
Recommending Fair Payments
for Large-Scale Social Ridesharing

Filippo Bistaffa,
Alessandro Farinelli

University of Verona
filippo.bistaffa@univr.it

alessandro.farinelli@univr.it

Georgios Chalkiadakis
Technical University of Crete

gehalk@intelligence.tuc.gr

Sarvapali D. Ramchurn
University of Southampton
sdr@ecs.soton.ac.uk

ABSTRACT
We perform recommendations for the Social Ridesharing
scenario, in which a set of commuters, connected through
a social network, arrange one-time rides at short notice. In
particular, we focus on how much one should pay for taking
a ride with friends. More formally, we propose the first ap-
proach that can compute fair coalitional payments that are
also stable according to the game-theoretic concept of the
kernel for systems with thousands of agents in real-world
scenarios. Our tests, based on real datasets for both spa-
tial (GeoLife) and social data (Twitter), show that our ap-
proach is significantly faster than the state-of-the-art (up to
84 times), allowing us to compute stable payments for 2000
agents in 50 minutes. We also develop a parallel version of
our approach, which achieves a near-optimal speed-up in the
number of processors used. Finally, our empirical analysis
reveals new insights into the relationship between payments
incurred by a user by virtue of its position in its social net-
work and its role (rider or driver).

Categories and Subject Descriptors
H.4.0 [Information Systems Applications]: General;
I.2.11 [Distributed Artificial Intelligence]: Intelligent
Agents, Multiagent Systems

General Terms
Algorithms

Keywords
Algorithm Scalability; Innovative Applications; Coalition For-
mation; Social Networks; Ridesharing

1. INTRODUCTION
Real-time ridesharing, in which people arrange one-time rides
at short notice, is rapidly changing the way people commute
for their daily activities. Online services such as Uber or Lyft

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
RecSys’15, September 16–20, 2015, Vienna, Austria.
c© 2015 ACM. ISBN 978-1-4503-3692-5/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2792838.2800177.

compete with standard transportation systems (such as taxis
or public transport), allowing users to quickly share their
positions and arrange rides with other people they know or
trust. A clear tendency in such services is to embed a so-
cial network in their framework, favouring the formation of
groups of users that are connected in such network. In fact,
Uber1 and Lyft2 incentivise users to share rides with their
friends, showing that social relationships play a fundamen-
tal role in the ridesharing scenario, which is consequently
referred as Social Ridesharing (SR). Several works [20, 21]
have focused on building recommendation mechanisms in
the book-a-taxi domain, while recent research has shown
that recommendation accuracy can be greatly improved by
incorporating trust and geo-spatial information embedded in
social networks that also encompass geographical data [14,
19]. However, recommendation systems research has never
focused on the SR problem, as we do in this paper.

In more detail, the SR problem is, by and large, a Coalition
Formation (CF) problem [13], requiring that the set of rides
is partitioned in disjoint groups (i.e., coalitions) that min-
imise the overall transportation costs for the entire system.
In addition, such a division must be computed assessing the
constraints imposed by the social network (naturally mod-
elled as a graph), in order to ensure that passengers are con-
nected by friends-of-friends relationships. The most success-
ful approach that tackles the SR problem from a real-world
perspective is proposed by Bistaffa et al. [3], which define it
as a Graph-Constrained Coalition Formation (GCCF) prob-
lem, and also provide a solution that scales to thousands of
agents. That work, however, remains silent about the prob-
lem of distributing the travel expenses of each car among
its passengers. Such a task, namely the payoff distribution
task [15], represents a key challenge in the CF process and
it is of utmost importance when offering ridesharing ser-
vices, especially when considering commuters with rational
behaviours. In fact, payoffs (corresponding to cash payments
for sharing trip costs) to the commuters need to be com-
puted given their distinct needs (e.g., shorter/longer trips),
roles (e.g., drivers/riders, less/more socially connected) and
opportunity costs (e.g., taking a bus, their car, or a taxi).

One key aspect of payment distribution in CF is the game-
theoretic concept of stability, which measures how agents are
keen to maintain the provided payments instead of deviating
to a configuration deemed to be more rewarding from their
individual point of view. Here, we induce stable payments
in the context of the SR problem, employing the kernel [6]

1http://blog.uber.com/2013/07/15/faresplit.
2http://www.lyft.com/help/article/1637045.

139

stability concept. Kernel-stable payoffs are perceived as fair,
since they ensure that agents do not feel compelled to claim
part of their partners payoff (cf. Section 2 below). Kernel
stability has been widely studied in cooperative game the-
ory, and certain approaches have been proposed to compute
kernel-stable payments [10, 16]. Specifically, Shehory and
Kraus [16] adopt a transfer scheme that represents the state-
of-the-art approach to compute kernel-stable payments. De-
spite having polynomial time complexity under certain as-
sumptions, such an approach has some drawbacks that hin-
der its applicability in real-world scenarios, and especially
in the SR one. First, it is designed for classic CF, failing to
exploit the graph-constrained nature of this problem. Sec-
ond, this algorithm assumes that coalitional values can be
assessed at no computational cost (e.g., stored in memory
or provided by an oracle). This hypothesis does not apply to
SR, in which the value of a coalition is the solution of a rout-
ing problem and it cannot be stored in memory without lim-
iting the scalability. These shortcomings lead to inefficiencies
that prevent the application of the method proposed by She-
hory and Kraus [16] in our case. Moreover, neither Klusch
and Shehory [10] nor Shehory and Kraus [16] provide paral-
lel solution algorithms, failing to take advantage of modern
multi-core hardware. Finally, these papers have never been
tested in realistic large-scale environments.

