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Abstract
Biclustering is an intrinsically challenging and
highly complex problem, particularly studied in the
biology field, where the goal is to simultaneously
cluster genes and samples of an expression data ma-
trix. In this paper we present a novel approach to
gene expression biclustering by providing a binary
Factor Graph formulation to such problem. In more
detail, we reformulate biclustering as a sequential
search for single biclusters and use an efficient op-
timization procedure based on the Max Sum al-
gorithm. Such approach, drastically alleviates the
scaling issues of previous approaches for bicluste-
ring based on Factor Graphs obtaining significantly
more accurate results on synthetic datasets. A fur-
ther analysis on two real-world datasets confirms
the potentials of the proposed methodology when
compared to alternative state of the art methods.

1 Introduction
The problem of biclustering, also known as co-clustering or
subspace clustering, has received an increasing attention in
recent years, due to the wide range of possible applications in
crucial fields such as Computational Biology and Bioinfor-
matics [Oghabian et al., 2014; Madeira and Oliveira, 2004].

Briefly, biclustering represents a particular kind of cluster-
ing, where the goal is to “perform simultaneous row-column
clustering”: given a data matrix, the objective is to find sets of
rows showing a coherent behavior within a certain subsets of
columns. While biclustering approaches have been exploited
in many different application fields [Dolnicar et al., 2012;
Mukhopadhyay et al., 2014; Irissappane et al., 2014], the
most important application scenario is biology [Oghabian
et al., 2014; Pansombut et al., 2011; Madeira and Oliveira,
2004], in particular for the analysis of gene expression ma-
trices [Truong et al., 2013; Badea and Tilivea, 2007]. These
matrices represent the expression level of different genes in
different experimental conditions, e.g. healthy/unhealthy in-
dividuals, different stages of growth and so on. In this con-
text, the biclusters – sets of genes coherently expressed in a
sets of experiments – provide priceless information: they can
reveal the activation of particular biological processes, which
can be involved in diseases or complex cellular operations.

Many approaches are present in the literature to solve the
biclustering problem, each one characterized by different fea-
tures, such as formulation, accuracy, computational comple-
xity, descriptiveness of retrieved biclusters and so on – see the
recent review in [Oghabian et al., 2014]. To face the intrin-
sic high computational intractability of this NP complete pro-
blem, several methods resort to heuristics, which show impor-
tant limitations in terms of quality of solutions. In this paper
we investigate the use of Factor Graphs to model biclustering
so to combat such complexity – Factor Graphs are a class of
probabilistic approaches which permit to graphically express
a global function as a collection of factors (local functions)
defined over subsets of variables [Kschischang et al., 2001].
Such decomposition can lead to powerful algorithms (e.g. the
well known Max-Sum1) which have been used to effectively
solve various computational tasks (e.g. the Affinity Propaga-
tion algorithm for clustering [Frey and Dueck, 2007]). How-
ever, to derive effective solutions we have to face the dualism
existing between the representation power (the more complex
the model the better) and the computability of the model (the
simpler the model the better): from one hand we have to de-
rive a decomposable function, which however should be de-
scriptive enough to capture the nature of the problem; from
the other we have to deal with the model resolution, which
highly depends on its topology (e.g. number of cycles for the
Max-Sum algorithm).

In the biclustering context these issues are still far to be
completely solved, and for this reason there are very few
approaches based on Factor graphs [Farinelli et al., 2011;
Tu et al., 2011; Denitto et al., 2014]. In particular, in
[Farinelli et al., 2011] the clustering algorithm of Affinity
Propagation [Frey and Dueck, 2007] has been adapted to the
gene expression biclustering simply by performing an itera-
tive and sequential row-column clustering. Recently [Denitto
et al., 2014] extended the binary Factor Graph of Affinity
Propagation with a constraint allowing to retrieve only those
clusters of the matrix entries which represent true biclusters
(i.e. subsets of rows and columns); this, however, results in
a complex model, that can not be efficiently solved by the
Max Sum algorithm (i.e. too many cycles are present [Weiss

