
A Methodology for Deploying the Max-Sum Algorithm and a CaseStudy on
Unmanned Aerial Vehicles

F. M. Delle Fave, A. Farinelli⋆, A. Rogers and N. R. Jennings
University of Southampton

{fmdf08r, acr, nrj}@ecs.soton.ac.uk
⋆Università di Verona

alessandro.farinelli@univr.it

Abstract

We present a methodology for the deployment of the max-
sum algorithm, a well known decentralised algorithm for co-
ordinating autonomous agents, for problems related to situa-
tional awareness. In these settings, unmanned autonomous
vehicles are deployed to collect information about an un-
known environment. Our methodology then helps identify
the choices that need to be made to apply the algorithm to
these problems. Next, we present a case study where the
methodology is used to develop a system for disaster manage-
ment in which a team of unmanned aerial vehicles coordinate
to provide the first responders of the area of a disaster with
live aerial imagery. To evaluate this system, we deploy it on
two unmanned hexacopters in a variety of scenarios. Our tests
show that the system performs well when confronted with the
dynamism and the heterogeneity of the real world.

1 Introduction
Current research in artificial intelligence has dedicated con-
siderable effort to developing technologies for disaster man-
agement. Some of these seek to help first responders to
quickly assess the area of a disaster; thereby providing sit-
uational awareness—the ability to make sense of, and pre-
dict, what is happening in an environment (Endsley 2000).
In these settings, the deployment of autonomous unmanned
aerial or ground vehicles (UAVs and UGVs), has been advo-
cated, since these are capable of gathering such information
in an efficient and timely fashion, without relying on valu-
able and scarce human resources to control them (Bethke,
Valenti, and How 2008).

However, to do so, it is necessary for these vehicles to co-
ordinate their decision making to ensure that they perform
effectively as a team, as opposed to acting independently.
To achieve this, a variety of algorithms have been produced,
among which decentralised algorithms are typically pre-
ferred since they are scalable and robust to component fail-
ure (Bethke, Valenti, and How 2008; How et al. 2009). In
such cases, the key challenge is to produce techniques that
allow these vehicles to make joint decisions within the com-
putation and communication constraints of the system. Ex-
amples are many, from market-based algorithms (Dias et al.
2006), to algorithms inspired by game theory (Bourgault,

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Furukawa, and Durrant-Whyte 2004) and constraint optimi-
sation (Fitzpatrick and Meertens 2003). Among these, the
max-sum algorithm, a message passing algorithm relying on
the generalised distributive law (GDL) (Aji and McEliece
2000), has been shown to yield the most efficient decisions
on a variety of simulated problems, whilst being scalable,
robust and requiring very little computation and communi-
cation (Rogers et al. 2011).

However, despite its potential, thus far max-sum has not
been deployed on a real system. It has only been tested in
simulation, which lacks the dynamism and the heterogeneity
of the real world. Hence, max-sum’s robustness and flexi-
bility for real applications have not been tested in practice.
Moreover, max-sum’s performance depends greatly on the
way it is applied to a problem. In fact, this performance is
affected by both the way in which a generic problem is en-
coded to form the input of the algorithm, and the way the
algorithm is decentralised between the available sources of
computation. However, whereas a variety of ways to apply
the algorithm have been described by literature, a general
framework that discusses and analyses these issues is absent.

To address these shortcomings, this paper presents a study
of the deployment of the max-sum algorithm. First, we in-
troduce a methodology that the less-experienced developer
can use to deploy max-sum for problems related to situa-
tional awareness. In so doing, we describe a set of general
rules that unify the different ways in which the algorithm
can be applied to these problems and analyse their advan-
tages and disadvantages. Second, we present a case study
whereby we apply our methodology to deploy max-sum to
coordinate a team of unmanned aerial vehicles to provide
live aerial imagery to the first responders operating in the
area of a disaster. In so doing, we propose a potential sys-
tem that could be effectively deployed for real world opera-
tions. We then evaluate the performance of the algorithm by
deploying it on two hexacopter UAVs and performing live
flight tests in a number of different settings. In so doing, we
make the following contributions to the state of the art:

• We develop a methodology to apply max-sum to problems
related to situational awareness1. In so doing, we unify
the various existing techniques and organise them into a

1The algorithms may be applicable to other domains with sim-
ilar characteristics. This will be considered for future work.

sequence of steps that can guide the less experienced de-
veloper to the successful deployment of the algorithm.

