iij (which is similar to (1) and encodes that one data entry should choose
only one exemplar) and Ez (which is similar to (2) and encodes that if ci,j,z = 1

then cî,ĵ,z = 1, where î and ĵ are the indices that correspond to z), which
guarantee valid variable assignments. Next, we introduce an extra constraint,
which ensures that the entries of the matrix which are in the same cluster do
represent a bicluster. In this perspective, we observe that, given a certain value
z, the bidimensional matrix

C(:, :, z) =

⎡
⎢⎢⎢⎣
c11z c12z . . . c1mz

c21z c22z . . . c2mz

...
...

. . .
...

cn1z cn2z . . . cnmz

⎤
⎥⎥⎥⎦ with 1 ≤ z ≤ n ·m (4)

immediately summarizes the relation between all the entries of the matrix and
the entry z: in particular, cijz = 1 indicates that (i, j) has chosen z as its
exemplar. Now, the constraints Iij and Ez ensure that all the points in a given
cluster had chosen the same exemplar, hence every matrix C(:, :, z) represents
a potential bicluster. However, to be a valid bicluster, such matrix should fulfil
one of the two following conditions:
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1. (trivial constraint) it should contain all zeros: there are no points choosing
as exemplar the point z;

2. (bicluster integrity constraint) the coordinates of the entries with 1 (namely
the coordinates of the entries in the bicluster) should represent all the points
of a given subset of rows and columns: in simple words, after rows-columns
re-arrangements, the ones in the C(:, :, z) matrix should form a full rectangle
(a rectangle with no zero elements).

This can be ensured by defining a constraint for every 4 points of the matrix
C(:, :, z): if cijz and ctkz are set to 1, then also cikz and ctjz should be set to 1.
More formally, the bicluster integrity constraint is defined as:

Bijtkz =

{
−∞, if cijz = 1, ctkz = 1 and cikz · ctjz = 0

0, otherwise
(5)

Notice that the function B is defined, for every sheet z, on all the possible pairs
of points (i, j) and (t, k).

Objective Function. Given the variables and the constraints above described
– represented in Fig. 1(b) – we can now write the objective function, defined
by the sum of the intra-biclusters similarity (via the matrix C and S) and the
constraints (I, E, and B):

F =
∑
i,j,z

cijz · sijz +
∑
i,j

Iij +
∑
z

Ez +
∑

z,i,j,t,k

Bijtkz (6)

where: 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ z ≤ n ·m, 1 ≤ t ≤ n and 1 ≤ k ≤ m.

3.2 Optimization of the Objective Function

Now, there are many possible approaches to maximize the objective function
expressed by the factor graph in Fig. 1(b). In AP the binary nature of the nodes
in graph is exploited to calculate an approximation of the maximum through the
max-sum algorithm [1]. However, the biclustering integrity constraint (defined
over every pair of entries of the matrix) induces a high number of cycles in
the graph, and it is well known that the performances of the approximated
maximization algorithms degrade in such conditions [15]. Therefore we follow an
alternative route, giving a linear formulation of the objective function, and using
linear programming (LP) techniques [17] to find the optimal variable assignment.
In general, LP approaches maximize/minimize an objective function where the
constraints defined on the data points are all linear [17]. In the objective function
(6), the first three addends can be easily written in a linear form; in the following
we will show how to transform the biclustering integrity constraint (5) into a
linear set of constraints.

The idea is that, when considering the matrix C(:, :, z), the biclustering in-
tegrity constraint is satisfied if, and only if, all rows (or columns) of this matrix
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are either zero or equal to each other. By exploiting the Boolean nature of the
variables, this can be enforced by checking if, for every pair of rows (or columns)
U = (u1, . . . , um) and X = (x1, . . . , xm), one of the following conditions is true:
i) U = X , ii) U = 0, iii) X = 0. This can be expressed through Boolean algebra
as: i) NOT (

∑
i (ui ⊕ xi)), ii) NOT (

∑
i ui), NOT(

∑
i xi), where “+” denotes the

OR operator and “⊕” is the XOR operator. By using De Morgan laws and some
proprieties of the Boolean algebra we can derive the set of linear constraints
representing the OR operation between the previous i), ii) and iii) constraints
as:

−u1 + x1 + u2 < 2 −u1 + x1 + u3 < 2 · · · −u1 + x1 + un < 2

u1 − x1 + x3 < 2 −u2 + x2 + u1 < 2 · · · u1 − x1 + xn < 2

this has to be done for all the pairs of rows (or columns) of every matrix C(:, :, z).
Now, all the elements of the model (objective function and constraints) are

linear, and the model can be solved by using LP approaches.
Let us analyse the complexity of the proposed approach. Given an input ma-

trix formed by n rows and m columns, the model contains O(n2m2) variables
and O(nm) functions for the constraints I and E. Unfortunately, when conside-
ring the biclustering integrity constraint, the number of functions to completely
describe all possibilities raises to O(m3n3). Even if being still polynomial (and
not exponential) in the number of rows and columns of the data matrix, the
number of functions to store in memory can be very large. In particular, for
typical biclustering problems (e.g., microarray analysis), the data matrix can
contain hundreds of rows and columns, hence our approach might require a
prohibitive amount of memory to store the model. About time complexity, an
Integer Programming problem is exponential in the number of constraints (in
the worst case). Anyway, there are many well established methods which pro-
vide, on average, time satisfactory solutions. To overcome the scalability issue
we run our algorithm on smaller matrices, extract biclusters and devise an ag-
gregation algorithm to find biclusters in the original data matrix. We describe
such aggregation algorithm in next Section.

