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Capabilities of Near-Term Quantum Devices 

1. As a discrete optimization solver: Potential applications: 
- planning
- scheduling 
- fault diagnosis 
- graph analysis 
- communication networks, etc.

QUBO: Quadratic Unconstrained 
Binary Optimization 
(Ising model in physics jargon).

NP-hard 
problem

⇠(s1, ..., sN ) =
NX

j=1

hjsj +
NX

i,j2E

Jijsisj

Given {hj, Jij}, find {sk = ± 1}
that minimizes 

0. Simulation of quantum systems

Otterbach et al. arXiv:1712.05771.

Example QAOA (Rigetti)Quantum annealing (D-wave)



2a. As a physical device to sample from Boltzmann-like distributions:

Computationally 
bottleneckPBoltzman / exp[�⇠(s1, ..., sN )/Teff ]

Widely used in 
generative
unsupervised 
learning Visible units

Hidden units
RBM

Potential applications: 
- machine leaning (e.g., training 

of deep-learning networks)

Example: Quantum annealing

Capabilities of Near-Term Quantum Devices 

2b. Sampling from more broader quantum distributions

1
34
2

1
2

3 4
1
2

3 4

BAS patterns Non-BAS pattern

1

34

2

Q1 Q2

Q3 Q4

1
2

3 4

1

34

2

Examples for training probabilistic graphical models:
Benedetti, et al. Phys. Rev. A 94, 022308 (2016); Benedetti, et al. Phys. Rev. X 7, 041052 (2017).

Benedetti et al. A generative modeling approach for benchmarking and training shallow quantum circuits. npj QI, 5, 45 (2019).



Motivation

o What are data sets and (non-obvious) real-world applications in need of quantum 
resources from NISQ devices?

• Combinatorial optimization?

Lattice protein folding

Fault diagnosis Applications
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- Perdomo-Ortiz et al. arXiv:1503.01083 
(2015)

- Perdomo-Ortiz et al. Eur. Phys. J. Spec. 
Topics. 224, 131-148 (2015).

- Perdomo-Ortiz et al. arXiv:1708.09780
(2017). Accepted in Phys. Rev. Applied.

- O’Gorman, et al. Eur. Phys. J. Spec. 
Topics. 224, 163- 188 (2015)

Bayesian networksProtein Folding

Solar Flare prediction

- Kassal, et al.  Ann. Rev.Phys. 
Chem. 62, 185-207 (2011). 

- Perdomo-Ortiz et al. Sci. 
Rep., 2, 571, (2012).

- Perdomo-Ortiz et al. Phys. 
Rev. A. 78(1):012320 (2008).



o Are there data sets and (non-obvious) real-world applications in need of quantum 
resources from NISQ devices?

• Combinatorial optimization? Machine learning? 

Perspective: Perdomo-Ortiz, et al. Opportunities and Challenges in Quantum-Assisted
Machine Learning in Near-term Quantum Computers. Quantum Sci. Technol. 3,
030502 (2018). Invited special issue on “What would you do with a 1000 qubit?”

Motivation/Outline



o Are there data sets and (non-obvious) real-world applications in need of quantum 
resources from NISQ devices?

• Combinatorial optimization? Machine learning? 

o Why and where to look for quantum advantage in quantum-assisted ML, with NISQ 
devices?

o Know your hybrid quantum-classical pipeline: classical optimizers, circuit ansatz, etc.

o NISQ quantum models in a real-world setting: an example from a financial application.

Perspective: Perdomo-Ortiz, et al. Opportunities and Challenges in Quantum-Assisted
Machine Learning in Near-term Quantum Computers. Quantum Sci. Technol. 3,
030502 (2018). Invited special issue on “What would you do with a 1000 qubit?”