1Max-Sum is a message passing optimization algorithm belong-
ing to the Generalized Distributive Law family [Aji and McEliece,
2000; Bishop, 2006; Frey and Dueck, 2007]
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and Freeman, 2001]). Authors proposed a linear program-
ming solution, which does not scale beyond 10x10 matrices.
An alternative and interesting approach has been proposed in
[Tu et al., 2011], where a more compact Factor Graph model
has been derived by abandoning the binary nature of the AP
Factor Graph. However, also in this case the scalability repre-
sented the main issue (the binary nature was essential in [Frey
and Dueck, 2007] to derive efficient and fast routines to up-
date the messages): actually, with the Max Sum algorithm,
only a 10x10 matrix was analysed, while for larger matrices
authors had to derive an approximated Max-Sum algorithm
and a greedy approach.

In this paper we take one step forward towards this direc-
tion, by proposing a novel Factor Graph approach for the
gene expression biclustering problem which tries to exploit
all the potential of Factor Graphs. In particular, we reformu-
late the biclustering problem as a sequential search for one
bicluster at time2, then we derive a novel Factor Graph model
following some of the ideas contained in [Tu et al., 2011;
Denitto et al., 2014]. Crucially, the model we propose re-
mains compact and is binary: this allows to derive an ef-
ficient optimization procedure through the Max Sum algo-
rithm, which drastically alleviates the scaling issues of the
previous approaches.

Such method has been tested on synthetic gene expression
matrices of dimension 50x50, perturbed with random increas-
ing noise. When compared with the approximated versions of
[Tu et al., 2011; Denitto et al., 2014] needed to face matrices
of such dimensions, the proposed approach is more accurate
in identifying biclusters, thus confirming the potential of a
complete exploitation of Factor Graphs in this context. More-
over, we compare our approach with previous approaches for
biclustering on two gene expression datasets (yeast and breast
tumor) using standard experimental protocols. Our results
show that our method favourably compares with the state of
the art in both data-sets.

2 Related Work
In the literature, the exploitation of Factor Graphs and the
max-sum algorithm for gene expression biclustering is still
rather limited [Denitto et al., 2014; Tu et al., 2011].

In particular, [Denitto et al., 2014] proposed an extension
of the Factor Graph presented in [Frey and Dueck, 2007]
for the well known Affinity Propagation clustering algorithm.
The main idea of that work is to perform clustering directly
on the data matrix entries, instead of clustering whole rows or
columns, adding a constraint which guarantees the bicluster
structure (i.e. all entries have to belong to the same subset
of rows and columns, composing a sub-matrix). The clu-
stering, as in Affinity Propagation, is based on the concept
of exemplar (or prototype) and is ruled by two simple con-
straints: i) every point (entry) has to chose one, and only one,
exemplar on the basis of a similarity criterion; ii) if a point
i chooses another point j as an exemplar, j has to choose it-
self as an exemplar. The clusters are then composed by the

2This represents a trick employed by many approaches in the lit-
erature [Cheng and Church, 2000; Ben-Dor et al., 2003; Hochreiter
et al., 2010].

points choosing the same exemplar. Another constraint has to
be introduced in the model ensuring that the obtained clusters
could be arranged in sub-matrices (i.e. all the entries belong-
ing to a cluster must form a rectangular). This results in a
tri-dimensional binary model where the variables encode the
exemplar choices between the points. Given a data matrix
with n rows and m columns the model is composed by n ·m
layers of n × m variables each. This, however, results in a
large and complex model (for a 10×10 matrix the model con-
tains ten thousand variables), that can not be solved with the
Max Sum algorithm. Authors proposed a linear programming
solution, which however does not permit to analyse matrices
larger than 10x10. The Factor Graph of this approach, which
we call Biclustering Affinity Propagation (BAP), is shown in
Figure 1a.