Against this background, we propose Paying for Rides
with Friends (PRF), the first approach to compute kernel-
stable payments for SR. In particular, we address the short-
comings of the state-of-the-art algorithm in real-world sce-
narios, we design a solution that scales up to systems of
thousands of agents, and we also provide an efficient parallel
version. PRF allows us to provide the first recommendation
system for SR scenarios, as it can be used in conjunction
with Bistaffa et al.’s approach to provide recommendations
for the optimal groups to form, and also to define fair, stable
payments that commuters should make as a compensation
for their rides.

In more detail, this paper advances the state-of-the-art in
the following ways: i) we present the first approach able to
compute kernel-stable payments for systems with thousands
of agents, ii) we benchmark our approach on real data (i.e.,
GeoLife from Microsoft Research for the geospatial data and
Twitter for social networks), showing that our method com-
putes payments for 2000 agents in less than an hour and it is
84 times faster than the state-of-the-art in the best case, iii)
we develop new insights into the relationship between pay-
ments incurred by a user by virtue of its position in its social
network and its role (rider or driver), and iv) we provide a
parallel version of our method, providing a practical solu-
tion technique for large-scale systems thanks to a speed-up
of 10.6 on a 12-core machine w.r.t. the serial approach.

2. BACKGROUND
In the following sections we provide the necessary back-
ground on Social Ridesharing and on the kernel, i.e., the
stability concept we use to compute agents’ payments.

2.1 The Social Ridesharing Problem
The Social Ridesharing (SR) problem [3] considers a set of n
agents (or commuters) A = {a1, . . . , an} connected through
a social network G, which arrange one-time rides at short
notice in order to minimise the travel cost of the overall sys-
tem. In the SR scenario, each commuter (which has a desired

starting and destination point in the geographic map) can
share a ride in one of the cars provided by the set of drivers
D ⊆ A. We assume that each car has k seats, hence the
maximum size of each group is at most k. To be part of a
solution, each group of commuters must constitute a feasible
coalition, i.e., it must satisfy the following constraints:

Constraint 1. Its members must induce a k̂-subgraph of
G, where a k̂-subgraph denotes a connected subgraph with at
most k nodes.

Constraint 2. It must contain at least one driver.3

The set of all feasible coalitions is referred as FC(G). Bistaffa
et al. [3] tackle the SR problem casting it as a GCCF prob-
lem, in which each car represents a feasible coalition C ∈
FC (G), whose coalitional value v (C), quantifying the total
transportation cost for the group represented by C, is:

v (C) =

{
t (PC) + c (PC) + f (PC) , if C ∩ D 6= ∅
κ (C) , otherwise.

where PC is the optimal path for C, t(·), c(·) and f(·) are
negative functions representing time, cognitive (i.e., the fa-
tigue incurred by the driver during the trip) and fuel costs of
driving through the path. The computation of v(C) (and of
PC in particular) requires solving a routing problem. In gen-
eral, this is a hard problem [12], which can be solved in this
setting thanks to the limited4 number of points in each path.
Bistaffa et al. [3] only solve the optimisation problem of the
SR scenario, which involves computing the optimal feasible
coalition structure CS∗ (i.e., a partition of A into disjoint
feasible coalitions) that maximises the social welfare:

CS∗ = arg max
CS∈CS(G)

∑
C∈CS

v (C),

where CS (G) refers to the set of all the feasible coalition
structures. Such a problem is solved using a modified ver-
sion of the state-of-the-art algorithm for the GCCF prob-
lem5 (i.e., the CFSS algorithm [2]), providing optimal and
approximate solutions with good quality guarantees.

Bistaffa et al.’s approach can be used to provide recom-
mendations about the optimal groups to arrange from a joint
cost perspective. However, such an approach does not ad-
dress the payment computation problem for SR, as we do in
this paper. In this context, a number of works have focused
on computing incentives for ridesharing using mechanism
design [8, 9] in order to promote truthfulness in the com-
muters. Nonetheless, in addition to such property, they do
not address the stability of payments, which is crucial in self-
ish settings like ridesharing, but it has never been studied
before. In addition, these works do not consider the role of
the social network. Against this background, we introduce
our payoff distribution scheme for SR, detailing the game-
theoretic stability concept we employ, i.e., the kernel.
3Agents without a car can be in a singleton, which is con-
sidered a feasible coalition. If the total number of available
seats is less than the total number of commuters in the sys-
tem, an agent ai might need to resort to public transport
paying a cost κ ({ai}) for the ticket.
4The points are at most 2·k (i.e., a starting and a destination
point for each commuter). As an example, for k=5 only 2520
paths must be considered to compute the optimal one [3].
5Notice that, following the recent literature on optimisation
in ridesharing [8], Bistaffa et al. maintain the assumption
that all the request by the agents arrive at the same time,
hence the solution can be computed offline in a static system.

140

2.2 The Kernel
Formally, the payment computation problem involves the
computation of a payoff allocation vector x, which speci-
fies a payoff xi for each agent ai ∈ A as a compensation
of their contributions [15, 5]. As introduced above, comput-
ing payments that are stable (i.e., they incentivise agents to
maintain the provided configuration) and individually ratio-
nal (i.e., they guarantee that each agent receives at least the
value of its singleton coalition) is of utmost importance in
systems with selfish rational agents. As such, payoffs have
to be distributed among agents to ensure that members get
rewarded according to their bargaining power [5].