• We present a potential system for disaster management, in
which first responders interact in real time with unmanned
aerial vehicles to request live imagery of the area of a dis-
aster.

• We evaluate the system by deploying it on two hexacopter
UAVs in three different settings. These tests demonstrate
its flexibility, and therefore they show that max-sum is a
strong candidate to be deployed on real unmanned vehi-
cles for problems related to situational awareness.

The remainder of this paper proceeds as follows: Section 2
introduces max-sum; Section 3 presents our methodology;
Section 4 presents the case study; Section 5 describes the
flight tests and Section 6 concludes.

2 The Max-Sum Algorithm
Here we briefly describe the max-sum algorithm (refer to
(Rogers et al. 2011) for more details). This algorithm solves
problems defined by a set of variablesx = {x1, · · · , xM}
defined over a set of discrete domainsD = {D1, · · · , DM}
and a set ofU = {U1, · · · , UN}, where eachUj ∈ U is
defined over a subsetxi ∈ x of the set of variables. The
output is a joint variable assignmentx∗ such that the sum of
all the functions is maximised:

x∗ = argmax
x

N
∑

i=1

Ui(xi) (1)

To apply the algorithm to solve Equation 1, the problem is
encoded into a factor graph; an undirected bipartite graph
whose vertices represent variablesxj and functionsUi and
the edges the dependencies between them. The algorithm
then works by propagating messages between the functions
and the variables of the factor graph. These messages take
two forms, messages sent from a variablexj to a function
Ui, denoted byqj→i(xj) and messages from functionUi to
variablexj , denoted byri→j(xj). The former are calcu-
lated by Procedure 1, while the latter are calculated by Pro-
cedure 2. Note that each message is a function of the cor-
responding variable. In problems where the structure does
not change (i.e. the functions and variables of a problem re-
main the same), such as the graph colouring problem or the
scheduling problem, these procedures are typically run fora
pre-defined number of iterations (proportional to the number
of nodes of the factor graph). However, in most real world
settings the structure of the problem varies continuously to
incorporate the changes of the environment. Indeed, in these
settings, the number of the variablesxj and of the utilities
Ui can change as can the variables’ domains and the utili-
ties’ values. To deal with this, various approaches have been
defined, which will be discussed in the next section.

The propagation of these messages allow the algorithm
to compute for each variablexj the marginal function
zj(xj) = max

x\{xj} U(x). This function calculates the de-
pendency betweenxj and the global functionU(x). Max-
sum then calculates the best assignment of each variable

x∗
j = argmaxxj

zj(xj) as the sum of the messages flow-
ing intoxj :

x∗
j = argmax

xj

∑

i∈M(j)

ri→j(xj) (2)

whereM(j) is the set of all the function neighbours ofxj .

Procedure 1messageToFunction(xj, Ui,R): The proce-
dure to compute a message from variablexj to functionUi.
Input: xj : the sending variable;R: the set of all the messages

received byxj since the last time a message was computed;
Ui: the destination function.

Output: qj→i(xj)
1: qj→i(xj) = 0
2: for all rk→j ∈ R; k 6= i do
3: qj→i(xj) = qj→i(xj) + rk→j(xj)
4: end for
5: return qj→i(xj)

Procedure 2messageToV ariable(xj , Ui,Q): The proce-
dure to compute a message from functionUi to variablexj .
Input: xj : the destination variable;Q: the set of all the messages

received byUi since the last time a message was computed;
Ui: the sending function;

Output: ri→j(xj)
1: ri→j(xj) = −∞
2: for all di ∈ Di do {all the joint assignments ofxi}
3: σ = Ui(di)
4: for all dk ∈ di, (k 6= j) do
5: σ = σ + qk→i(dk) {qk→i ∈ Q}
6: end for
7: ri→j(dj) = max(ri→j(dj), σ) {dj ∈ di}
8: end for
9: return ri→j(xj) + αij

2

3 The Methodology
Our methodology is composed of five steps. Each describes
one aspect to take into account when deploying max-sum.