The second approach [Tu et al., 2011], which we call
Exemplar-based Biclustering (EB), shares many aspects with
the BAP approach: in particular biclustering is again per-
formed by exploiting the concept of exemplars and the bi-
clustering constraint. The main difference concerns the way
the representative choices are described: in this approach the
variables are not any more binary, but encode with an integer
value the element chosen as exemplar. As a result, the model
is more compact than the previous one – n×m variables – see
Figure 1b. However they lost the binary nature of the original
AP scheme, which is a key element to derive efficient and fast
messages update rules for the Max-Sum algorithm [Frey and
Dueck, 2007]: hence in the paper the largest analysed matrix
was a 10x10 matrix, while for larger matrices authors had to
derive an approximated Max-Sum algorithm and a greedy ap-
proach.

3 The proposed approach
The proposed approach starts from some of the ideas con-
tained in [Tu et al., 2011; Denitto et al., 2014] and draws a
compact and binary Factor Graph model for biclustering gene
expressions. We then derive a fair approach for Max Sum
messages update.

3.1 The ingredients
The model is designed on the basis of four main ingredients.

1. Formulate the bisclutering problem as a repeated
“Search for the largest bicluster”. Many approaches
in the literature faced the biclustering problem in this
way [Cheng and Church, 2000; Ben-Dor et al., 2003;
Hochreiter et al., 2010]: once detected, a bicluster is
masked in the data matrix, e.g. by replacing it with
background noise [Cheng and Church, 2000]. With this
assumption, we can model the solution with a set of bi-
nary variables, one for each entry of the matrix, which
indicates if that entry (point) belongs to the bicluster.
We have therefore a compact set of variables (as in the
EB model), which are however binary (as in the BAP
model). In our model, a solution is represented by a
binary matrix C indicating which points belong to the
bicluster (ci,j = 1) and which do not (ci,j = 0)3. Since

3With i ∈ N , set of rows, and j ∈M set of columns.
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Figure 1: Factor Graph models for biclustering.

we are looking for the largest bicluster, solutions where
many ci,j set to 1 would be preferred.

2. The expression level “counts”. When analysing gene
expressions, the most important biclusters are those re-
lated to over-expression (i.e. genes presenting higher ex-
pression level than their average). This can be directly
encoded in the model by rewarding solutions which con-
tain entries with high activation levels aij (we assume all
activation levels positive). This aspect was neglected in
the two previously described models, where the assign-
ment to a bicluster was made only on the basis of the
coherence.

3. A bicluster is “coherent”. The model should prefer so-
lutions containing coherent entries, or, in other words,
should penalize incoherent solutions. In our model, the
incoherence of a bicluster is measured as the sum of the
pairwise incoherences between all the points belonging
to the bicluster. This differs from BAP and EB models,
where only the coherence with the exemplar of the bi-
cluster has been considered. We will see that this can
lead to a more robust solutions, especially in presence
of noise. To define the incoherence I(aij , atk) between
two entries aij and atk, we have different possibilities,
depending from which kind of bicluster we are look-
ing for (constant-value, additive, multiplicative and so
on [Madeira and Oliveira, 2004]). The most straight-
forward option is to simply use a constant-type incohe-
rence, like the one employed in the BAP model:

I(aij , atk) = (aij − atk)2

If we are looking for additively coherent biclusters,
I(aij , atk) can be defined as in [Tu et al., 2011; Cheng
and Church, 2000]:

I(aij , atk) = (aij − atj + atk − aik)2 (1)

4. A bicluster is a “submatrix”. The model should consider
only valid assignments, i.e. a sub-matrix of the data ma-
trix: this can be expressed by enforcing that the points
belonging to a bicluster have to compose a rectangle. In
particular, considering every pair of rows (or columns)
in the binary C matrix described above, the constraint is
satisfied in two cases: i) if the rows (or columns) share
the same pattern or ii) if one of the rows (or columns) is
completely zero. Thanks to the simplicity of the model,
the number of this constraints drastically reduces: for

the EB and the BAP models, we must insert one con-
straint for every couple of entries, whereas here we only
have a constraint for every pair of rows (or columns)4.

