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Abstract This paper focuses on decentralized coordination for small or
medium groups of heterogeneous mobile robots with relatively low compu-
tational resources. Specifically, we consider coordinated obstacle avoidance
techniques for mobile platforms performing high level tasks, such as patrolling
or exploration. In more details, we propose the use of a greedy kinodynamic
collision avoidance approach for the single robots and the use of the the Max-
sum algorithm for multi-robot coordination. The system implementation and
its testing are based on the popular robot middleware ROS and the gazebo
simulation environment. Obtained results show that our distributed collision
avoidance approach is able to achieve safe navigation in real-time with a very
low overhead in terms of computation and communication.

1 Introduction

The ability to safely navigate in crowded environments is a key element for
most applications involving mobile robots, and collision avoidance is a crucial
component of any navigation systems. Here we focus on coordinating robots’
maneuvers to achieve collision avoidance for a group of mobile platforms
with limited computational capabilities. The collision avoidance problem in
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a known static environment with multiple robots has a wide literature, but
we can identify two approaches: the reactive (myopic) and the predictive one.
The former is a class of methods that permits robots to avoid collisions on a
dynamic environment without explicit communication. Such methods include
the Dynamic Window Approach [4] and Velocity Obstacles [8]. The latter
has his most recent extension on the Optimal Reciprocal Collision Avoid-
ance (ORCA) [16]. This can be used to simulate thousands of moving agents
without collisions and achieve this objective without communication. Among
myopic methods, path deformation techniques compute a flexible path that
is adapted on-line so as to avoid moving obstacles [18]. These approaches
are very efficient in simulations with a high number of agents as shown with
Reciprocal Velocity Obstacles (RVO) [3]. However, that approach only works
well if the only moving obstacles are other robots with the same behavior,
furthermore some deadlocks can arise, e.g. the dancing behavior, and it can
not deal with the Inevitable Collision State (ICS)2 issue [10]. The predictive
approaches can be addressed either with coupled or decoupled approaches.
Coupled approaches guarantee completeness but generate an exponential de-
pendence on the number of robots and use a centralized computation [7].
Decoupled approaches allow robots to compute their own paths and then
resolve conflicts, so that feasible solutions are usually incomplete, but com-
puted faster and in a decentralized way. For instance, in prioritized planners,
where low priority robots have to adapt their path plans upon the decisions of
high priority robots, this decoupled approach could have a heavy impact on
finding a feasible real-time solution. The solution to the path-planning prob-
lem for robots with second-order dynamics, i.e. the kind of robots proposed in
this work, can be achieved by using a sampling-based tree planner [15, 2] and,
even if all robots decide a feasible plan, maybe its end state is an ICS [10].
The literature on contingency planning to avoid ICS in static environments
shows that braking maneuvers are sufficient to provide safety if used within
a control-based scheme [17] or in sampling-based replanning [5], as well as
with learning-based approximations of ICS sets [13] or approximations for
computing space×time obstacles [6].

This work uses a not prioritized, decoupled approach and is inspired by
the safety rules proposed in [2] about how to avoid ICS and collisions between
robots. This system is based on the computation of a set of plans concate-
nated with the robot’s contingency plan and the exchange of this information
among robots. This permits the choice of a safe trajectory for every robot.
Here, we propose the same kind of decoupled approach but with some key
differences: the factor graph [14] as communication network, the max-sum
algorithm [1] for the distributed coordination. The system still provide safety
and good performance even without real-time design communication proto-
cols such as in ROS. The paper is organized as follows. Section 2 outlines
the problem statement. Section 3 presents the description of the collision

2 A state is an ICS if every next state involves a collision.
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avoidance system, first focusing on its single components, then explaining
some algorithm contributions to the problem and finally illustrating the im-
plementation within the ROS system. Section 4 explains the experiments
conducted and the results obtained. Finally, conclusions and future works
are discussed in Section 5.