Step 1 – Defining Variables: Each variable of the factor
graph represents a vehicle’s decisions. These decisions take
one of two forms in situational awareness domains:

• Decisions as actions: Each action is specific to the type
of vehicle that is deployed. Each action is related to the
manoeuvres that the vehicle can make and is defined by
discretising its motion space. For instance, the actions of
a fixed wing UAV are defined as the set of bank angles that
it can follow, whereas the actions of a UGV are defined as
its steering inputs.

• Decisions as tasks: Each task is a unit of work to be at-
tended. Examples related to disaster management include
imagery requests or tracking targets such as drifting life-
rafts and ground vehicles.

2Hereαij is a normalising constant that prevents the messages
from becoming arbitrarily large in cyclic factor graphs (Rogers et
al. 2011).

The developer needs to be extremely careful when defining
variables, since their number and the size of their domain
influence the performance of max-sum in two ways. First,
in terms of communication overhead, the length of a max-
sum message to or from a variablexj is linear in the size
of its domain (O(|Dj |)). Second, the complexity of com-
puting a message from a function to a variable message is
O(

∏

xk∈xi
|Dk|). Thus, it is polynomial in the size of the

individual domains, and exponential in the number of con-
nected variables. The latter can be problematic when de-
cisions represent tasks since their number is likely to be
large. To address this shortcoming, there exists a variant
of max-sum tailored to task assignment problems that re-
duces the communication and computation costs required
(see (Macarthur et al. 2011))3.

Step 2 – Defining Functions: Each function of the factor
graph quantifies the impact of a joint set of decisions on the
value of the objective function (Equation 1). These functions
take one of two forms for situational awareness domains:
• Utility of a vehicle: This utility identifies the contribution

of each vehicle to the set of measurements that the team
is making. This representation is used when vehicles are
coordinating to make collective measurements of some
specific feature such as the temperature of a building, or
the position of a drifting life-raft (Bourgault, Furukawa,
and Durrant-Whyte 2004). In these settings, actions rep-
resent a vehicle’s decisions and are used to identify the
local measurement corresponding to each of its possible
manoeuvres. A collective measurement is then defined as
the union of all the vehicles’ local measurements.

• Utility of a task : This utility quantifies the assignment of
one or more vehicles to a task (e.g. providing imagery of
an area or tracking a drifting life-raft). A decision then
represents the assignment of a task to a UAV. Thus, a util-
ity assigns value to determine which vehicle is more capa-
ble to attend a specific task, given the vehicle’s properties
such as its’s battery life or current position, and the task’s
properties such as its duration and importance.

Step 3 – Allocating Nodes: The computation related to the
functions and the variables of the factor graph (procedures1
and 2) needs to be allocated to one of the available sources
of computation. These include vehicles, laptops, desktops
and personal digital assistants (PDAs). This is extremely
useful since UAVs and UGVs have heterogeneous and lim-
ited computational resources and, most importantly, they can
fail. Each node is then assigned as follows:
• Variable Allocation : Each variable is allocated to the ve-

hicle whose decisions it represents. Another option is to
allocate the variable to an independent platform such as
a laptop or a PDA, considering that a very reliable com-
munication channel needs to be built between the variable
and the actual vehicle in order to send each decision.

• Function Allocation: Each function is allocated depend-
ing on which of the two approaches defined in step2 is
used:
3In this work, the algorithm is used on a task assignment prob-

lem. Hence, this version is the one adopted here.

– Utility of a vehicle: Each function is allocated to the
vehicle whose utility it represents.

– Utility of a task : Each function can be allocated to any
vehicle that can attend the task. Any allocation mech-
anism can be used to select one of these vehicles. For
instance, the one with the lowest id can be chosen.

Note that, similarly to variables, each function can be allo-
cated to an independent platform provided that a reliable
communication channel is built.

