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Abstract

We develop an efficient algorithm for computing pure strat-
egy Nash equilibria that satisfy various criteria (such as
the utilitarian or Nash—Bernoulli social welfare funct&rin
games with sparse interaction structure. Our algorithiffeda
Valued Nash PropagatiofVNP), integrates theptimisation
problem of maximising a criterion with theonstraint satis-
faction problem of finding a game’s equilibria to construct a
criterion that defines a-semiring. Given a suitably compact
game structure, this criterion can be efficiently optimiasel

ing message—passing. To this end, we first show iR

is complete in games whose interaction structure forms a hy-
pertree. Then, we go on to provide theoretic and empirical
results justifying its use on games with arbitrary struetum
particular, we show that it computes the optimu82% of

the time and otherwise selects an equilibrium that is always
within 2% of the optimum on average.

1 Introduction

outcomes, unlike mixed strategy equilibria. Consequently
we concentrate on computing such PSNE. To date, several
methods have been suggested that exploit the compact rep-
resentations described above, including MeshProp al-
gorithm for graphical games (Kearns, Littman, and Singh
2001; Ortiz and Kearns 2003), Daskalakis and Papadim-
itriou’s (2006) adaptation of thenax—product algorithm

that reduces a game to a Markov random field, and three
algorithms that work by mapping the Nash equilibrium com-
putation problem to a constraint satisfaction problem (CSP
— PureProp (Soni, Singh, and Wellman 2007), an algo-
rithm by Vickrey and Koller (2002) and one by Gottlob,
Greco and Scarcello (20053GS in the remainder)!

The third challenge, in the presence of multiple equilipria
is to choose between them according to some criterion. This
challenge is particularly relevant in design and/or cdntro
settings in which equilibrium is a necessary, but insufficie
condition for a solution, and yet, this problem has received
the least attention in the algorithmic game theory literatu

Game theory is increasingly being used as a modelling and Kearns, Littman, and Singh (2001) note th&tshProp can

design framework in artificial intelligence, particularty
the main field of multi-agent systems. Now, such systems

be modified to incorporate values ranking equilibria, and
give some examples of permissible criteria. Elkind, Gold-

are starting to contain large numbers of agents, producing P€rg, and Goldberg (2007) derive a dynamic programming

three computational problems. The first is to find compact
representations of games. In this work, we consider two
compact graphical representations knowryesphical nor-

mal formandhypergraphical normal fornfKearns, Littman,
and Singh 2001; Gottlob, Greco, and Scarcello 2005; Pa-
padimitriou and Roughgarden 2008), which can be expo-
nentially more compact than the standard normal form if the
agents’ interaction structure is sufficiently sparse.

The second problem is to derive efficient methods for
solving such games, typically in the form ofNash equi-
librium. In many multi-agent settings, a system designer
particularly wants solutions that are pure strategy Nasiireq
libria (PSNE), because they imply a stable action profile and
do not rely on utilities representing a cardinal orderingrov
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Systems) Project and is jointly funded by a BAE systems and EP
SRC (Engineering and Physical Sciences Research Coutnat®-s
gic partnership (EP/C548051/1)
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algorithm for selecting “good” equilibria according to $im
lar criteria. Gottlob, Greco, and Scarcello (2005) show tha
finding a Pareto—dominant PSNE is computationally equiv-
alent to finding an arbitrary PSNE. Finally, Greco and Scar-
cello (2004) characterise the complexity of the problem of
optimising over the set of PSNE, and provide a centralised
algorithm for the task. However, from the perspective of
an agent systems designer looking for a control / optimisa-
tion method for real applications, what is missing from thes
investigations is the specification of a general—purpose di
tributed algorithm for these problems.