3.2 The model
Summarizing, given a data matrix A = (aij), i ∈ N =
{1..n}, j ∈ M = {1..m}, aij ≥ 0, the goal is to find a
bicluster BT,K = (alr), l ∈ T, r ∈ K, which can defined as
a sub-matrix of A (for T ⊆ N and K ⊆ M ). The proposed
model, graphically sketched in Figure 1c, is fully defined by
the following components:

Variables. A set C of m × n binary variables ci,j (i ∈ N
and j ∈ M ), each one indicating if the entry i, j belongs
(ci,j = 1) or not (ci,j = 0) to the solution.

Factors.
• Aij : one for each entry i, j, encodes the activation level

provided by each entry of the data matrix, and is defined
as

Aij(cij) =

 ai,j if ci,j = 1

0 otherwise

• Oaij ,atk : one for each pair of points, encodes the “inco-
herence” aspect of the problem, and is defined as

Oaij ,atk (cij , ctk) =

 I(aij , atk) if ci,j = ct,k = 1

0 otherwise

• Bjk: one for each couple of rows (or columns), forces
the result to be a bicluster, and is defined as

Bit([ci1, . . . , ctM ]) =


if
∑

j cij = 0
0 or

∑
j ctj = 0

or
∑

j(cij − ctj) = 0

−∞ otherwise

4This reduction is even more significant in the gene expression
case, where typically only few experiments are present.
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Optimization Function.

F (C) =
∑
(i,j)

Aij(cij)− w ∗
∑
(i,j)

∑
(t,k)

Oaij ,atk(cij , ctk)+

+
∑
i,t

Bjk([c1j , . . . , cNj , c1k, . . . , cNk])

(2)

with [i, t] ∈ N and [j, k] ∈ M . Besides the third part (which
ensures correct solutions), we have two driving forces: from
one hand, if two entries ij and tk are considered in the so-
lution (i.e. cij = 1 and ctk = 1), their activation levels (aij
and atk) are summed to the objective function, this encourag-
ing large biclusters; from the other hand a value I(aij , atk)
is subtracted, avoiding incoherent points to be part of the so-
lution. In order to balance the strength of these two forces a
parameter w has been introduced into the model.

3.3 Optimization
There are at least two big classes of resolution algorithms to
solve Factor Graphs: message passing algorithms and search
based algorithms. Thanks to its success in the coding theory,
message-passing approaches are typically preferred [Wiberg
et al., 1995]. One of the most famous message passing ap-
proaches is the max-sum algorithm, which is based on the
definition of two functions – called messages – which pass
information between two nodes connected by a link. The
Max-Sum algorithm uses two kinds of messages:

1. From factors to variables:

µf→x(x) = max
x1...xn

[
f(x, x1, . . . , xn) +

∑
m∈ne(f)nx

µxm→f (xm)

]

2. From variables to factors:

µx→f (x) =
∑

l∈ne(x)nf

µfl→x(x)

where ne(·) retrieves the neighbour set of the argument.
These messages are iteratively exchanged between graph

nodes until a convergence criteria is reached. The variable
configuration is then obtained by summing all the incoming
messages in each variable, and by assigning to such variable
the value that maximizes the summation [Frey and Dueck,
2007; Bishop, 2006].

A crucial element for the practical use of Max-Sum is the
derivation of efficient procedures to update the messages. Ob-
taining such messages update rules can be not trivial (espe-
cially for messages from functions to nodes, which contain
a maximization), and it is clearly linked to the structure of
the model. In our case, by exploiting the binary nature of
the variables and by defining the constraint (which limits the
feasible variable configurations), we obtained the following
messages5:

5In particular, our model is composed by three different types
of factors, thus six kind of messages should be derived (three in
each direction); however, after some simplifications, all the Max-
Sum algorithm can be implemented using four messages.