Step 4 – Selecting a Message-Passing Schedule: A sched-
ule for computing procedures 1 and to make a decision
(Equation 2) is necessary for three reasons. The first two
have been discussed in Section 2. First, max-sum requires
the nodes to share a specific number of messages before
Equation 2 can be calculated for each variable (i.e. before
the vehicles can compute a decision). Second, in most real
world settings, the structure of the problem changes conti-
nously, therefore messages need to be shared to incorporate
and propagate the changes in the environment. Third, com-
munication is lossy in many real world settings, therefore
sending redundant messages (i.e. computing procedures 1
and 2 more frequently) can result in more messages being
received. Three schedules can be used:

• Synchronised schedule: A node waits to receive all the
messages from its neighbours before computing new ones
or making a decision. This schedule can only be used in
settings where communication is perfect (i.e. in simula-
tion). When this is not the case, as in most real world set-
tings, a node can wait for a message to arrive for a unde-
fined amount of time. Thus it would generate a deadlock
which would prevent all the other nodes from functioning.

• Periodic schedule: A node computes its messages (and
makes a decision) periodically given the most recent mes-
sages. This schedule is highly recommended in scenarios
where communication is lossy (i.e. in most real world set-
tings).

• Response schedule: A node sends a new message (and
makes a decision) in response to the arrival of a single
message from another node. This drastically reduces the
computation of redundant messages compared to a peri-
odic schedule. Indeed, new messages are computed only
in the presence of new information. However, since this
redundancy is now lost, this schedule is suitable in do-
mains where communication is not lossy.

Step 5 – Updating the Neighbourhood: The vehicles used
in disaster management typically use broadcasting to com-
municate with each other, since it is cheaper and easier to
implement than point to point or multicast communication.
However, recall from Section 2 that each node of the fac-
tor graph sends and receives messages from a specific set of
neighbours. Moreover, due to the dynamism, these neigh-
bours change since the structure of the factor graph varies
continuosly. Hence, each node needs to keep track of, and
constantly update, its neighbours to identify its own mes-
sages among those that it receives. Depending then on the
type of node, this update happens as follows:

• Variable nodes:

– Decisions as actions: For each vehicle, the neighbour-
ing function nodes of its decision variable are the util-
ities of all the other vehicles that can make measure-
ments that overlap with its own. In order to calculate
these neighbours, all the measurements collected thus
far are, initially, fused into a global estimate of a fea-
ture of interest, such as the temperature of a building,
or the radiations emanating from a power plant (Bour-
gault, Furukawa, and Durrant-Whyte 2004). Then, this
estimate is used to calculate each vehicle’s contribu-
tion to the next collective measurement (Stranders et
al. 2010).

– Decisions as tasks: For each vehicle, the neighbour-
ing function nodes of its decision variable are the util-
ities of all the tasks that it can attend. These are con-
tinuously updated by the communication between the
different platforms, so that completed tasks are deleted
while new ones are added.

• Function nodes:

– Utility of a vehicle: For each vehicle, the neighbouring
variable nodes of its utility are the decision variables of
all the other vehicles that can make measurements that
overlap with its own. These are calculated when updat-
ing the utility with new overlapping measurements.

– Utility of a task : For each task, the neighbouring vari-
able nodes of its utility are the decision variables of all
the vehicles that can attend it. These are continuously
updated by the communication between the different
platforms so that new vehicles that can attend the task
are added, while those that cannot attend it anymore are
removed.

In order to understand the way in which this methodology
can be used to deploy max-sum in real world settings, we
will now outline a case study in which the algorithm is used
to coordinate teams of UAVs for disaster management.

4 The Disaster Response Case Study
In this section, we describe our disaster response system that
allows first responders to request imagery collection tasksto
a team of UAVs flying above the area of a disaster.

4.1 Problem Description
The UAVs involved in our problem are rotary wing UAVs.
These are chosen because they have a wide range of mo-
tion capacities (i.e. being able to take off and land vertically,
hover, fly forward, backwards and laterally) that make them
very suitable for collecting aerial imagery.