2 Problem statement

Let R be a set of n independent robots, i.e. R = {R1, R2, . . . , Rn} and let
each robot Ri, 1 ≤ i ≤ n have second order dynamics ruled by the time
constraint

ẋi (t) = f (xi (t) , ui) , g (xi (t) , ẋi (t)) ≤ 0, ∀t ∈ R,

where xi (t) represents a system state, ui a robot control and function f and
g are both smooth. Let E ⊆ R

2 be the environment where the robot operates
and FE ⊆ E the free environment, the free space of that environment. Given
a point p ∈ R

2, for each robot Ri, fP (Ri, p) is called the footprint on the
point p, i.e. the subset of FE occupied by the robot, while c(Ri) ⊆ R

2 is the
center of that footprint. The 2D local subspace of FE where robot Ri can
perceive and move, i.e. every c (Ri) such that fP (Ri, c (Ri)) ⊆ FE, is called
the safe environment and is represented by SEi.

Let robot Ri be the owner of a local goal listGLi filled with 2D space points
(x, y) ∈ SEi, the problem to be solved is the following: every robot Ri have
to reach its global goal Gi passing through a sequence of local goals, where
a local goal can be reached by choosing a linear trajectory and maintaining
a speed vi selected from Vi, a discrete set of velocities. In particular, when a
local goal is reached, Ri has to compute a new GLi and select both a new
local goal gli ∈ GLi and a velocity vi ∈ Vi such that, until Ri does not reach
gli, ∀t

{

fP (Ri, vi · t) ∈ SEi

fP (Ri, vi · t) ∩ fP (Ri, vj · t) 6= ∅ ∀i 6= j
.

3 System description

The planning cycle is executed by performing the following steps on the
system represented in Figure 1:

1. The Environment Model Builder retrieves sensor and odometry data and
computes a costmap, i.e. a discrete grid inflated with costs obtained from
the environment sensor data;
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Fig. 1 Block schema of the collision avoidance system.

2. Given the global goal and the SE, the Local Goals Generator computes
a set of feasible3 goals around the robot position. Next the robots start
the coordination step which ends with the selection of such goals that
maximize the distances between all robots.

3. Given a local goal and by using the A∗ algorithm [12], the Motion Planner
computes a path whose distance is covered with the dynamic window
approach[9].

4. The Controller receives the path and starts to send the motion commands
to the real robot in sense-react loop until it does not reach the local goal.

Let SD be the safe distance (e.g. 0.5 meters) equals to the space needed by
the robot to safely carry out one of its ICS escape maneuverers. The ICS is
avoided using a simple policy: each robot has to cover at least a distance of
SD, such that if the path has a length L ≥ SD the robot will move for that
length L minus the safe distance SD, i.e. L− SD.

Our escape action is divided into two steps: first the robot tries to rotate
slowly with the purpose of updating the costmap with some moving obstacles,
then, if after two rotations obstacles still blocks its path the robot stops and
looks for another path.

3.1 Local goal generator and coordination

In this section we outline the theoretical and mathematical frameworks used
for developing our collision avoidance algorithm (Local Goal Generator and
Coordination on Figure 1).

3.1.1 Navigation algorithm

Our navigation algorithm is detailed in Figure 2. Specifically we use a set
structure called geostructure, where we keep all the computed goals. Geostruc-

3 Feasible means that for sure there is a path between robot position and the goal.
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ture is able to return the goals directly reachable from the current robot
position (neighbourhood). Next, when we call compute goals from function,
we select the safe4 goals around the robot position that are not near to the
useless goals in geostructure. Finally, if at least a goal is found, we select the
local goal that minimizes the distance to the global goal, otherwise recovery
actions are taken.

geo s t ru c tu r e gs ;
p o s i t i o n g l o b a l g o a l ;
while ( g l o b a l g o a l i s not reached ){

cu r r po s = get current position ( ) ;

gs .add( cu r r po s ) ;
gs . find ( cu r r po s ) . type = GOOD;
l o c a l g o a l s = compute goals from ( cu r r po s ) ;

i f ( l o c a l g o a l s . s ize ( ) > 0){
new l o c a l g oa l = select best ( l o c a l g o a l s ) ;
gs .add( n ew l o c a l g oa l ) ;
move to ( n ew l o c a l g oa l ) ;

} else {
gs . find ( cu r r po s ) . type = USELESS ;
r e c ov e ry goa l = gs . find good neighbour ( cu r r po s ) ;
i f (not s e t r e c ov e ry goa l )

contingency plan ( ) ;
else

move to( r e c ov e ry goa l ) ;

}
}

Fig. 2 High level navigation procedure

3.1.2 Factor graph

We use the factor graph [14] framework to perform our coordination problem.