A number of recent papers have examined the compu-
tational complexity of reaching stable solutions in graph-
restricted coalition formation scenarios [4, 7]. Nevertheless,
these papers focus on the stability concept of the core, which
denotes the set of payoff configurations that provide no in-
centives to players to deviate from the solution coalition
structures. Unfortunately, the core might be empty, and its
complexity makes it next to impossible to compute in real-
world scenarios involving thousands of agents.

In this paper, we focus on the kernel, a stability concept
introduced by Davis and Maschler [6] that is always non-
empty and can be approximated in polynomial time when
the size of coalitions is limited. The kernel provides stability
within a given coalition structure, and under a given payoff
allocation, by defining how payoffs should be distributed so
that agents cannot outweigh (cf. below) their current part-
ners. In order to define the kernel, we first define the ex-
cess of a coalition C as e (C, x) = v (C) − x (C), where
x (C) refers to the sum of the payments of the members
of C, i.e., x (C) =

∑
ai∈C xi. In the kernel, a positive excess

is interpreted as a measure of threat: in the current pay-
off distribution, if some agents deviate by forming coalition
with positive excess, they are able to increase their payoff
by redistributing the coalitional excess among themselves.
In more detail, the surplus sij of agent ai over agent aj
with respect to a given payoff configuration x, is defined
by sij = maxC∈2A|ai∈C,aj /∈C e (C, x), where 2A denotes the

powerset of A. In other words, sij is the maximum of the
excesses of all coalitions C that include ai and exclude aj ,
with C not in the current coalition structure (since under
the current coalition structure agents ai and aj belong in
the same coalition). We say that agent ai outweighs agent
aj if sij > sji. When this is the case, ai can claim part of
aj ’s payoff by threatening to walk away (or to expel aj) from
their coalition. When any two agents in a coalition cannot
outweigh one another, the payoff vector lies in the kernel –
i.e., it is stable. Importantly, the set of kernel-stable payoff
vectors is always non-empty. Stearns [17] provides a payoff
transfer scheme which converges to a vector in the kernel by
means of payoff transfers from agents with less bargaining
power to their more powerful partners, until the latter can-
not claim more payoff from the former. Unfortunately, this
may require an infinite number of steps to terminate. To al-
leviate this issue, the ε-kernel [10] has been introduced, in
order to represent an allocation whose payoffs do not differ
from an element in the kernel by more than ε. Note that an
ε-kernel-stable payoff allocation can be computed in O (n)
iterations.6

6The number of iterations is also affected by ε. A more de-
tailed discussion is provided by Shehory and Kraus [16].

2.3 Computing Payments in the ε-Kernel
The current state-of-the-art approach to compute an ε-kernel

payoff allocation for classic CF is presented in Algorithm 1

[16]. Such an algorithm does not specify how x should be

initialised, and assumes that a payoff vector is provided as

an input. The first (and most expensive) phase is the com-

putation of the surplus matrix s (lines 2–5), which iterates

over the entire set of coalitions to assess the maximum ex-

cess (line 5) for each pair of agents in each coalition. Once

the surplus matrix has been computed, a transfer between

the pair of agents with the highest excess difference (i.e.,

sij − sji) is set up, while ensuring that each payment is in-

dividually rational. On the one hand, the maximisation at

line 5 is a key bottleneck for classic CF, since it involves enu-

merating an exponential number of coalitions, i.e., O (2n).

On the other hand, when the size of the coalitions is limited

to k members as in our scenario, (denoted as k-CF in the

remainder of the paper), such an algorithm has polynomial

time complexity, since the coalitions are O
(
nk
)
.

Algorithm 1 ShehoryKrausKernel(x,CS, ε)

1: repeat
2: for all C ∈ CS do
3: for all ai ∈ C do
4: for all aj ∈ C − {ai} do
5: sij ← maxR∈P(A)|ai∈R,aj 6∈R e (R, x)

6: {ai∗ and aj∗ have the maximum surplus difference δ}
7: δ ← max(ai,aj)∈A2 (sij − sji)
8: (ai∗ , aj∗)← arg max(ai,aj)∈A2 (sij − sji)
9: {Ensure that payments are individually rational}

10: if xj∗ − v ({aj∗}) < δ/2 then
11: d← xj∗ − v ({aj∗})
12: else
13: d← δ/2

14: xj∗ ← xj∗ − d {Transfer payment from aj∗ ...}
15: xi∗ ← xi∗ + d {... to ai∗}
16: until δ/v(CS) ≤ ε

Next, we discuss how this approach could be used to com-

pute an ε-kernel payoff allocation for the SR problem.

3. COMPUTING PAYMENTS FOR SR
Algorithm 1 has been designed to compute payments for CF

scenarios in which the set of coalition is not restricted by a

graph. Such an approach can be readily applied also when

the size of coalitions is limited to k members, in which the

maximisation at line 5 has to be assessed among the coali-

tions of size up to k which include ai but exclude aj . This set,

denoted as R, can be easily obtained as R = {{ai} ∪ R | R
is a h-combination of A− {ai, aj},∀h ∈ {1, . . . , k − 1}}.