The first responders request imagery collection tasks from
the UAVs using a touch screen personal digital assistant
(PDA). Each taskTi represents a location (in geographic co-
ordinates) for which imagery is required. To submit a task,
each first responder sets three properties (Figure 1(a)): (i)
priority pi = {normal, high, very high}, representing
the importance of the task (i.e. collecting imagery of an
occupied building is more important than doing so for an
empty one); (ii) urgencyui = {normal, high, very high}

(a) Task Input (b) Task Monitor

Figure 1: The PDA’s interface.

used to prevent tasks’ starvation, as will be discussed shortly
and (iii) durationdi, which defines the interval of time for
which imagery needs to be collected. Note that a first re-
sponder does not know this duration with precision since
it depends on the specific reason for which imagery is re-
quired (e.g. to search for a casualty or to check access to an
area). Thus, three estimates are considered (di = {5 min,
10 min, 20 min}). To complete a task, a UAV needs to fly
to the specified location, station itself above it and stream
live video to the PDA until the first responder indicates that
the task is completed (Figure 1(b)). The information about
each submitted task is then broadcasted by the correspond-
ing PDA, so that the UAVs in the surrounding area that re-
ceive it add the task to the set of tasks that they can poten-
tially attend. The UAVs thenjointly decide which task each
vehicle should complete and, in so doing, they maximise the
number of completed high priority tasks. We achieve this
coordination by applying max-sum as discussed next.

4.2 Application of the Methodology

The max-sum algorithm is used here to allow the UAVs to
jointly decide which task each of them should attend. The
algorithm is deployed as follows:

Step 1 – Defining Variables: Each variablexj takes val-
ues in the set of tasks that UAVj can attend. This choice
follows from step1 of the methodology, when decisions rep-
resent tasks. As a consequence, the domain ofxj is defined
as the set of tasksTj that UAV j can attend, whereTj ⊆ T
andT = {T1, T2, . . . , TN} is the set of all the submitted
tasks. Since UAVs have limited communication capacities,
they will only be able to attend a subsetTj of the tasks inT .
Again this follows from step1 of Section 3.

Step 2 – Defining Functions: A utility function Ui mea-
sures the utility of one or more UAVs attempting to complete
taskTi. This choice follows from step2 of the methodology
applied to the case where utilities quantify the assignmentof
a task. In order to deriveUi, we assume that the task comple-

tion is a Poisson process4 (Chitale 2008) measured over the
time interval in which one or more UAVs can station itself
above taskTi. To define this interval, considerall the UAVs
that can attendTi. Live imagery can then be collected from
t1 = minj t

1
j to t2 = maxj t

2
j , wheret1j =

dji

Vj
is the time5

required by a UAVj to reach taskTi and wheret2j = t+ bj
is the remaining time that UAVj can remain on station (bj is
the UAV battery capacity, in terms of remaining flight time)
aboveTi. The utilityUi is then defined as follows:

Ui(xi) = pi · u
t−t0i
i ·

[

1− e−λi·(t2−t1)
]

(3)

wheret is the current time, andpi, ui and t0i are, respec-
tively, Ti’s priority, urgency and activation time.

Intuitively, the utility defined by Equation 3 measures the
impact of each possible assignmentx′

i ∈ xi of the UAVs
aware ofTi on its completion (i.e.t1 andt2 are calculated
over those UAVs wherexj = Ti). Each possible assign-
ment then represents a different subset of the UAVs that can
attendTi and for whichUi needs to be calculated. In so
doing, this utility allows the UAVs to make a variety of so-
phisticated decisions based on all the possible constraints of
the problem. For instance, the platforms will always choose
tasks with higher priority (due to the factorpi in Equation 3).
If these have same priorities, the UAVs will always choose
the one that has remained unattended for a longer interval of

time (due to the factorut−t0i
i in Equation 3)). In addition,

multiple UAVs may attend a task if this extends the time
span for which at least one UAV is on station above the task
(due to the factor1− exp−λi·(t2−t1)).