Motivation/Outline



Learning 
algorithm

MODEL

P ( Image )

DATASET

Unsupervised learning (generative models)

NO LABELS

Learn the “best” model distribution that 
can generate the same kind of data



Learning 
algorithm

MODEL

P ( Image )

LEARNED MODEL

P ( Image )

DATASET

Example application:
Image reconstruction

Damaged 
image

Unsupervised learning (generative models)

NO LABELS

Learn the “best” model distribution that 
can generate the same kind of data

Reconstructed 
image



Learning 
algorithm

MODEL

P ( Label | Image )

LEARNED MODEL

P ( Label | Image )

Supervised learning (discriminative models)

Learn the “best” model that can perform a 
specific task

Example application:
Image recognition

Predicted label

Image to be 
recognized

61

26624           98             66             175

Labels

DATASET



“Unsupervised learning [... has] been overshadowed by the successes of purely supervised
learning. [... We] expect unsupervised learning to become far more important in the longer
term. Human and animal learning is largely unsupervised: we discover the structure of the world
by observing it, not by being told the name of every object.”

LeCun, Bengio, Hinton, Deep Learning, Nature 2015

A near-term approach for quantum-enhanced machine learning 

Insight 1: Work on intractable problems  of interest to ML experts (e.g., generative 
models in unsupervised learning). Quantum advantage in near term.

Perdomo-Ortiz, Benedetti, Realpe-Gomez, Biswas. Quantum Sci. Technol. 3, 030502 (2018). 



“In the context of the deep learning approach to undirected modeling, it is rare to use any 
approach other than Gibbs sampling. Improved sampling techniques are one possible research 
frontier.”

Goodfellow, Bengio, Courville, Deep Learning, book in preparation for MIT Press, 2016

A near-term approach for quantum-enhanced machine learning 

Insight 1: Work on intractable problems  of interest to ML experts (e.g., generative 
models in unsupervised learning). Quantum advantage in near term.

Perdomo-Ortiz, Benedetti, Realpe-Gomez, Biswas. Quantum Sci. Technol. 3, 030502 (2018). 



“Most of the previous work in generative models has focused on variants of Boltzmann
Machines [...] While these models are very powerful, each iteration of training requires a
computationally costly step of MCMC to approximate derivatives of an intractable partition
function (normalization constant), making it difficult to scale them to large datasets.”

Mansimov, Parisotto, Ba, Salakhutdinov, ICLR 2016

A near-term approach for quantum-enhanced machine learning 

Insight 1: Work on intractable problems  of interest to ML experts (e.g., generative 
models in unsupervised learning). Quantum advantage in near term.

Perdomo-Ortiz, Benedetti, Realpe-Gomez, Biswas. Quantum Sci. Technol. 3, 030502 (2018). 



A near-term approach for quantum-enhanced machine learning 

Insight 2: Focus on hybrid quantum-classical approaches. 
Cope with hardware constrains and available quantum resources

Perdomo-Ortiz, Benedetti, Realpe-Gomez, Biswas. Quantum Sci. Technol. 3, 030502 (2018). 



A near-term approach for quantum-enhanced machine learning 

Insight 2: Focus on hybrid quantum-classical approaches. 
Cope with hardware constrains and available quantum resources

PREDICTIONS

LEARNING

DATA

Stochastic gradient descent
HARD TO COMPUTE

Estimation assisted by sampling 
from quantum computer

Perdomo-Ortiz, Benedetti, Realpe-Gomez, Biswas. Quantum Sci. Technol. 3, 030502 (2018). 



A near-term approach for quantum-enhanced machine learning 

Insight 2: Focus on hybrid quantum-classical approaches. 
Cope with hardware constrains and available quantum resources

2. Benedetti, et al. Estimation of effective 
temperatures in quantum annealers for 
sampling applications: A case study with 
possible applications in deep learning. 
Phys. Rev. A 94, 022308 (2016).

Challenges solved:

1. Perdomo-Ortiz, et al. Opportunities and 
Challenges in Quantum-Assisted Machine 
Learning in Near-term Quantum Computers. 
Quantum Sci. Tecnol. 3, 030502 (2018). 

PREDICTIONS

LEARNING

DATA

Stochastic gradient descent



A near-term approach for quantum-enhanced machine learning 

Insight 2: Focus on hybrid quantum-classical approaches. 
Cope with hardware constrains and available quantum resources

3. Benedetti, et al. Quantum-assisted learning 
of hardware-embedded probabilistic graphical 
models. 
Phys. Rev. X 7, 041052 (2017).