On the other hand, in GCCF scenarios like SR this sim-

ple approach would iterate over several unfeasible coalitions

(i.e., which do not induce a connected subgraph of the social

network), leading to inefficiency and reducing the scalability

of the entire algorithm. In contrast, a better way to tackle

this problem is to exploit the structure of the graph in order

to consider only the coalitions that are indeed feasible, so to

avoid any unnecessary computation.

141

ai aj Coalitions
a1 a2 {a1} {a1, a3} {a1, a4} {a1, a3, a4}
a1 a3 {a1} {a1, a2} {a1, a4} {a1, a2, a4}
a1 a4 {a1} {a1, a2} {a1, a3} {a1, a2, a3}
a2 a1 {a2}
a2 a3 {a2} {a1, a2} {a1, a2, a4}
a2 a4 {a2} {a1, a2} {a1, a2, a3}
a3 a1 {a3}
a3 a2 {a3} {a1, a3} {a1, a3, a4}
a3 a4 {a3} {a1, a3} {a1, a2, a3}
a4 a1 {a4}
a4 a2 {a4} {a1, a4} {a1, a3, a4}
a4 a3 {a4} {a1, a4} {a1, a2, a4}

Table 1: Coalitions considered at each iteration.

Moreover, Algorithm 1 considers many coalitions more
than once at the maximisation in the loop at lines 2–5. We
provide the following example to clarify why this redundancy
exists. Consider the set of agent A=D={a1, a2, a3, a4} and
a graph G that induces a set of feasible coalitions FC (G) =
{{a1}, {a2}, {a3}, {a4}, {a1, a2}, {a1, a3}, {a1, a4}, {a1, a2,
a3}, {a1, a2, a4}, {a1, a3, a4}, {a1, a2, a3, a4}}, and assume a
coalition structure CS = {{a1, a2, a3, a4}}. In this case, such
a loop requires 12 iterations, each looking at the coalitions
reported in Table 1. Note that 23 (marked in bold) out of
33 coalitions (i.e., 70%) are evaluated more than once. This
fact can substantially reduce the efficiency and the scalabil-
ity of the computation of the surplus matrix in SR scenarios,
where the computation cost required to assess coalitional
values is not negligible and caching is not an option. In fact,
storing all these values in memory is not affordable even for
systems with hundreds of agents: since the number of fea-
sible coalitions is O

(
nk
)
, for k = 5 and n = 100, storing

all coalitional values requires tens of GB of memory. Thus,
each coalitional value must be computed only when needed,
since computing them more than once significantly reduces
efficiency and scalability, as shown in Section 4.1.

To overcome these issues, in the next section we present
the PRF algorithm, an improved technique to calculate the
surplus matrices in the SR scenario, allowing our payment
scheme to scale up to systems with thousands of agents.

3.1 The PRF algorithm
We now present the PRF (Paying for Rides with Friends)
algorithm, our method to compute an ε-kernel payoff alloca-
tion, given a coalition structure CS that is a solution to the
SR problem. Our contribution improves on the k-CF version
of Algorithm 1 by adopting a novel approach to calculate the
surplus matrix s. Instead of computing each value sij using
the maximisation at line 5 for each pair of agents in each
C ∈ CS, we iterate over the set of k̂-subgraphs of G (i.e.,
those satisfying Constraint 1 of the SR problem). Then, we
update the appropriate values of the surplus matrix for each
coalition with at least one driver (i.e., satisfying Constraint
1). By so doing, we ensure the exact coverage of the entire
set of feasible coalitions FC (G), as ensured by Proposition 2.

PRF is detailed in Algorithm 2. After having initialised
the payoff vector x by equally splitting each coalitional value
among the members of the coalition, ComputeMatrix com-
putes the surplus matrix in each iteration of the main loop.
In such a routine, UpdateMax is executed for each coalition
that induces a k̂-subgraph of G. These coalitions are com-
puted with the SlyCE algorithm [18], which can list all the

Algorithm 2 PRF(CS, ε)

1: for all C ∈ CS do
2: for all ai ∈ C do
3: xi ← v(C)/|C| {Equally split coalitional value}
4: repeat
5: {Compute surplus matrix}
6: s← ComputeMatrix (CS, x)
7: {ai∗ and aj∗ have the maximum surplus difference δ}
8: δ ← max(ai,aj)∈A2 (sij − sji)
9: (ai∗ , aj∗)← arg max(ai,aj)∈A2 (sij − sji)

10: {Ensure that payments are individually rational}
11: if xj∗ − v ({aj∗}) < δ/2 then
12: d← xj∗ − v ({aj∗})
13: else
14: d← δ/2

15: xj∗ ← xj∗ − d {Transfer payment from aj∗ ...}
16: xi∗ ← xi∗ + d {... to ai∗}
17: until δ/v(CS) ≤ ε

subgraphs of a given graph without redundancy (i.e., each
subgraph is computed only once).