Specifically, given a real valued function g (x1, x2, . . . , xn) =
m
∑

i=1

fi (xi), where

xi ⊆ {x1, x2, . . . xr} , r ≤ n, a factor graph is defined as a bipartite graph that
shows the structure of this summation. In particular the factor graph FG =
{x, f} consists of variable nodes x = {x1, x2, . . . , xn} and function nodes
f = {f1, f2, . . . fm} where a variable node xi is connected to the function
node fj if and only if the variable is an argument of the function, i.e. xi ∈ xj .

4 A goal is defined as safe when the trajectory towards it does not make robot collide.
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3.1.3 Max-sum algorithm

The max-sum algorithm belongs to the family of iterative message passing
algorithms called Generalized Distributive Law (GDL) [1], which can be com-
bined with factor graphs to efficiently compute functions like g (·). Given a set
of robots, i.e. R1, R2, . . . , Rn, and a factor graph FG = (x,F) (see an exam-
ple in Figure 4) where each robot Ri owns a function Fi and a subset xi ⊆ x

of variables, the max-sum algorithm computes x∗ = argmax
x

n
∑

i=1

Fi (xi) by

repeatedly passing variable-to-function q-messages and function-to-variable
r-messages. Let xi be a set of paths to candidate local goals, Fi (xi) repre-
sents the minimum distance between all possible local goals, logarithmically
weighted with the distance to the global goal Gi (see Figure 3). In case xi

would lead to a collision, Fi (xi) is set to an arbitrarily small positive quan-
tity ǫ. Hence x∗ represents the local goals that maximize the system utility
n
∑

i=1

Fi (xi), i.e. the local goals whose relative trajectories allow each robot to

avoid collisions and to get closer to its global goal at the same time. A similar
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coordination problem in [2] is modeled with coordination graphs [11] and it is
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solved using the message passing algorithm max-plus [11], but that method
does not consider n-ary functions. In our approach such functions are very
important because they allow us to simultaneously consider, if necessary, not
only collisions between couples of robots, but collision between a group of n
robots. In particular in our approach each robot owns only its local part of
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Fig. 5 Line of sight neighbor selection

the factor graph, hence a minimal factor graph can be computed even with-
out a real distributed computation. Indeed as Table 1 shows, the Max-sum
computational time increases exponentially with the number of graph con-
nections, so in order to keep low the time to reach a solution we communicate
with just the two nearest neighbors. As in Algorithm 1 the robot computes
the main cycle, where in step 2b we consider neighbors just the robots which

Algorithm 1 Sense-plan-act cycle
1. Sense;

2. Plan:

a. Compute some possible local goals and their relative trajectories;

b. if there are not neighbors which can collide with myself go to 3, else continue;
c. if all neighbors do not want to perform the Max-sum algorithm go to 2b, else con-

tinue;
d. Create the local variables and the local function;

e. Create the factor graph with its neighborhood;
f. Perform Max-sum and choose the best trajectory;

3. Act

a. Bring the robot to the trajectory velocity;

b. Keep moving until the local or the global goal is reached.
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are less than a dmax far from the robot. Such distance is that a robot could
cross if it moves at the maximum velocity for Tact, i.e. the time of the act
step, and it is so defined

dmax = vmax · Tact.

In 2e entry, the connection are created after the local graph is computed and
it is not rare that two agents are not symmetrically situated in the neighbors
set. Indeed the factor graph is a not oriented graph so we check locally the
graph consistency. For instance, let the robot Ri be the owner of the variable
TRi locally connected with an external function Fj , whose owner is robot Rj ,
hence if for some reasons in the factor graph of Rj there is not connection
between Fj and TRi, the Ri local edge will be deleted. As stated before,
when the Max-sum uses complete factor graphs the communication times
grow exponentially (see Table 1 ) with the number of nodes. We use a graph
pruning policy where an agent is connected with two nodes at most.