1. from the variable ci,j to the function Oaij ,atk :

ψtk
ij =

∑
t̂k

σt̂k
ij +

∑
k

ηkij + αij

2. from the variable ci,j to the function Bi,k:

βk
ij =

∑
k̂

ηk̂ij +
∑
tk

σtk
ij + αij

3. from the function Oaij ,atk to the variable ci,j :

σtk
ij = max

[
min

(
Oaij ,atk , Oaij ,atk + ψij

tk

)
,

min
(
− ψij

tk, 0
)]

4. from the function Bi,k to the variable ci,j :

ηkij = max

[
min(Θ, I),min(K,Λ)

]

with

Θ = min
(
0, β

j
ik

)
+
∑
î

max
[

min(β
k
îj , β

k
îj + β

j

îk
),min(−βj

îk
, 0)
]
,

I = β
j
ik + min

î
(max(0,−βk

îj − β
j

îk
)),

K = min(0,−βj
ik) +

∑
î

max
[

min(0,−βj

îk
),min(β

k
îj , β

k
îj − β

j

îk
)
]
,

Λ = min
t6=i

[
max(−βj

tk,−β
j
tk − β

k
tj)+

+
∑
î6=t,i

(max(min(0,−βk
îj − β

j

îk
),min(β

k
îj ,−β

j

îk
)))
]
.

Different convergence criteria can be used, here we stop the
procedure when the variables configuration does not change
for 100 consecutive iterations.

3.4 Analysis
Complexity: given a data matrix with n rows andm columns,
the model has a space complexity ofO(n2m2) (because there
are n2m2 Oaij ,atk factors) while the time complexity is ruled
by the O(n2) required by the ηkij message update rule6.
Scheduling: the messages are updated in parallel using the
messages retrieved in the previous iteration.
Convergence: one of the main feature of the method is that
not only an explicit form for all the messages has been re-
trieved, but also, the messages are robust and stable. As we
can see from Figure 2 the messages drive the objective func-
tion to rapidly reach its final value, which means that the vari-
ables configuration is quickly set to its convergence state.

4 Experimental Evaluation
The proposed approach has been evaluated using two sets of
synthetic datasets and two real gene expression matrices.

6The other messages require: i) ψtk
ij → O(n), ii) βk

ij → O(n),
iii) σtk

ij → O(1)
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Figure 3: Purity (3a,3c) and Inverse Purity(3b,3d) for matrices with constant (3a,3b) and additive coherent (3c,3d) biclusters
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Figure 2: Objective function trend among the Max-Sum iterations.
Each marker describes the value obtained by the variables config-
uration in such iteration: rounds indicate valid configurations (i.e.
assignment respecting the constraints); crosses indicate non-valid
configuration, the depicted values (which should be −∞) are those
the objective function would obtain if the B factors are neglected.

4.1 Synthetic Experiments
The two synthetic benchmarks are created to simulate gene
expression matrices containing a single bicluster. In the first
dataset the implanted biclusters are constant valued bicluster
(we call this “Constant Bicluster Benchmark”), while in the
second dataset additively coherent biclusters were used (we
call this “Evolutionary Bicluster Benchmark”).

In both cases, each matrix has been generated using the
following procedure: i) we generate a 50 × 50 matrix con-
taining random values uniformly distributed between 0 and 1;
ii) we insert a constant valued (or additively coherent valued)
bicluster, whose dimension was 25% of the matrix size, the
bicluster was inserted in a random position; iii) finally, the
entire matrix has been perturbed with Gaussian noise. The
standard deviation of the Gaussian noise is a percentage of
the difference between the mean of the entries belonging to
the bicluster and the mean of the background. 5 different
noise levels (i.e. percentages) were used, ranging from 0 (no
noise) to 0.2 (high noise). For each noise level, 15 matrices
have been generated, resulting in a total of 75 matrices.