Algorithm 3 ComputeMatrix(CS, x)

1: s← −∞ {Initialise the entire matrix with −∞}
2: for all C that induce a k̂-subgraph of G do
3: s← UpdateMax (C,CS, s, x)

4: return s

Algorithm 4 UpdateMax(C,CS, s, x)

1: if |C| = 1 ∨ C ∩ D 6= ∅ then {Constraint 2 of SR prob-
lem}

2: eC ← e (C, x) {Compute the excess of coalition C}
3: for all ai ∈ C do {For each agent ai in coalition C}
4: C′ ← the coalition in CS that contains ai
5: for all aj ∈ C′−C do {For each aj ∈ C′ but 6∈ C}
6: {sij is updated with the maximum between}
7: {its old value and the excess of coalition C}
8: sij ← max (sij , eC)

9: return s

UpdateMax only considers the coalitions that satisfy Con-
straint 2 of the SR problem (line 1), i.e., singletons or coali-
tions that contain at least one driver. For every coalition C
that satisfies this property, lines 3–8 update all the values
sij for which ai is a member of C and aj is part of C′ (i.e.,
the coalition in CS that contains ai) but is not part of C.
The correctness of our approach is ensured by Proposition 1.

Proposition 1. Algorithm 3 computes each sij correctly.

Proof. Once the loop has ended, each sij stores the maxi-
mum excess among all feasible coalitions with ai but without
aj , with both ai and aj part of the same coalition in CS.
This matches line 5 of Algorithm 1.

Moreover, our surplus matrix-calculating method has poly-
nomial time complexity, while allowing to compute all fea-
sible coalitions only once, as shown by Proposition 2.

Proposition 2. Algorithm 3 lists all feasible coalitions only
once and it has a worst-case time complexity of O

(
nk
)
.

142

Proof. Algorithm 3 lists all k̂-subgraph of G exactly once
[18]. Note that the number of k̂-subgraphs isO

(
nk
)
, since we

only consider coalitions with up to k members [16]. Hence,
Algorithm 3 makes at most O

(
nk
)

calls to UpdateMax. Fi-
nally, note that the time complexity of UpdateMax is con-
stant w.r.t. n, since computing e (C, x) requires the compu-
tation of v (C) (which has constant time complexity [3]), and
the loop at lines 3–8 requires O

(
k2
)

iterations. Moreover,
UpdateMax only considers coalitions that satisfy Constraint
2 and it computes each coalitional value only once at line 2.
Thus, Algorithm 3 computes all feasible coalitions only once
and its worst-case time complexity is O

(
nk
)
.

Proposition 3. Algorithm 2 has a polynomial worst-case
time complexity w.r.t. n, i.e., O

(
− log2 (ε) · nk+1

)
.

Proof. All the equations and lemmas referred in the follow-
ing proof are provided by Stearns [17]. Each iteration of Al-
gorithm 2 identifies the agents ai and aj with the maximum
surplus difference δ = sij − sij , performing a transfer of size
d from aj to ai. Thus, by Lemma 1, in the following itera-
tion these surpluses will be s′ij = sij − d and s′ji = sji + d.
Notice that s′ij − s′ji = sij − sji − 2 · d = δ − 2 · d. Now,
by definition of d (lines 11–14 of Algorithm 2), d ≤ δ/2,
hence s′ij − s′ji ≥ 0. Therefore, we can affirm that the trans-
fer from aj to ai is indeed a K-transfer, since it satisfies
Equation 4, 5, 6 and 7. Lemma 2 ensures the convergence
of Algorithm 2, by affirming that a K-transfer cannot in-
crease the larger surpluses in the system. Specifically, in the
next iteration the difference between the surpluses between
aj to ai will be half of what was in the previous one. After
λ iterations, its value will be 1

2λ
of the original one. Thus,

it will take approximately λ = log2([δ0/v(CS)]/ε) iterations to
ensure that [δ0/v(CS)]/2λ ≤ ε, with δ0 being the original max-
imum sij surplus. Since we have n agents into the setting,
it will take approximately λ · n = O (− log2 (ε) · n) itera-
tions to convergence. Then, we know by Proposition 2 that
ComputeMatrix, which dominates the time complexity of
each iteration, has a worst-case time complexity of O

(
nk
)
.

Given this, Algorithm 2 has a worst-case time complexity of
O
(
− log2 (ε) · nk+1

)
.

Given this, PRF provides a polynomial method to compute
kernel-stable payments. Nonetheless, the O

(
nk
)

operations
required for surplus matrix calculation may not be affordable
in real-world scenarios with thousands of agents and k =
5, i.e., the number of seats of an average sized car. Hence,
we next propose a parallel version of PRF, which allows
us to distribute the computational burden among different
threads, taking advantage of modern multi-core hardware.

3.2 P-PRF
We now detail P-PRF, the parallel version of our approach,
in which the most computation-intensive task, i.e., the com-
putation of s, is distributed among T available threads. In
particular, Algorithm 5 details our parallel version of the
ComputeMatrix routine, obtained by having each thread
t to compute a separate matrix st. Such a matrix is con-
structed considering the coalitions in DIV (G, t, k), i.e., the
tth fraction of the set of all k̂-subgraphs of G, computed us-
ing the D-SlyCE algorithm [18]. Specifically, this fraction is

obtained by splitting the first generation of children nodes
in the search tree generated by the SlyCE algorithm [18]
among the available threads, allowing a fair division of the
set of the k̂-subgraphs while ensuring that all feasible coali-
tions are computed exactly once (a more detailed discussion
is provided by Voice et al. [18]). As such, it also distributes
the computation of the coalitional values.