To address this shortcoming, we develop a general-
purpose algorithm, calledalued Nash PropagatiofNP),
for efficiently computing a PSNE that optimises many crite-
ria (including the most commonly used ones) in games with
bounded hypertree structure, whether they be in graphical

INote that, because we consider only PSNE, we can focus on
the topological and algebraic structure of the optimisagoob-
lems at hand, and not concern ourselves with techniquesnir fi
ing mixed equilibria (c.f. (Kearns, Littman, and Singh 2001
Vickrey and Koller 2002; Soni, Singh, and Wellman 2007)).



or hypergraphical normal form. Specifically, we develop
two versions ofVNP, a complete algorithm for games with
acyclic interaction structure, and an approximate alpaorit
for games with loopy topologies. These algorithms can op-
timise over PSNE using any equilibrium selection criterion
that defines a valuation algebra ooammutativéc—) semir-

ing. One of VNP’s strengths is the diversity of selection
criteria that it can optimise, which makes it suitable for-va
ious scenarios in which different criteria might be applied
Examples include the utilitarian, Nash—Bernoulli and egall
tarian social welfare functions, threshold constraintsitiln

ity values, (e.g. minimum utility to a set of players), and
the Pareto dominance apgddominance equilibrium refine-
ments (a generalisation of risk dominance). By so doing,

ture, and prove forms of convergence for the cases of acyclic
and loopy topologies. Following this, in the absence of the-
oretic guarantees, in Section 5 we empirically eval Vi@

in games with loopy topologies. Section 6 concludes.

2 Noncooperative Games

A noncooperative game in standard normal form is a tu-
ple,T' = (N,{A;,u;}ien), consisting of a set ohgents

= {1,...,n}, and for each agent € N, a set of
(pure) strategiesor actions A;, with joint strategy space
A = xN, A;, and autility functionw; : A — R. We use
the notatiora = {a, a,, }, wherey; is the set ofi's neigh-
bours which in this representation i§ \ i. An agent’s goal

this work generalises and unifies many of the above strands iS to maximise its payoff, and itest responseB;(a., ),

of research on computing and ranking equilibria in games
with graphical interaction structure. Our work is inspired
by general results regarding thgeneralised distributive
law (GDL) family of algorithms (Aji and McEliece 2000;
Kohlas and Wilson 2008), which includesax—product
mentioned earliemax—sum for distributed constraint opti-
misation andsum—product for graphical probability mod-
els (Farinelli et al. 2008; Wainwright, Jaakkola, and Wijls
2004). The GDL algorithms have been successfully applied
to optimisation problems in agent systems with both tree
and loopy topologies. They are complete for any problem
that has an acyclic structure (either naturally or by gener-
ating a tree decomposition) and, furthermore, they run effi-
ciently on problems with bounded tree—width. However, the
GDL algorithms themselves cannot be used for equilibrium

selection in games because they do not compute equilibria.

In contrast VNP explicitly considers best responses along-

side an ordering over outcomes, and in so doing, interleaves

equilibrium computation with the optimisation problem of
ranking equilibria.

Like the GDL algorithms VNP uses a two—phase mes-
sage passing scheme.

is the set ofi’s best strategies given its neighbours’ strate-
gies: B;(a,,) = argmaxg,ca, ui(a;, a,,). Stable points
are characterised by the set Wash equilibria which are
defined as those joint strategy profiles, in which no indi-
vidual has an incentive to change its strategy:

* %
ui(ai, ay,

)—Ui(ai,a;) >0 VaieAi, VieN.

As such, the Nash equilibrium condition can be expressed
as the sum of a set of indicator functiod§ga; € B;(a,,)},
each equal to 0 when an agent plays a best responseand
otherwise:

max[V (a)] = max lz I{a; € Bl-(a,,i)}] (1)

a€A
i€N
This criterion is equal to 0 if is a PSNE and-oo elsewhere.

2.1 Compact Graphical Forms of Games

We begin with the requisite graph theory, before mov-
ing on to the graphical and hypergraphical normal form

In the first phase, tables are ex-game representations. In more detail, an undiregtaph

changed between neighbouring agents indicating the value G = (N, F) is composed of a set of nodes (agenf§) =

of each local joint strategy. This data structure is similar
to that of NashProp and EIlkind et al.'s algorithm, which
are themselves closely related mmax—sum (due to their
common origins in dynamic programming), howeweNP
deals explicitly with hyperedges, and, uniquely, can ofgera
on games in graphical or hypergraphical normal form. In
the second phase MNP, strategy assignments are passed

through a spanning tree, ensuring all agents agree on a par-

ticular solution, in a manner reminiscent of value propaga-
tion in dynamic programming. Specifically, we derive two
versions ofVNP; a complete algorithm for hypertree games,
and an approximate algorithm for games with loopy interac-
tion structure. Furthermore, in the absence of theoretic-gu
antees, we empirically validate the use of the second versio
on games with loopy interaction structure.