Table 1 Complete factor graph communication times

Variable nodes Function nodes Communication Times (secs)

2 2 0.3

3 3 2.7

4 4 23

3.2 System design under ROS

The middleware ROS (Robot Operating System) makes available libraries and
tools to help software developers to create robot applications, e.g. hardware
abstraction, device drivers, visualizers, message-passing and package man-
agement. ROS is organized in software packages with binary nodes that can
communicate with other ones even if they are in different packages thanks to
asynchronous recipients called topic and service. Nodes are connected to each
other by a peer-to-peer connection but all the nodes have to communicate
with the Master service5 to enable the connection. This kind of network ar-
chitecture highly favors a distributed arrangement. In our developed package
the executable node, called pioneer3AT node, has three main tasks:

• communicate with other “max-sum” robots;
• compute the new node goal;
• strictly collaborate with move base, the other ROS node used in this sys-

tem.

5 Master service only provides lookup information in some way like a DNS server.
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Fig. 6 System setup for our ROS implementation

Given the footprint of the robot, environmental data from on-board sensors
(e.g. laser, stereoscopic camera) and the odometry, the move base node has
the objective to compute the velocities and the steering angles of the robot
in order to reach a goal communicated by the pioneer3AT node. Move base is
tuned for avoid the static obstacles by using the Dynamic Window Algorithm.
This node also publishes a costmap of the local environment built from the
sensor data, which is used to compute the path toward the local goal by using
the A∗ algorithm. Moreover, we do our test using virtual worlds builded for
the gazebo simulator 6. Its APIs permit the modeling and the developing of a
virtual pioneer3AT, which can read the velocity command computed by the
move base node. The strength of this modular approach is the reusability of
the code and its portability. In fact, the pioneer3AT node source code can
be easily adapted and executed on a group of real robots even different from
the pioneer3AT.

4 Experiments and results

The tests on our collision avoidance approach have been focused on the scal-
ability of the planning cycle times. The workbench was a workstation7 where
we simulated the robots as different ROS nodes. We used two different sce-
narios created for the Gazebo environment. In the first one (see Figure 7(a)),
robots have to reach their global goals respectively placed on their opposite
corner. In the second scenario (see Figure 7(b)) the placement of walls, blocks
and goals has been changed for creating a labyrinth. All the simulations in-
volved on the tests have a key topic: all the nodes share the machine memory
and its processors, hence increasing the number of robots results in a reduc-
tion of resources that they can own. In Table 2 we report the mean execution
times for a full round of our algorithm (message exchanges and convergence

6 This tool is directly available in ROS.
7 This machine is equipped with an Xeon 3.10 GHz quad-core processor and 3.8 GiB DDR3
RAM memory.
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Table 2 Mean algorithm execution times (s) in the crossroads scenario with different
number of robots and different |GLi|, ∗: outlier data due to RAM memory swapping

Robots Number of local goals Resources per robot

Units 4 6 8 12 RAM, CPU #

2 0.15 0.28 0.37 0.43 1.5 GiB, 2

3 0.48 1.32 107.49* 65.89 1.0 GiB, 1

4 2.02 29.52 - - 0.7 GiB, 1

to a local goal choice) and in the last column we show the estimated RAM
and number of CPUs available for each node: we can consider these resources
like a virtual on board robot computer with low resources. Moreover, we con-
sider also the worst communication case, where factor graphs are complete8

so every robot has to exchange messages with all other robots. This case could
happen for example, in the first scenario, when all the robots are closed on
the center of the environment and they need to share their own paths with
all other players. Our tests showed the important role played by the number
of candidate goals computed in each planning cycle: we noticed that if this
number decreases under the 6 units, collisions happen on almost the 100%
of the tests. As shown on Table 2, we can deduce that a real-time onboard
robot computer needs 1 CPU with 1 GiB RAM at least.

5 Conclusions

We built a decoupled and distributed coordination approach with low com-
putational overhead using the Max-Sum and a greedy algorithm with the aim
of using it on robots with low computational resources. Since the first results

8 In a complete factor graph every node function has all the node variables as neighbors,
in other words the functions have all the variables as arguments.
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look promising, we envision to try it on a real low cost robots group. As a
future work, we also plan to implement a reactive collision avoidance system
able to avoid unknown objects, like people.
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