Algorithm 5 P-ComputeMatrix(CS, x, T)

1: s← −∞ {Initialise all matrices with −∞}
2: for all t ∈ {1, . . . , T} do in parallel
3: for all C ∈ DIV (G, t, k) do
4: st ← UpdateMax

(
C,CS, st, x

)
5: for all i ∈ {1, . . . , n} do in parallel
6: for all j ∈ {1, . . . , n} do in parallel
7: sij ← maxt∈{1,...,T} s

t
ij

8: return s

We provide the following example to clarify how this divi-
sion is realised. Consider the same FC (G) of the example in
Section 3, and assume T = 4. Then, the necessary coalitions
are distributed by doing the following partitioning:

1. DIV (G, 1, k) = {{a1}, {a2}, {a3}}

2. DIV (G, 2, k) = {{a4}, {a1, a2}, {a1, a3}}

3. DIV (G, 3, k) = {{a1, a4}, {a1, a2, a3}}

4. DIV (G, 4, k) = {{a1, a2, a4}, {a1, a3, a4}}

Note that, since each matrix st is modified only by thread t,7

Algorithm 5 contains only one synchronisation point (i.e., at
line 5), hence providing a full parallelisation. After that, the
final surplus matrix s is computed with a maximisation on
all the above matrices (lines 5–7), ensuring that the output
of P-ComputeMatrix is equal to the one of Compute-
Matrix, since each feasible coalition in FC (G) has been
computed by a thread.

The effectiveness of our parallel approach will be demon-
strated through the empirical evaluation, detailed below.

4. EMPIRICAL EVALUATION
Having described and analysed our approach to compute
kernel-stable payments for the SR problem, we now bench-
mark our approach on a real-world dataset. We first present
our evaluation methodology, then we discuss the achieved
results. The main goals of the empirical analysis are:

1. To test the performance of our approach when com-
puting payments for systems of thousands of agents.

2. To compare the efficiency of our algorithm w.r.t. the
state-of-the-art approach proposed Shehory and Kraus.

3. To perform an analysis of the features that influence
the payoff allocation.

4. To estimate the speed-up obtainable by using P-PRF
w.r.t. PRF.

7Our parallel approach requires storing t separate surplus
matrices, one per thread. Hence, its memory requirements
are O

(
t · n2

)
, i.e., still polynomial in the number of agents.

143

Since there are no publicly available datasets which include

both spatial and social data for the same users, in our empir-

ical evaluation we consider two separate real-world datasets

and we superimpose the first on the second one. This ap-

proach does not affect realism and, in our view, provides a

far better experimental setting than using synthetic data.

Moreover, since we are interested in evaluating the algo-

rithmic performance of our approach, the specific datasets

adopted are not crucial for the purposes of our analysis.

In particular, the spatial map is a realistic representation

of the city of Beijing, derived from the GeoLife [22] dataset

provided by Microsoft. These trajectories are also adopted

to sample random paths used to provide the start and des-

tination points to the riders in our tests. Moreover, in each

instance the graph G is a subgraph of a large crawl of the

Twitter network completed in 2010 by Kwak et al. [11].

In all our experiments we use ε = 0.05. Since the coalition

structure considered to compute the payments is obtained

using the CFSS algorithm [3], we consider the same param-

eters with them in the definition of the cost model in the

SR scenario. Specifically, we adopt a cost model that only

considers fuel expenses (considering a fuel cost of 1 e per

litre and an average consumption of 1 litre of fuel every 15

km). Moreover, we assume that each car has a capacity of

5 seats, i.e., k = 5. Our approach is executed on a machine

with dual 8-core 2.60GHz processors and 32 GB of memory.

100 500 1000 1500 2000
10−2

10−1

100

101

102

103

104

Number of agents

R
u
n
ti

m
e

(s
)

|D| = 10%

|D| = 50%

|D| = 80%

Figure 1: Runtime needed to compute payments.

Figure 1 shows the runtime needed to execute P-PRF on

systems with a large number of agents, i.e., n ∈ {100, 500, 1000,

1500, 2000}. Our results show that P-PRF is able to com-

pute payments for 2000 agents with a runtime ranging from

13 to 50 minutes, hence it can successfully scale to large sys-

tems. In particular, for each value of n, we consider |D| ∈
{10%, 50%, 80%} with 20 repetitions for each n and |D|, re-

porting the average and the standard error of the mean. In

each test, the coalition structure has been computed using

the approximate version of CFSS [3].

Our results also show the influence of the percentage of
drivers on the complexity of the problem. On average, com-
puting payments on an instance with |D| = 80% is easier
w.r.t. |D| = 10% and |D| = 50%. Our findings are consistent
with the results obtained by Bistaffa et al. [3], showing that
the scenario with |D| = 50% is more difficult to solve (i.e.,
requires a greater runtime), since more drivers are available,
hence it is possible to form more cars, resulting in a larger
search space. In fact, the number of feasible coalitions is de-
termined by the number of available seats (reduced when
such a percentage is low) and the number of riders without
a car who can benefit from sharing their commutes (reduced
when the majority of the agents owns a car).

4.1 Comparison with State-of-the-Art
Figure 2 shows the runtime needed by our approach to com-
pute a kernel-stable payoff vector, comparing it with the
state-of-the-art approach by Shehory and Kraus [16], i.e., Al-
gorithm 1. In particular, we consider the runtime needed to
solve random instances with n ∈ {30, 40, 50, 60, 70, 80, 90, 100}
and |D| = 50%,8 with 20 repetitions for each n. To ensure a
fair comparison, both algorithms have been run on the same
set of instances. Moreover, for this comparison we employ
the serial version of PRF, since Algorithm 1 is serial.