Step 3 – Allocating Nodes: Each UAV is allocated the
variable representing its decisions. Similarly, each PDA is
allocated the utility functions of the tasks submitted by the
first responder. By doing so, as discussed in step3 of Sec-
tion 3, the responsibilities delegated to the platforms arere-
duced and the sources of computational power are used in a
more efficient way. Figure 2 shows an example of a factor
graph resulting from this allocation. The figure shows two
UAVs (UAV1 and UAV2) controlling two variablesx1 and
x2 and two PDAs: PDA1 controls two tasksT1 andT2 (and
the corresponding utilitiesU1 andU2) while PDA2 controls
one taskT3 (and its utilityU3).

Step 4 – Selecting a Message-Passing Schedule:We use
a periodic schedule to compute the max-sum messages. This
choice follows from step4 of Section 3. Each device (UAV
or PDA) then periodically runs procedures 1 and 2 to com-
pute the new messages and decisions (Equation 2), given the
messages that it received.

Step 5 – Updating the Neighbourhood: Within our set-
ting, variables can appear and disappear at anytime since
UAVs can run out of battery and new tasks are constantly
submitted or completed. Thus, as suggested by step5 in
Section 3, UAVs and PDAs continuously share information

4λi =
1

di
is the rate parameter of the Poisson process.

5dji is the Euclidean distance between a UAVj and taskTi and
Vj is UAV j’s average speed

Figure 2: A factor graph showing 2 variables nodes, 3 func-
tion nodes and the platforms controlling them.

about their status (e.g. their positions, the UAVs’ remain-
ing battery and the tasks’ properties). Then, the informa-
tion about each variable’s neighbours is stored and updated
as new tasks are submitted or completed. Similarly, the in-
formation about each function’s neighbours is updated each
time a new UAV becomes able to complete the function’s
task or runs out of battery life.

5 Flight Tests
To ascertain the performance of max-sum when deployed on
real vehicles, we deployed our system on two unmanned au-
tonomous hexacopters over three different settings. We used
two commercial off-the-shelf Mikrokopter hexacopter rotary
wing UAVs6 (Figure 3). Each vehicle uses a waypoint-
based guidance system to control its motion—it follows
a sequence of waypoints representing locations to reach.
A miniature video camera provided aerial imagery. Our
tests were run at a test facility outside of Sydney, Aus-
tralia. A video summarising the tests can be found at
http://vimeo.com/34800379. In the video (see Figure 4 for
a snapshot), windowsA andB show the hexacopters, win-
dow C shows the computation over the factor graph over
which max-sum is running and windowD shows the path of
the UAVs. We conducted three tests:

Flight 1 – Homogeneous Tasks: Two identical tasks (nor-
mal priority and urgency,5 min duration) are simultaneously
submitted to the UAVs. The aim of this is to test the be-
haviour of the system in response to a canonical coordina-
tion scenario. In this setting, the maximum of each task’s
utility is obtained when the task is assigned to the closest
UAV (this is due to the exponential factor in Equation 3).
Thus, the coordinated decision that maximises Equation 1
is the one in which each UAV is assigned a single task. In-
deed, this is what we observed during our test, confirming
the correctness of our system.

Flight 2 – Sequential arrival of Tasks: Two different tasks
(one with a normal and one with a high priority, both have
normal urgency and5 min duration) are submitted to the
UAVs. One task is submitted40s after the other. The aim
of this is to test the behaviour of the system in the pres-
ence of heterogeneous properties and dynamism. Initially,
one single task is present and the maximum of its utility is

6To avoid collisions, the UAVs were flown at separate altitudes
(20m and40m).

Figure 3: The “Hexacopter” UAVs used in the flight tests
presented in Section 5.

obtained when it is assigned to both the UAVs (due to the
exponential factor in Equation 3). As soon as the new task
appears, the setting becomes the same as per flight1. Thus,
the maximum of each task’s utility is obtained when the task
is assigned to the closest UAV. Two coordinated decisions
then maximise Equation 1. Initially, the best decision is the
one in which both the UAVs are assigned to the only avail-
able task. Then, the best decision becomes the one in which
each UAV is assigned a single task. Again, this is what we
observed during our test.