The paper progresses as follows: In the next section

{1,...,n}, connected by a set of edgés, Building on this,
ahypergraphH = (N, FE) is composed of a set of nodes,

and a set of hyperedgek, in whichE C P(N), i.e. a hy-
peredge: € F is a subset of the nodes. A graph is a hyper-
graph in which all hyperedges contain two nodes. Here we
only consider simple (i.e. no duplicate edges or self-Ipops
connected hypergraphs.

Because of their algorithmic benefits, we are particularly
interested in acyclic graphs and hypergraphstregsand
hypertrees Trees are oriented around@ot, and have the
property that each node (except for the root) has jpae
ent A node can have any numberaddéscendantsand those
without descendent are calleshves Regarding hypertrees,
we rely on classical acyclicity (c.t—acyclicity(Beeri et al.
1983; Gottlob, Greco, and Scarcello 2005)). This is defined
in reference to a hypergraphi®rtex—hyperedge incidence

we review relevant background material on nhoncooperative graph a bipartite graph with one set of nodes containing
games, introduce the graphical and hypergraphical normal the nodes of the hypergraph and the second containing the
form representations, and in Section 3 we discuss the crite- hyperedges. A hypergraph is acyclic if its vertex—hypeesdg
ria computable byNP. Then, in Section 4, we describe the incidence graph is a tree (as in Fig 1), and the leaves of this
operation ofVNP on games with sparse interaction struc- graph are called the leaves of the hypergraph.



(b)

Figure 1: (a) An acyclic hypergraph and (b) its bipartite vertex—
hyperedge incidence tree. Circles are age#tts, F', and hyper-
edges and squares are dependency hyperedges (graphicpl for
or local games (hypergraphical form), to vs.

Graphical Normal Form Games in graphical normal
form are represented by a graph on which each agerib-
cated at a node. An agent is connected to those with which
it shares an undirected utility dependency, which make up
its set of neighbours; C N. lts utility function is given

by an array indexed by tuples from the sef(; .3 [A;|. If

the game—graph is sufficiently sparse, this representation
exponentially more compact than the standard normal form
(Kearns, Littman, and Singh 2001). We can extend this
model to one in which cliques and loops are modelled by

hyperedges. Specifically, we say that a hyperedge of a game

in graphical form contains a subset of the agents,P(N),

and the set of agents inis written N7. We denote the set

of hyperedges containingby T';, the neighbours of by

v; = Uyer, N7 \ 4, andi’s neighbours in a particular hyper-
edge,y, by v; = N7\ i. Finally, we say that a game in
graphical form is tree—structured if its game graph forms a
tree, and is hypertree—structured if the game hypergraph is
acyclic (see Fig 1).

Hypergraphical Normal Form Hypergraphical normal
form is used to represent noncooperative games that
can be decomposed into several local gamds: =
{71,72, .., ¥m }.2 In this representation, nodes of a hyper-

be exponentially smaller than the standard normal form (Pa-
padimitriou and Roughgarden 2008). Many computational
situations arising in control settings naturally possesseh
graphical structure, particularly those in which neightsou
are specified with reference to a physical domain in which
interactions are dependent on some degree of physical prox-
imity (e.g. mobile sensors, UAVs, or job scheduling prob-
lems). As for the graphical normal form, an acyclic hyper-
graphical form game is one whose local game hypergraph is
acyclic (as shown in Fig 1).

3 Equilibrium Selection Criteria

In general, any criterion that definescasemiring can be
computed byVNP, and many selection criteria have this
form. In more detail, zommutative semirin¢z—semiring)

is a tuple(K, ®, ®) defining acarrier, K, and two binary
operationsb and®. These operations possess identities in
K and satisfy the following two rules: (& distributes over
ez (ydz) = zRydr z)and (i) both are
commutative (e.gr ® y = y ® z) foranyz, y, z € K.