Our results show that PRF is at least one order of magni-
tude faster, outperforming the state-of-the-art by 27 times
in the worst case, with an average improvement of 53 times,
and a best case improvement of 84 times. Thus, our com-
parison has been run only up to n = 100, since the latter
approach becomes impractical for instances with thousands
of agents. In fact, with 1000 agents it requires over one day of
computation, compared to a runtime of 2 hours required by
PRF, and 14 minutes required by P-PRF. In particular, the
approach proposed by Shehory and Kraus [16] is slower since
it makes several redundant computations of many coalitional
values, resulting in a significant impact on its runtime.

30 40 50 60 70 80 90 100
10−2

10−1

100

101

102

103

Number of agents

R
u
n
ti

m
e

(s
)

PRF

Shehory and Kraus approach

Figure 2: Runtime needed to compute payments.

8We benchmark both approaches in the most difficult sce-
nario, i.e., the one with the largest search space. This is an
intrinsic property of the instances, ensuring the fairness of
our comparison.

144

4.2 Parallel Performance
Here we analyse the speed-up that can be achieved by us-

ing P-PRF w.r.t. PRF, i.e., its serial version. We ran the

algorithms on 20 random instances with 500 agents and

|D| = 50%, using a machine with 2 Intel R© Xeon R© E5-2420.

For a fair comparison, both algorithms have been run on

the same set of instances. The speed-up measured during

these tests has been compared with the maximum theoret-

ical one provided by Amdahl’s Law [1], considering an es-

timated non-parallelisable part of 1%, due to memory allo-

cation and thread initialisation. Our experiments show that

the actual speed-up follows the theoretical one for up to 12

threads (i.e., the number of physical cores for this machine),

reaching a final speed-up of 14.85 with all 24 threads active.

4 6 8 10 12 14 16 18 20 22 24

2

4

6

8

10

12

14

16

18

20

Number of threads

S
p

ee
d
-u

p

Amdahl’s Law (1% serial)

P-PRF

Figure 3: Multi-threading speed-up.

4.3 Costs and Network Centrality
The purpose of this section is to analyse the relationship

between the cost incurred by a commuter and its importance

in the environment, i.e., being a node with a high degree in

the social network, or being driver or rider. To this end,

we first compute the optimal solution of the SR problem

on random instances with n ∈ {30, 40, 50, 60, 70, 80, 90, 100}
and |D| ∈ {10%, 50%, 80%}, with 20 repetitions for each

pair of parameters, and we use our algorithm to compute a

kernel-stable payoff vector. Then, to assess this correlation

in a quantified manner, we define the normalised cost ci and

the normalised degree di for each agent ai as follows:

• For any agent ai in a coalition C with |C| > 1, we

define its normalised cost ci as

ci =
|xi| −minC|x|

maxC|x|−minC|x|
,

where minC|x| and maxC|x| are the minimum and the

maximum values of |xi| among the members of C. Note

that we consider the absolute value of xi since in our

model, costs are represented by negative values for xi.

• For any agent ai in a coalition C with |C| > 1, we

define its normalised degree di as

di =
deg(ai)−minCd
maxCd −minCd

,

where deg(ai) represents the degree of ai in the social

network, and minCd and maxCd are the minimum and

the maximum degrees among the members of C.

When the denominator of ci is 0, i.e, when maxC|x| = minC|x|,

it means that all the agents in C have the same payoff. In

these cases, ci is defined to be 0.5 as a middle point between

0 and 1 (the same discussion applies to di).

Notice that, a direct comparison of the agents with respect

to payments would not be appropriate for determining their

overall power or benefits derived from participation in the

SR setting. Nonetheless, it would definitely be interesting to

have a way to measure and compare the power of the agents,

regardless of the coalition to which each one belongs. To al-

low this comparison, both ci and di are normalised between

0 (for the agents having the minimum costs/degrees in their

coalitions) and 1 (similarly for the agents with maximum

costs/degrees). The normalisation is done with respect to

the coalition the agent belongs to because to reach kernel-

stability, payment transfers only take place among agents

within the same coalition. Finally, note that agents in sin-

gletons have been excluded from this analysis, as they do

not have to split their coalitional value.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Normalised degree

N
o
rm

a
li
se

d
co

st

Drivers

Riders

Figure 4: Normalised cost w.r.t. normalised degree.

In Figure 4 we report the average and the standard error

of the mean for the normalised cost w.r.t. the normalised

degree. Our results clearly show that costs are strongly in-

fluenced by the degree of the agents, and whether they are

drivers or riders. Specifically, in our tests drivers had to pay

costs that were on average 16% lower than riders. Moreover,

agents with the minimum number of social connections in

their coalition (i.e., with a normalised degree of 0) paid a

cost 171% higher than the ones with the highest degree.

145

These findings allow us to discuss two interesting proper-
ties of our approach. On the one hand, our payment scheme
incentivises commuters to be drivers, which is of utmost
importance in SR scenarios with selfish rational agents. In
fact, a rational user would not accept to join a ridesharing
system as a driver (which requires her to deviate from the
shortest path between its source and its destination, and to
share its car with other people) without being appropriately
rewarded for its service.

On the other hand, the social aspect of our ridesharing
model introduces an additional degree of freedom that can
be exploited by commuters to influence the distribution of
payments. In fact, the more social connections they have,
the more coalitions they can potentially join, the more bar-
gaining power they obtain. Moreover, note that this fact is
important for commuters that cannot choose to be drivers
(e.g., they do not own a car), as it enables them to improve
their payments by establishing new social relationships.

