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Capabilities of Near-Term Quantum Devices

0. Simulation of quantum systems

1. As a discrete optimization solver:

Given {h;, J;}, find {s, =+ 1} NP-hard
that minimizes problem

£(51,...,SN) = Zh 55 + Z Jij5i5;
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Potential applications:

planning

scheduling

fault diagnosis

graph analysis
communication networks, efc.

QUBO: Quadratic Unconstrained
Binary Optimization
(Ising model in physics jargon).

Quantum annealing (D-wave) Example QAOA (Rigetti)

Otterbach et al. arXiv:1712.05771.



Capabilities of Near-Term Quantum Devices

2a. As a physical device to sample from Boltzmann-like distributions:

PBoltzman X €$p[—§(81, e SN)/Teff] — Corl?tftt:ltear:fcnka"y

Example: Quantum annealing

Widely used in
generative
unsupervised
learning

Potential applications:
- machine leaning (e.qg., training
of deep-learning networks)

Examples for training probabilistic graphical models:
Benedetti, et al. Phys. Rev. A 94, 022308 (2016); Benedetti, et al. Phys. Rev. X 7, 041052 (2017).

2b. Sampling from more broader quantum distributions

BAS patterns Non-BAS pattern

M il
mil I

Benedetti et al. A generative modeling approach for benchmarking and training shallow quantum circuits. npj Ql, 5, 45 (2019).




Motivation

o What are data sets and (non-obvious) real-world applications in need of quantum
resources from NISQ devices?

 Combinatorial optimization?

Protein Folding

Lattice protein folding

- Perdomo-Ortiz et al. Phys.
Rev. A. 78(1):012320 (2008).

- Perdomo-Ortiz et al. Sci.
Rep., 2, 571, (2012).

- Kassal, et al. Ann. Rev.Phys.

Chem. 62, 185-207 (2011).

Bayesian networks

Solar Flare prediction

- O’Gorman, et al. Eur. Phys. J. Spec.

Topics. 224, 163- 188 (2015)

Fault diagnosis Applications
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- Perdomo-Ortiz et al. arXiv:1503.01083
(2015)

- Perdomo-Ortiz et al. Eur. Phys. J. Spec.
Topics. 224, 131-148 (2015).

- Perdomo-Ortiz et al. arXiv:1708.09780
(2017). Accepted in Phys. Rev. Applied.



Motivation/Outline

o Are there data sets and (non-obvious) real-world applications in need of quantum
resources from NISQ devices?

Combinatorial optimization? Machine learning?

Perspective: Perdomo-Ortiz, et al. Opportunities and Challenges in Quantum-Assisted
Machine Learning in Near-term Quantum Computers. Quantum Sci. Technol. 3,
030502 (2018). Invited special issue on “What would you do with a 1000 qubit?”



Motivation/Outline

o Are there data sets and (non-obvious) real-world applications in need of quantum
resources from NISQ devices?

 Combinatorial optimization? Machine learning?

Perspective: Perdomo-Ortiz, et al. Opportunities and Challenges in Quantum-Assisted
Machine Learning in Near-term Quantum Computers. Quantum Sci. Technol. 3,
030502 (2018). Invited special issue on “What would you do with a 1000 qubit?”

o Why and where to look for guantum advantage in quantum-assisted ML, with NISQ
devices?

o Know your hybrid quantum-classical pipeline: classical optimizers, circuit ansatz, etc.

o NISQ quantum models in a real-world setting: an example from a financial application.



Unsupervised learning (generative models)

Learn the “best” model distribution that
can generate the same kind of data
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Unsupervised learning (generative models)
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Example application:
Image reconstruction
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Supervised learning (discriminative models)

Learn the “best” model that can perform a Example application:
specific task Image recognition
MODEL Predicted label
P ( Label | Image)
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A near-term approach for quantum-enhanced machine learning

Insight 1: Work on intractable problems of interest to ML experts (e.g., generative
models in unsupervised learning). Quantum advantage in near term.

“Unsupervised learning [... has] been overshadowed by the successes of purely supervised
learning. [... We] expect unsupervised learning to become far more important in the longer
term. Human and animal learning is largely unsupervised: we discover the structure of the world

by observing it, not by being told the name of every object.”

LeCun, Bengio, Hinton, Deep Learning, Nature 2015

Perdomo-Ortiz, Benedetti, Realpe-Gomez, Biswas. Quantum Sci. Technol. 3, 030502 (2018).



A near-term approach for quantum-enhanced machine learning

Insight 1: Work on intractable problems of interest to ML experts (e.g., generative
models in unsupervised learning). Quantum advantage in near term.