One commonly—employed equilibrium selection criterion
is the utilitarian social welfare function (SWF), which se-
lects the PSNE that maximises the sum of the agents’ util-
ities. We can construct a criterion for this problem by aug-
menting the PSNE criterion (Eq 1) with the utilitarian SWF:

Z (I{al S Bi(aui)} + ui(aivaui))

ieN
(2

This criterion returns—oo if a profile that is not a PSNE

is played, and the sum of the agents’ utilities when one is

played. Consequently, it defines a valuation algebra on the

tropical semiring({R U —oo}, max, +). Furthermore, the

image set of the indicator function), —oc}, are the idem-

potent elements dfRU—oco}, and the value returneddf, is

wealViol =g

graph correspond to the set of agents, while the hyperedgesnot a best response is absorbing under addition. In general,
directly represent local games played between them (see in terms of the abstract operators defined eantier; and+

Fig 1). Specifically, each hyperedge is a game in standard
normal form:y = (N9, {A4;,uf }ieno), whereN9 C N are

the set of agents playing, andu! : A9 — R is the pay-

off to ¢ from its involvement iny,, whereA9 = x jcnsA;.
Agents are usually involved in more than one local game,
with the set of local games in whichis involved denoted

I';. For each agent,; represents’s global strategy, which

is the same in each local game. Ageéistneighbours are

the agents that it shares at least one local game with, de-

fined asy; = U,,cr, N7 \ i, andi’s neighbours imy, are

v{ = N9\ i. Agenti's payoff for an outcome is an aggre-
gation of its payoffs from each, € I';, typically the sum

of payoffs from each:u;(a;,a,,) = ngem u-g(ai,a,,f).

If the agents’ utilities from different interactions septr

into many local games, then the entire representation can

2\We use the same notation for hyperedges in both the graphical
and hypergraphical forms because, from an algorithmicpeers
tive, the two types of hyperedges are treated the same way, ev
though they do not necessarily represent identical relakips be-
tween the agents.

correspond t@p and®, and the indicator function returns a
value that either annihilates (and absorbs ungdhe value

in that element of the table if it is not a best response, or
leaves the value unchanged if it is a best response. Any se-
lection criteria with this form can be optimised usixiyP;

two further examples are thegalitarian SWF andNash—
Bernoulli product(Elkind et al., 2007, give more examples
of criteria fitting this form). The former ranks equilibrig-a
cording to the minimum utility received by any agent, and
employs an indicator function that returssif a; is a best
response and-oco if it is not. The latter aggregates indi-
vidual utilities by multiplication, with an indicator fution
returning 1 for a best response and zero otherwise.

4 The VNP Algorithm

VNP operates using a two—phase message—passing se-
quence, calledable—passingand assignment—passingAs
message—passing on loopy topologies is inherently more
complicated, in what follows we distinguish between the
tree and loopy hypergraph cases. Specifically, in Sectibn 4.



we describe the table—passing phase, which is the key com-would extend messages it received frénand B to | A 4| x
ponent of VNP, and prove a form of convergence for each |Ag| x |A¢| and then perform the maximisation.

case. Then, in Section 4.2 we describe the assignment pass- When the termination condition for the table—passing
ing phase, and prove that a single criterion—maximising out phase is met, agentuses the messages it received from its
come is selected by the agents on hypertrees, and that if neighbours to construct the following function:

the table—passing phase converges, a high value PSNE is se-

lected on loopy hypergraphs. For reference, pseudocode of Vilai ay,) =H{a; € Bi(av,)} + wi(ai, av,)

VNP’s phases on hypertrees is given in Fig 2, and an exam- Z Z Ti—i(ai, aye) (4)

ple of its operation is given in Chapman et al. (2010). =S ! T

4.1 The Table-Passing Phase Next, we show that the above result is equal to the equi-

In this phase, agents exchange tables with their neighbourslibrium selection criterion (Eq 2) in games with hypertree

in each hyperedge. These tables contain values which suc-interaction structure (Theorem 1), while with loopy struc-

cinctly represent the value of the ranking of each jointtstra  ture, the values of non-PSNE local profiles converge to the
egy of the hyperedge’s agents. AlthougNP’s message— annihilating element of the semiring (Theorem 2).

passing schedule and termination condition for games on

hypertrees differ from that for loopy hypergraphs, the data

structures and the operations used to construct the values i

the messages are common to both. As such, we now de-
tail the common elements, and then discuss the respective
message—passing schedules and forms of convergence fo
hypertrees and loopy hypergraphs independently.