5. CONCLUSIONS
We perform recommendations for SR scenarios, developing
a novel algorithm, PRF (Paying for Rides with Friends), to
compute fair payments for large-scale systems. PRF can be
used in conjunction with Bistaffa et al.’s approach to provide
recommendations for the optimal groups to form, and also
to define fair, stable costs that commuters should pay as
a compensation for their rides. PRF avoids any redundancy
by exploiting the structure of the social graph. Moreover, we
parallelise PRF achieving a speed-up close to the maximum
theoretical one. Our tests, based on real dataset for both
spatial and social data, shows that our approach is up to 84
times faster than the state-of-the-art, allowing us to compute
fair payments for 2000 agents in less than an hour. Finally,
we identify a relationship between the ability of an agent to
obtain a high payment and its degree in the social graph.

Future work will focus on studying the quality guarantees
of payments when using approximate solutions (which have
not been studied yet) and will aim to extend our parallel
approach to different multi-threading models (e.g., General-
Purpose Graphics Processing Units).

6. ACKNOWLEDGMENTS
This work was carried out as part of the ORCHID project
funded by EPSRC (EP/I011587/1). We also acknowledge
funding from the EPSRC-funded International Centre for
Infrastructure Futures (ICIF) (EP/K012347/1).

References
[1] G. M. Amdahl. “Validity of the Single Processor

Approach to Achieving Large Scale Computing
Capabilities”. In: Spring Joint Computer Conference.
1967, pp. 483–485.

[2] F. Bistaffa, A. Farinelli, J. Cerquides,
J. Rodŕıguez-Aguilar, and S. D. Ramchurn. “Anytime
Coalition Structure Generation on Synergy Graphs”.
In: AAMAS. 2014, pp. 13–20.

[3] F. Bistaffa, A. Farinelli, and S. D. Ramchurn.
“Sharing Rides with Friends: a Coalition Formation
Algorithm for Ridesharing”. In: AAAI. 2015,
pp. 608–614.

[4] G. Chalkiadakis, E. Markakis, and N. R. Jennings.
“Coalitional stability in structured environments”. In:
AAMAS. 2012, pp. 779–786.

[5] G. Chalkiadakis, E. Elkind, and M. Wooldridge.
Computational Aspects of Cooperative Game Theory.
Synthesis Lectures on Artificial Intelligence and
Machine Learning. 2011.

[6] M. Davis and M. Maschler. “The kernel of a
cooperative game”. In: Naval Research Logistics
Quarterly 12.3 (1965), pp. 223–259.

[7] G. Greco, E. Malizia, L. Palopoli, and F. Scarcello.
“On the complexity of the core over coalition
structures”. In: IJCAI. 2011, pp. 216–221.

[8] E. Kamar and E. Horvitz. “Collaboration and Shared
Plans in the Open World: Studies of Ridesharing”.
In: IJCAI. 2009, pp. 187–194.

[9] A. Kleiner, B. Nebel, and V. A. Ziparo. “A
mechanism for dynamic ride sharing based on parallel
auctions”. In: IJCAI. Vol. 11. 2011, pp. 266–272.

[10] M. Klusch and O. Shehory. “A Polynomial
Kernel-Oriented Coalition Algorithm for Rational
Information Agents”. In: International Conference on
Multi-Agent Systems. 1996.

[11] H. Kwak, C. Lee, H. Park, and S. Moon. “What is
Twitter, a Social Network or a News Media?” In:
WWW. 2010, pp. 591–600.

[12] J. K. Lenstra and A. Kan. “Complexity of vehicle
routing and scheduling problems”. In: Networks 11.2
(1981), pp. 221–227.

[13] R. B. Myerson. Game Theory: Analysis of Conflict.
Harvard University Press, 1997.

[14] A. Papadimitriou, P. Symeonidis, and
Y. Manolopoulos. “Geo-social recommendations”. In:
RecSys 2011 Workshop on PeMA. 2011.

[15] T. Sandholm, K. Larson, M. Andersson, O. Shehory,
and F. Tohmé. “Coalition structure generation with
worst case guarantees”. In: AIJ 111.1 (1999),
pp. 209–238.

[16] O. Shehory and S. Kraus. “Feasible Formation of
Coalitions Among Autonomous Agents in
Non-Super-Additive Environments”. In:
Computational Intelligence 15.3 (1999).

[17] R. E. Stearns. “Convergent Transfer Schemes for
N -Person Games”. In: Transactions of the American
Mathematical Society 134.3 (1968), pp. 449–459.

[18] T. Voice, S. Ramchurn, and N. Jennings. “On
coalition formation with sparse synergies”. In:
AAMAS. 2012, pp. 223–230.

[19] X. Yang, H. Steck, Y. Guo, and Y. Liu. “On top-k
recommendation using social networks”. In: RecSys.
2012, pp. 67–74.

[20] N. J. Yuan, Y. Zheng, L. Zhang, and X. Xie.
“T-finder: A recommender system for finding
passengers and vacant taxis”. In: TKDE 25.10
(2013), pp. 2390–2403.

[21] X. Zheng, X. Liang, and K. Xu. “Where to Wait for a
Taxi?” In: ACM SIGKDD International Workshop on
Urban Computing. 2012, pp. 149–156.

[22] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. “Mining
interesting locations and travel sequences from GPS
trajectories”. In: WWW. 2009, pp. 791–800.

146