Flight 3 – Heterogeneous Tasks: Two identical tasks (nor-
mal priority and urgency,5 min duration) are submitted to
the UAVs. However, here, one UAV receives the informa-
tion about one single task, while one receives the informa-
tion about both. After60s a new task (same properties as
the previous ones) is submitted to both the UAVs. The aim
of this is to test the behaviour of the system when the capa-
bilities of the UAVs are heterogeneous. Initially, only one
assignment is possible since one UAV can only attend one
task. Thus, the maximum of this task’s utility is obtained
when the former UAV is assigned to it (Equation 3). The
same applies for the remaining vehicle and task. As soon
as the new task appears, as per flight1, the maximum of its
utility is obtained when it is assigned to the closest UAV.
Thus, two coordinated decisions maximise Equation 1. Ini-
tially, the best decision is the one that assigns each UAV to
a single task. However, as soon as one UAV completes its
task, the best decision becomes the one in which this UAV
is assigned to the new task.

6 Conclusions and Future Work
We have presented a methodology that provides the first sys-
tematic framework to identify the choices that need to be
made to apply the max-sum algorithm to problems related
to situational awareness. We then presented a case study in
which the methodology is applied to deploy max-sum on a
system that allows first responders to interact with a team
of UAVs to collect live aerial imagery of the scene of a dis-
aster. Next, we deployed our system on two unmanned au-
tonomous hexacopters over a variety of different settings,
in order to evaluate max-sum’s performance when deployed
on real vehicles. These tests indicated that the system per-
forms well when confronted with the dynamism and the het-
erogeneity of the real world. Thus, they helped validate
our methodology and confirmed that max-sum is a power-
ful technique to coordinate teams of unmanned vehicles for
disaster management.

A B

DC
Figure 4: A snapshot of the video summarising the three
flight tests.

Our future work will be focused on demonstrating that
the algorithm scales beyond two UAVs. Thus far this was
shown in simulation but still needs to be verified on real ve-
hicles. Obviously, the complexity of operating large num-
bers of UAVs simultaneously greatly increases the complex-
ity of the flight tests. Furthermore, we intend to study the
applicability of our methodology to domains different than
situational awareness, such as the energy domain or grid
computing, where a large number of agents needs to be con-
sidered.

References
Aji, S. M., and McEliece, R. J. 2000. The Generalized Distributive
Law. IEEE Trans. on Inf. Theory46:325–343.

Bethke, B.; Valenti, M.; and How, J. 2008. Uav Task Assignment.
IEEE Robotics & Automation Magazine15(1):39–44.

Bourgault, F.; Furukawa, T.; and Durrant-Whyte, H. F. 2004.De-
centralized Bayesian Negotiation for Cooperative search.In Pro-
ceedings of the IEEE Int. Conf. on Intelligent Robots and Systems,
2681– 2686. Sendai, Japan.

Chitale, R. H. 2008.Probability and Queueing Theory. Technical
Publications.

Dias, M.; Zlot, R.; Kalra, N.; and Stentz, A. 2006. Market-based
Multirobot Coordination: A Survey and Analysis.Proceedings of
the IEEE94:1257 – 1270.

Endsley, M. R. 2000.Situation Awareness, Analysis and Measure-
ment. Lawrence Erlbaum Associates.

Fitzpatrick, S., and Meertens, L. 2003. Distributed Coordination
through Anarchic Optimization. InDistributed Sensor Networks,
257–295.

How, J.; Fraser, C.; Kulling, K.; Bertuccelli, L.; Toupet, O.; Brunet,
L.; Bachrach, A.; and Roy, N. 2009. Increasing Autonomy of
UAVs. IEEE Robotics & Automation Magazine16(2):43–51.

Macarthur, K.; Stranders, R.; Ramchurn, S. D.; and Jennings, N. R.
2011. A Distributed Anytime Algorithm for Dynamic Task Allo-
cation in Multi-agent Systems. InProc. of AAAI, 356–362.

Rogers, A.; Farinelli, A.; Stranders, R.; and Jennings, N. R. 2011.
Bounded approximate decentralised coordination via the max-sum
algorithm.Artificial Intelligence175(2):730–759.

Stranders, R.; Delle Fave, F. M.; Rogers, A.; and Jennings, N.
2010. A decentralised coordination algorithm for mobile sensors.
In Proc. of AAAI, 874–880.