The messages exchanged in the table—passing phase ar
an array, indexed by the joint strategy space of the agents in
the hyperedge common to both sender and recipient. Specif- Theorem 1 The table—passing phase 8NP produces the
ically, ¢ passes to its neighbotirin hyperedgey, an array value of the relevant-semiring criterion for each local pure
T;—.; With [ ], c vo |Ax| entries, indexed by an ordergd9|— strategy profile in a hypertree—structured game.
tuple representing a joint strategy of the agentg,inAn el-
ement of a message is denot&d, ; (a;, an>' Agents store
the messages they receive for use in the second phase.

Using the notation of Eq 2, elements of the message
sends tgj are computed by:

On Hypertrees Table—passing begins with messages sent
from the leaves of the hypergraph. Each internal node then
computes and sends messages to its neighbours in a par-
ticular local gamey, once it has received messages from
raII of its neighbours outside,. After it receives messages
from all of its neighbours; constructs the function given in

g 4. By computing the maximum value of Eq 4 (i.e. over

ai, ay, }), i finds a local configuration that maximises Eq 2.

The proof is by induction, and is available in Chapman
et al. (2010). If the solution is unique or doesn't exist,
then the table’s values show this unambiguously, and each
agent selects its strategy without requiring an assigrment
passing phase. However, if more than one solution ex-
ists, the agents coordinate on a solution using assignment—
Timjlai,a,9) = max I{a; € Bi(ays,a,-4)} passing (discussed in Section 4.2).

v 9 ‘

! On Loopy Hypergraphs Even though the table—passing
phase ofVNP is only provably optimal on acyclic hyper-

+ui(ai, ay9,a,-4) Z Z Ti—i(@is ak, aypy;) graphs, we may, want to deploy it on loopy hypergraphs.
€LYy kev] Fortunately,max—sum and NashProp perform well on
(3) such topologies (Farinelli et al. 2008; Ortiz and Kearns

—g g . 2003), and because of its similarity to these algorithms, we
wherey; ¥ = v; \ vj'. The operations above perform two  cqpjecture thatVNP will also perform well on loopy hy-

processes. First, for a fixed joint strate@y, a,) in 7y, pergraphs (see Section 5 for more details). However, this
the summationsombinethe value of the joint strategy of  necessitates changes to the message schedule and termina-
the agents in all of the hyperedges containingxcepty, tion condition of the table—passing phase as described for
(i.e. T'; \ v,) to give rankings to each joint strategy ©$ hypertrees.

neighbours outside of,. In this combination, the indicator The message—passing schedule used on arbitrary topolo-
function sets the entries to the annlhllatlng element of the gies is a “flood” Schedu|e’ Whereby every agent sends a mes-
semiring if the joint strategy is not in equilibrium witdy. sage at each time step (this is not the only option, but has
Second, the maximisation thenmmariseshe information been used to good effect in Farinelli et al. (2008) and Or-

regardinga, -, and projects the information onto the fixed  tjz and Kearns (2003)). The agents begin by initialising all
joint strategy inv,. If there is no equilibrium associated elements of their “stored” messages to O (or the identity of
with a;, then the output is the annihilating element. Now, ® in the relevant semiring). Then, at each time gtefhey

to complete the maximisation component, an agent needs simultaneously compute messages according to Eq 3, and
to sum messages regarding strategies of different agemts. T send them to their neighbours.

do this, the agergxtend®ach incoming message to the joint Now, loops in the hypergraphs prevent us from explicitly
strategy space of all incoming messages, by combining the calculating the value of the criterion. Nonetheless, we can
relevant message entries to give a value for the respective put a weaker guarantee on the values in the messages passed
joint strategy. As an example, consider Fig 1, in whi¢h by VNP in loopy graphs, and consequently the value of each



Function vnpTablePassing() by the criterion, and test this hypothesis in Section 5, wher
for each hyperedge : T, we runVNP on a batch of loopy hypergraphical games.
if valuesT;_.; have been received from all neighbours outsjdg € v; ¢, Although we have proven a form of convergence for
compute7; . for neighbours iy, 5 € v7; table—passing on loopy graphs, it is not possible to pricise
send7;_.; to neighbours iy, j € v7; define a termination condition for this phase. A partial con-
end if dition is that table—passing should terminate if all of the
end for messages being passed converge. However, this cannot be
Function vnpAssignmentPassing{, 7, .; Vj € v; ) known beforehand, so, in its absence, this phase should al-
if an assignmers; _.; has been received from any neighboue: v Vg € Ty, low sufficient time for the values in the messages passed by
for each hyperedgg - T, the agents to converge, if indeed they are going to converge
if no neighbout € g has senta messagk. ., (details of our implementation are presented in Section 5).
computeS; ., for neighbours iy, k € v7;
‘ . ; 5
o dsif”d‘sﬁ’“ to neighbours iy, v € v 4.2 The Assignment—Passing Phase
end for Once the termination condition for the table—passing phase
end if has been satisfied, the functionin Eq 4 is computed and each
agent uses it to decide on a strategy. If a unique solution (or
Figure 2: Pseudocode of each phaseMP on a hypertree. the non—existence of one) is not evident at the end of the