The quality of the retrieved biclusters have been assessed
using two standard indices, also employed in [Tu et al., 2011]:
i) purity: percentage of points retrieved by the algorithms
which actually belong to the real bicluster; ii) inverse purity:
percentage of points belonging to the true bicluster which

have been retrieved by the algorithms. CallingC the bicluster
found by the algorithm and L the ground truth, the indices are
calculated as follows:

Purity =
|C ∩ L|
|C| , Inverse Purity =

|L ∩ C|
|L| .

The proposed approach has been compared with the two FG-
based methods described in Section 2, namely the Bicluster-
ing Affinity Propagation (BAP) [Denitto et al., 2014] and the
Exemplar-based biclustering (EB) [Tu et al., 2011]. In both
cases, since the dimension of the analysed matrices is far be-
yond the computational capabilities of the original versions,
we employed the approximated versions. In particular, for
the BAP we employed the heuristic aggregation methodology
proposed in [Denitto et al., 2014], which groups results ob-
tained on smaller matrices (here we used 5x5 matrices, with
no overlap). Regarding similarity, we employed the nega-
tive of the Euclidean distance (as proposed in [Denitto et al.,
2014]) for the Constant Bicluster Benchmark, whereas for the
Evolutionary Bicluster Benchmark we adopted the negative
of eq. (1), so to deal with additively coherent biclusters.

For the EB, we employed the greedy version given in [Tu et
al., 2011] 7. Since this algorithm provides a pool of biclusters
as solution, for a fair comparison all parameters have been
varied inside the suggested range8 using ten equally spaced
values and only the bicluster which maximizes the product
of purity and inverse purity has been considered (the product
allows us to choose fairly on the basis of both indexes). The
same strategy has been employed to set the coherence weight
(w) for our approach (in this case, only 8 values were consid-
ered).

The results for the Constant and Evolutionary Bicluster
benchmarks are shown in Figure 3, where purity (3a,3c) and
inverse purity (3b,3d) are displayed for the different methods,
while varying the noise level. Each point represents the av-
erage over the 15 runs of the given noise level. In the plot, a
full marker indicates that the difference between the consid-
ered method and the proposed approach is statistically signif-
icant9.

7The code can be downloaded from
http://sist.shanghaitech.edu.cn/faculty/tukw/sdm11code.zip

8Parameter ranges are described in the code documentation.
9We performed a t-test for each noise level (on the result of the

15 matrices),we set the significance level to 5%.
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The results evidently show that the proposed approach sig-
nificantly outperforms the two approximated BAP and EB
methods, especially when the level of noise increases, thus
confirming the need of more robust optimization strategies in
complex highly noisy situations. Concerning the other two
methods, it is important to note that the BAP algorithm per-
forms well only on the Constant Bicluster Benchmark: prob-
ably, employing eq. (1) as similarity is not enough to appro-
priately identify evolutionary biclusters. This is probably due
to the fact that if two points are on the same row (or columns)
the function (1) returns zero a coherence value, increasing the
chance of taking part to the solution. The EB algorithm seems
to be more robust, even if suffering more in case of additive
coherent biclusters. Probably, in this case, assuming that a
bicluster is fully described by a single entry (the exemplar) is
too reductive, especially when the complexity increases due
to the presence of high noise.

4.2 Gene Expression data
The algorithm has been tested on two real gene expression
datasets: the Yeast dataset [Gasch et al., 2000] and the Breast
tumor data [Oghabian et al., 2014].

Even if our method scales better than the other Factor
Graph models, the analysis of such matrices is not possible
(the algorithm runs out of memory, in particular for what con-
cerns the memory required by η and σ messages). To com-
bat this, the original algorithm has been executed on different
portions of the matrices; successively an aggregation method
to join the biclusters has been employed. More in detail, the
proposed approach has been applied several times on ran-
domly extracted submatrices (involving 10 rows and all the
columns, with no overlap). The obtained biclusters have been
then grouped together using Affinity Propagation, defining as
similarity criterion the number of columns shared by two bi-
clusters (the more the better). Finally, the groups of biclusters
have been validated by looking at the Factor Graph objective
function (2). In particular, for each group of biclusters, such
function has been evaluated on the matrix composed by the
rows and the columns of the biclusters belonging to it: if the
objective function is positive (i.e. our algorithm could have
put them togheter), the group is maintained, and the final bi-
cluster is obtained by merging rows and columns of all its
biclusters10.