2. Benedetti, et al. Estimation of effective 
temperatures in quantum annealers for 
sampling applications: A case study with 
possible applications in deep learning. 
Phys. Rev. A 94, 022308 (2016).

Challenges solved:

1. Perdomo-Ortiz, et al. Opportunities and 
Challenges in Quantum-Assisted Machine 
Learning in Near-term Quantum Computers. 
Quantum Sci. Tecnol. 3, 030502 (2018). 

PREDICTIONS

LEARNING

DATA

Stochastic gradient descent



A near-term approach for quantum-enhanced machine learning 

Insight 2: Focus on hybrid quantum-classical approaches. 
Cope with hardware constrains and available quantum resources

4. Benedetti, et al. Quantum-assisted Helmholtz 
machines: A quantum-classical deep learning 
framework for industrial datasets in near-term 
devices. 
Quantum Sci. Technol. 3, 034007 (2018).

PREDICTIONS

LEARNING

DATA

Stochastic gradient descent

3. Benedetti, et al. Quantum-assisted learning 
of hardware-embedded probabilistic graphical 
models. 
Phys. Rev. X 7, 041052 (2017).

2. Benedetti, et al. Estimation of effective 
temperatures in quantum annealers for 
sampling applications: A case study with 
possible applications in deep learning. 
Phys. Rev. A 94, 022308 (2016).

Challenges solved:

1. Perdomo-Ortiz, et al. Opportunities and 
Challenges in Quantum-Assisted Machine 
Learning in Near-term Quantum Computers. 
Quantum Sci. Tecnol. 3, 030502 (2018). 



A near-term approach for quantum-enhanced machine learning 

Insight 2: Focus on hybrid quantum-classical approaches.
Cope with hardware constrains and available quantum resources

Challenges solved:

6. Zhu et al. Training of Quantum Circuits on a 
Hybrid Quantum Computing. 
arXiv:1812.08862 (2018).

7. Leyton-Ortega, et al. Robust Implementation 
of Generative Modeling with Parametrized 
Quantum Circuits. 
arXiv:1901.08047 (2019).

8. Leyton-Ortega, et al. Benchmarking 
Optimizers for Hybrid Quantum-Classical 
Algorithms. 
To appear soon in arXiv.

5. Benedetti, et al. A generative modeling 
approach for benchmarking and training 
shallow quantum circuits. 
npj QI, 5, 45 (2019).

9. Alcazar et al. Classical versus Quantum Models 
in ML: Insights from a Finance Application. 
arXiv:To appear soon in arXiv.

PREDICTIONS

LEARNING

DATA

Stochastic gradient descent



Unsupervised generative modeling with NISQ devices

QCBMs: Benedetti, Garcia-Pintos, Perdomo, Leyton-Ortega, Nam, and Perdomo-Ortiz. A generative modeling 
approach for benchmarking and training shallow quantum circuits. npj QI, 5, 45 (2019).
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Quantum Circuit Born machines (QCBM)

Max Born (1882-1970)

Generative modeling with NISQ devices, beyond Boltzmann

Ludwig Boltzmann (1844-1906)

Boltzmann machines

PBoltzman / exp[�⇠(s1, ..., sN )/Teff ]
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Max Born (1882-1970)Ludwig Boltzmann (1844-1906)

Boltzmann machines Born machines

Tensor networks: Chen, Chen, Wang. arXiv:1712.04144.PBoltzman / exp[�⇠(s1, ..., sN )/Teff ]
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Unsupervised generative modeling with NISQ devices



Generative Model .us .
-
-

Dataset
-

i

q Tei ) f
,
?
,

D samples - the t
are i id - from pcb

f
daba dist .

Find flir lol =p → learning
G

Bultmann Machines -7 Bms )
-

-

Energy PGM .

.

. .
.)

o
i'" = su: 'm

'
. - -
v

3.or
'

I
= visible units

← hi ECT , iii.54 = I hivit?jSij%ihis O
ya u; I i

•
T.im ' ii ±ufairy = e-

Ec lots

-

2-Col .-z→e-EcEioy↳Z#



Restricted Bo Ittmean Machine (Rpm)
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