table—passing phase, then the agents coordinate on a single
solution using an assignment—passing phase. As before, we

agent’s local version of the criterion (Eq 4). LBt . be the need to use different approaches on hypertrees and loopy hy-
message passed franto j at time¢. Call a messé\ge entry pergraphs, and the two cases are discussed separately below

eliminatedif it equals —oo (or the annihilating element of  on Hypertrees  To begin, a spanning tree is constructed,
the semiring in use) anehluedotherwise. emanating from an arbitrarily selected root node, down

Theorem 2 For VNP on a game with arbitrary topology, ~ hich parents pass messages containing local strategy pro-
ast — oo, a message entry is valued if and only if it corré- files to their descendent This tree is built by first connegtin

sponds to local strategy profile that is a PSNE. the root to all of its neighbours. A particular agentwhich
interacts with the root through,, is either a leaf or an in-

The proof is sketched as followsFirst, for sufficiency, ternal node involved in other hyperedges. If it is an intérna
let a* be a PSNE profile. Then for all > 0, all mes- node, then it is the only agent that appears in bgtfand
sage elements corresponding to the subset*oin ~,, any of its other hyperedges (by the definition of acyclicity)
T ;(aj,a},), are valued. This can be shown to be true As such, the spanning tree is extended by connectiogll
by induction: Fort = 0 it is true by the initialisation of ~ ©f its neighbours except those-g, and so on.
the stored messages, and then for any 0, any entry of Given this spanning tree, the root randomly selects a lo-
a message sent jocorresponding ta* is valued, ang it- cal strategy profile corresponding to one maximum of its
self will never eliminate that entry, so it is true for alland version of Eq 4. For the root node, the action is given by

therefore true for the limit messages. Thus we have proved argmax,, o, [Vi(ai, any,)]. It then sends messages,.;
the sufficient condition. Second, to prove necessity, note to its neighbours in each hyperedges N7s, containing
that once an entry in a stored message is eliminated, it can- the local strategyy s, for v,. In other words, the root se-
not become valued again. Consequently, because any globallects a complete strategy profile for each of its hyperedges
profile that contains at least one action that is not a best re- and directs each neighbour to play its element of this pro-
sponse is eliminated at some< oo, any valued entry in a file. As for the table—passing computations, this operation
stored message that does not correspond to a PSNE profileis polynomial in the size of the local joint action space of
is also eliminated. a player in both the graphical and hypergraphical represen-
In other words, in the limit, Eq 4 is only valued for lo-  tations of the game. For an internala; and some of the
cal profiles corresponding to a PSNE, and, therefore, when actions ina,, will be assigned by the agent's parent node,
the assignment—passing phase selects an outcome based o0 theargmax operation is carried out over only the unas-
Eq 4, it is always a PSNE. Furthermore, if no PSNE solu- Signed variables In hyperedges with three or more agents,
tion exists, then the algorithm will report this fact becaus  this is necessary to avoid mis—coordination between two of
all the entries in all the messages will converge to the anni- the root's neighbours, because more than one optimal joint
hilating element. However, because the values of the (non— strategy could be associated with the root's strategy. Then
eliminated) entries in the tables do not necessarily cgever ~ Selects a joint strategy for all of its hyperedggsepty, that
to the true values of Eq 2, the equilibrium selected by the both maximises its version of Eq 4 and contains the strategy
agent may not maximise the criterion. Nonetheless, we ex- assigned to it by the root, choosing randomly between equiv-
pect that the equilibrium selected should still do very well alent strategies. It sendk_.; strategy assignments to all of
its unassigned neighbouys This process continues until
30ur proof follows a similar argument to that of Ortiz and  €ach leaf of the spanning tree is assigned a strategy by its
Kearns (2003) for the convergence of messages ilNtshProp parent. At this point, all agents have been assigned a strat-
algorithm in loopy graphical games. egy and the algorithm terminates. Conceivably, the span-



ning tree could be constructed and the strategies proghgate
as part of one process.