4 Aggregation of Biclusters

Let a kernel be a window glass selecting a sub-matrix, we start by analyzing
the data matrix by means of a fixed dimension kernel, which is shifted along the
matrix, with no overlap. For every kernel, the optimal solution is retrieved (using
our model and the LP approach). Once the whole matrix has been analyzed, the
set of biclusters is then processed in three steps:

1. we apply a clustering algorithm on the exemplars retrieved in the different
kernels, to partition the set of biclusters in groups of biclusters with co-
herent values. Here we adopt as a clustering algorithm the original Affinity
Propagation method.
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2. for every group of biclusters, we perform a hierarchical agglomerative group-
ing which, starting from single biclusters, repeatedly joins together the most
similar groups of biclusters. Similarity between two groups of biclusters is
defined as the number of rows and columns that they share – when the
similarity of the nearest group is zero (no overlap) the algorithm stops. In
other words, we perform a classical agglomerative clustering of biclusters by
using as similarity the degree of column/rows overlap. Every group in the
final partition now represents a set of biclusters with no row/column overlap
with the other groups.

3. we post-process the final groups in order to be sure that they represent an
actual bicluster: this is done by removing rows (or columns) which violate
the bicluster definition.

Notice that, the third step is necessary because merging biclusters may not
produce a bicluster as result. A possible alternative would be to merge only
pairs of biclusters that result in a bicluster, however by so doing we would not
obtain large biclusters given by the simultaneous merge of k biclusters (where
k > 2). Having described our approach, we now turn to the empirical evaluation.

5 Results

The methodology proposed in this paper has been tested on a set of synthetic ma-
trices which represent a classical benchmark in the microarray scenario [6]: such
set comprises synthetic expression matrices, perturbed with different schemes2.
In the experiments, we have 10 non-overlapping biclusters, each extending over
10 rows and 5 columns. Such datasets have been widely used to investigate
the effects of noise on the performance of various biclustering approaches. The
accuracy of the biclustering has been assessed with the so-called Gene Match
Score [6]: the average bicluster relevance reflects to what extent the generated
biclusters represent a true bicluster in gene dimensions, and the average biclus-
ter recovery quanties how well each of the true biclusters is recovered by the
biclustering algorithm (such scores vary between 0 and 1, where the higher the
better the accuracy).

In our model we used as similarity the negative of the Euclidean distance
(as in [9]), which allows to retrieve only constant value biclusters. As in the
original Affinity Propagation model, a proper setting of the preferences (namely
the self similarities) is crucial: in our experiments we found that a good choice
is represented by the first integer number below the median (which represents
the standard setting [1]). The Linear Programming model was implemented and
resolved using CPLEX (version 12.4).

Figures 2(a) and 2(b) report the Gene Match Scores (the recovery and the
relevance values respectively – see [6]) for different levels of noise and for different
dimensions of the kernel, averaged over the different repetitions (also standard
deviations are displayed). As expected the approach provides better solutions as

2 All datasets may be downloaded from: www.tik.ee.ethz.ch/sop/bimax

www.tik.ee.ethz.ch/sop/bimax
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Fig. 2. Results for the proposed approach: (a) recovery and (b) relevance – for further
information we refer to [6]

the kernel dimension increases. Please note that when using the [1x1] kernel only
the aggregation algorithm described in Section 4 is employed (every data point
is in its own bicluster). As we can see in Fig.2, increasing the noise completely
corrupts the performances of the aggregation algorithm. Notice that, obtained
results are competitive with other state of the art approaches (see figure 2 in [6],
figure 1 in [18] or figure 3 in [9]), confirming the potentialities of the proposed
approach.

6 Conclusions

In this paper we propose a novel model, inspired by Affinity Propagation [1], to
retrieve biclusters from a data matrix. A key innovative element of our approach
is to analyze directly the entries of the data matrix, instead of considering whole
rows and columns, and to use Linear Programming techniques for computing
the optimal solution [17]. The space/time complexity of the model does not
allow to run our approach on typical biclustering problems, hence we partition
the original data matrix in small kernels and analyse each such kernel with our
approach. We then propose an aggregation approach to reconstruct the original
biclusters. We evaluate our approach on standard benchmarking datasets for
biclustering [6], and results show that the method is competitive with respect to
other state of the art approaches.

Future work in this area includes two main research directions: first, investi-
gate possible extensions of the approach to reduce the complexity of the data
representation model, second to test the approach on real biological data sets,
hence assessing the practical significance of the approach.
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