For both datasets, the obtained biclusters are evaluated by
analyzing the Gene Ontology terms of the genes belonging to
the same bicluster. Briefly, Gene Ontology describes gene
products in terms of their associated biological processes,
cellular components and molecular functions in a species-
independent manner, thus representing a widely used and
powerful approach to validate information extracted from
gene expression biclusters. The Gene Ontology analysis have
been then performed on these sets through the FuncAssoci-
ate11 web-service using five significance levels. As stated in
[Tu et al., 2011], “the biclustering result is assigned a Gene
Ontology enrichment score for each significance levels that

10To retrieve different biclusters the methodology has been re-
peated varying the initial set of sub-matrices.

11http://llama.mshri.on.ca/funcassociate/

Significance Level (%) 5 1 0.5 0.1 0.01
Cheng&Church (%) ∼80 ∼70 ∼70 ∼55 ∼45
ROCC(%) ∼98 ∼98 ∼98 ∼98 ∼98
Bimax(%) 100 100 100 100 100
EB(%) 100 100 100 100 100
Proposed (%) 100 100 100 100 100

Table 1: Results on Yeast dataset. Results for other approaches
have been taken from Figure 3 in [Tu et al., 2011]. Algorithms refer-
ence: Cheng&Church [Cheng and Church, 2000], ROCC [Deodhar
et al., 2009], Bimax [Prelic et al., 2006], EB [Tu et al., 2011]

FABIA ISA Hiearc. SAMBA FLOC Proposed
55% 63% 70% 73% 85% 87.5%

Table 2: Results on Breast tumor dataset. Results for other ap-
proaches have been reported from [Oghabian et al., 2014]. Algo-
rithms reference: FABIA [Hochreiter et al., 2010], ISA [Ihmels et
al., 2004], Hierarchical [Sokal, 1958], SAMBA [Tanay et al., 2002],
FLOC [Yang et al., 2005]

corresponds to the percentage of gene sets that are enriched
with respect to at least one GO annotation”.

For what concern the Yeast dataset, in order to be compa-
rable with the results in [Tu et al., 2011], only the first 100
biggest biclusters (with a maximum overlap degree of 25 per-
cent) have been considered as part of the solution. In Table 1
we reported percentages obtained with our algorithm, for dif-
ferent significance levels, together with other state of the art
results taken from [Tu et al., 2011]. As can be seen from the
table, the proposed approach compares very well with other
alternatives on this dataset.

For what concern the Breast dataset, as it is commonly
done in relevant literature [Rogers et al., 2005; Bicego et al.,
2012] we preliminary employed variance-based gene selec-
tion to reduce the dimensionality of the data matrix; then we
applied our approach, using the validation protocol adopted
in [Oghabian et al., 2014]: only the first 40 largest biclusters
have been considered as part of the solution, for which the
Gene Ontology significance index has been evaluated with a
significance level of 5%. Results are reported in Table 2, and
compared with all the state of the art methods analysed in
[Oghabian et al., 2014]: as can be seen from the table, our
method sets a novel state of the art on this dataset.

5 Conclusions
In this paper we proposed a novel Factor Graph based ap-
proach to address the biclustering problem for gene expres-
sion data. In particular, we faced the problem by searching
iteratively one bicluster at a time. We proposed a binary and
compact Factor Graph based on the analysis of the data ma-
trix entries. The model has been then solved exploiting the
max-sum algorithm: i) deriving an approach to efficiently up-
date messages and ii) analyzing the method for what concern
space and time complexity. The empirical evaluation showed
that our approach significantly outperforms previous state-
of-the-art methods on both synthetic datasets and real data,
demonstrating its practical significance.
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