Lemma 1 The assignment—passing phasevtfP for hy-
pertrees assigns each agent a strategy corresponding
to a single criterion—maximising PSNE in a hypertree—
structured game.

Figure 3: Example of the chordal
topology used in the experiments.

The proof is omitted for brevity, but follows the same ar-
gument for themax—product algorithm presented in Wain-  we expect it to provide solutions that approximately opti-
wright, Jaakkola, and Willsky (2004). However it should mise the criterion in question. To justify this claim, we now
be clear from the above that, by induction, the root’s choice provide an empirical evaluation NP on loopy games.
propagates through the width—first spanning tree withoyt an
mis—coordination of agents’ strategies. Combining Theo- 5 Evaluation of VNP on Loopy Hypergraphs

rem 1 and Lemma 1 gives us the following result. The purpose of this section is to demonstrate, in the absence

Theorem 3 In acyclic graphical and hypergraphical ~ Of theoretic guarantees, the efficac\diP on games with
games, for any selection criterion that defines a valuation SParse butcyclic topologies. Specifically, we use a set of hy

algebra on ac-—semiring VNP computes an optimal PSNE.  Pergraphical games witthordaltopology, following Ortiz
and Kearns (2003). These games have sparse—enough topol-

Additionally, if the number of neighbours and the number ogy to demonstrate hoWNP exploits structure (because
of hyperedges each agent has is bound&dp is polyno- each agent has a limited number of neighbours), but at the
mial in the total number of agents, because each local com- same time are sufficiently cyclic to make the exact computa-
putation is polynomially boundi Finally, on a hypertree, the  tion of a criterion infeasible for large problems. The games
number of messages exchanged in order to carry out both are constructed using a generic topology, shown in Fig 3,
phases of computation MNP is at most- + s steps, where comprising (i) a ring of 3—player, 2—action local gamesjsuc
r is the diameter of the game hypertree ansithe length of that every second agent is contained on two hyperedges and
the longest path from root to leaf in the assignment spanning the games form a single cycle, and (ii) chord games, linking
tree (if an assignment—passing phase is required). pairs of agents that are only in one ring game (which lim-

) its the number of hyperedges any one agent is on to two).

On Loopy Hypergraphs On loopy hypergraphs, if more  The payoffs in the local games are constructed such that
verge, then the agents must use a more sophisticated gtrateg gyer these equilibria varies according to randomly chosen
assignment procedure than on acyclic hypergraphs. Again, payoffs in the chord games. More details of the experiment
as for acyclic tppologi.es, with the additio_nal conditiomtth We compared/NP for loopy topologies to an optimal
an agent only links to its unconnected neighbours. ~ ‘brute force’ version of/NP that does not exploit any graph-

However, the presence of loops may mean that neigh- jcal structure, in which each agent constructs a joint negssa
bours in the game may have different parents in the span- to every other in the system and so maximise Eq 2 directly.
ning tree. Then, in the case of multiple optimal solutions, e did not benchmark against existing approaches because
if the procedure for hypertrees described earlier is fofdw  ours is the only algorithm that optimises over argemiring
these agents may be assigned conflicting strategies by dif- criterion; indeed we could have cagNP as an extension
ferent branqhes of the spanning tree. To avoid this, we use tg eitherNashProp or GGS for the purpose of optimising
a backtracking search over the spanning tree. By this ap- over equilibria in games with sparse hypergraphical intera
proach, a partial solution is constructed as describeéegarl  tion structure. As such, our experiments only aim to prove
beginning with the root node optimising its version of Eq 4  the efficacy ofVNP.
and sending its neighbours the corresponding local syateg e ran 100 iterations for each size game. We say an al-
This process continues until any agent identifies a conflict gorithm has converged when the optimal strategies of the
in the strategies assigned to it or one of its neighbours (i.e agents have not changed for 10 time steps, and recorded the
a non—equilibrium profile is identified). If this occurs, the  convergencetime as the last of these steps. We also recorded
search backtracks to a point where the conflict can be re- the average processing time the algorithm took to converge
solved, and then begins propagating a solution again. How- the proportion of runs that converge to an optimum and, for
ever, the search process can take an exponentially long time the remaining suboptimal solutions, the average ratio ®f th
to complete in the case of hypergraphs with many cycles.  gptimal solution’s value over the suboptimal solution.

Overall, the VNP algorithm on games with arbitrary The results of these experiments are reported in Fig 1.
structure will never return a solution that is nota PSNE, and Regarding the quality of the solutions generated, they show

S that VNP computes the optimal solution with a very high

4Gottlob, Greco, and Scarcello (2005) prove this for arbjtra -
and Pareto PSNE computation aracyclic hypergraphs. In con- SExperiments were carried out on a 3.2GHz desktop PC running
trast, when ranking equilibria by @semiring criterion, the cor- Java, with all processes run in sequence. As such, progassies
rectness of the computation only holds éassicalacyclicity. were recorded as a relative measure only.



Agents  Conv Steps  Time (ms) % Optimal Opt/Subopt
4 15.4 (0.32) 64 (5.8) 94% (4.8) 1.021 (0.0033)
8 17.6(0.52) 163(7.2) 91%(5.8)  1.010(0.0025)
12 19.1(0.69) 273(10.7) 87% (6.8)  1.014 (0.0014)
16 20.1(0.83) 428(17.1) 84%(7.4)  1.011(0.0018)
20 21.1(0.83) 554(21.6) 82%(7.8)  1.007 (0.0012)
24 21.9(1.30) 623(29.9) 87%(6.8) 1.013(0.0017)

Table 1: Message steps to converge, time to converge, propor-
tion converging to an optimal solution and the average m@itio
the optimum over the value of suboptimal solutions (stashdar
errors in brackets).

frequency (always greater than 82% of runs). Furthermore,
when a sub—optimal equilibrium is selected, its value is typ
ically very close to that of the optimum (always within 2%).
In terms of the computation time required to generate a solu-

tion, the number of message—passing steps to find an equilib-

rium increases linearly with the number of agents. Further-
more, the actual computation time grows at a polynomial
rate, which is in an artefact of the chordal topology with
bounded number of neighbours we run the experimenfs on.
In order to better demonstrate the scalability/dfP if each
agent’'s number of neighbours is bounded, in Fig 4 we plot
VNP’s computing time as the number of agents increases,
compared to the brute force version. It shows tHlP’s

processing time increases at a rate that is orders of magni-

tude less than the brute force algorithm. Indeed, the pro-
cessing time of the brute force approach follows an almost
perfect exponential relationship with the number of agents
in the problem, whileVNP follows a polynomial relation-
ship. Based on the theoretical properties/dfP discussed
earlier (at the end of Section 4.2), we expect that these scal
ing results will genearlise in a similar fashion to problems
with greater local neighbourhood size (i.e. the polynomial
degree of the computation time should grow linearly with
increases in the local neighbourhood size), and should also
be invariant to the number or size of loops in the problem.

6 Conclusions

We have developed théNP algorithm for computing PSNE
that optimise various social welfare criteria in games with
bounded hypergraphical structure. We have shown how to
integrate the optimisation problem of finding the maximal
element of a valuation algebra with the constraint satis-
faction problem of finding a game’s PSNE. We have also
demonstrated that if the agents in a hypergraphical game

each have a bounded number of neighbours and the game

hypergraph has bounded hypertree—width, then the problem
can be solved efficiently byNP. In so doing, we have com-
pletely characterised the types of problems that can be ad-
dressed by algorithms ofNP’s form, and provided two
variants ofVNP for different topologies. To round out re-
search onVNP, future work will focus on developing a

®Note thatNashProp would compute an arbitrary PSNE in
a similar number of steps, however, the computation timeldvou
likely be less because it does not use floating point operstio

o //’ —— VNP - Loopy
10 r L, - - - Brute force
w p
E10* S
® .
£ S ]
Ft L i
-
100 K . . . : . . . . . R
4 8 12 16 20 24 28 32 36 40 44 48 52

Number of Agents

Figure 4: Convergence time (ms) versus number of agents,
comparingVNP for loopy topologies to a brute force version
of VNP that does not exploit interaction structure.

complete version for loopy graphs that operates withotit firs
forming a junction tree and deriving analogous convergence
results forVNP to those regarding specific topologies and
attenuated messages for the GDL algorithms.
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