“In the context of the deep learning approach to undirected modeling, it is rare to use any
approach other than Gibbs sampling. Improved sampling techniques are one possible research

frontier.”
Goodfellow, Bengio, Courville, Deep Learning, book in preparation for MIT Press, 2016

Perdomo-Ortiz, Benedetti, Realpe-Gomez, Biswas. Quantum Sci. Technol. 3, 030502 (2018).



A near-term approach for quantum-enhanced machine learning

Insight 1: Work on intractable problems of interest to ML experts (e.g., generative
models in unsupervised learning). Quantum advantage in near term.

“Most of the previous work in generative models has focused on variants of Boltzmann
Machines [...] While these models are very powerful, each iteration of training requires a
computationally costly step of MCMC to approximate derivatives of an intractable partition
function (normalization constant), making it difficult to scale them to large datasets.”

Mansimov, Parisotto, Ba, Salakhutdinov, ICLR 2016

Perdomo-Ortiz, Benedetti, Realpe-Gomez, Biswas. Quantum Sci. Technol. 3, 030502 (2018).



A near-term approach for quantum-enhanced machine learning

Insight 2: Focus on hybrid quantum-classical approaches.
Cope with hardware constrains and available quantum resources

Perdomo-Ortiz, Benedetti, Realpe-Gomez, Biswas. Quantum Sci. Technol. 3, 030502 (2018).



A near-term approach for quantum-enhanced machine learning

Insight 2: Focus on hybrid quantum-classical approaches.
Cope with hardware constrains and available quantum resources
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Perdomo-Ortiz, Benedetti, Realpe-Gomez, Biswas. Quantum Sci. Technol. 3, 030502 (2018).



A near-term approach for quantum-enhanced machine learning

Insight 2: Focus on hybrid quantum-classical approaches.
Cope with hardware constrains and available quantum resources

Challenges solved:

1. Perdomo-Ortiz, et al. Opportunities and
Challenges in Quantum-Assisted Machine
Learning in Near-term Quantum Computers.
Quantum Sci. Tecnol. 3, 030502 (2018).

PREDICTIONS
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temperatures in quantum annealers for
sampling applications: A case study with
possible applications in deep learning.
Phys. Rev. A 94, 022308 (2016).
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A near-term approach for quantum-enhanced machine learning

Insight 2: Focus on hybrid quantum-classical approaches.
Cope with hardware constrains and available quantum resources
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Ot = 0f 4 |G[P(s|0")

\ j I 3. Benedetti, et al. Quantum-assisted learning |
______________ : of hardware-embedded probabilistic graphical |
| models. |
| Phys. Rev. X 7, 041052 (2017). :
N—

I

I
bAoA |\ - - -/ 77777777777 =-==-=




A near-term approach for quantum-enhanced machine learning

Insight 2: Focus on hybrid quantum-classical approaches.
Cope with hardware constrains and available quantum resources
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Challenges solved:

1. Perdomo-Ortiz, et al. Opportunities and
Challenges in Quantum-Assisted Machine
Learning in Near-term Quantum Computers.
Quantum Sci. Tecnol. 3, 030502 (2018).

2. Benedetti, et al. Estimation of effective
temperatures in quantum annealers for
sampling applications: A case study with
possible applications in deep learning.
Phys. Rev. A 94, 022308 (2016).

3. Benedetti, et al. Quantum-assisted learning
of hardware-embedded probabilistic graphical
models.

Phys. Rev. X 7, 041052 (2017).

I
I 4. Benedetti, et al. Quantum-assisted Helmholtz |
' machines: A quantum-classical deep learning |
I framework for industrial datasets in near-term |

devices. |

| Quantum Sci. Technol. 3, 034007 (2018). :




A near-term approach for quantum-enhanced machine learning

Insight 2: Focus on hybrid quantum-classical approaches.
Cope with hardware constrains and available quantum resources
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Challenges solved:

5. Benedetti, et al. A generative modeling
approach for benchmarking and training
shallow quantum circuits.

npj Ql, 5,45 (2019).

6. Zhu et al. Training of Quantum Circuits on a
Hybrid Quantum Computing.
arXiv:1812.08862 (2018,).

7. Leyton-Ortega, et al. Robust Implementation
of Generative Modeling with Parametrized
Quantum Circuits.

arXiv:1901.08047 (2019).

8. Leyton-Ortega, et al. Benchmarking
Optimizers for Hybrid Quantum-Classical
Algorithms.

To appear soon in arXiv.

9. Alcazar et al. Classical versus Quantum Models
in ML: Insights from a Finance Application.
arXiv:To appear soon in arXiv.



Unsupervised generative modeling with NISQ devices
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Ludwig Boltzmann (1844-1906)

Boltzmann machines Quantum Circuit Born machines (QCBM)  Po(x) = |(x]:(8))[>.

Ppottzman < exp[—=E(s1; ., 58)/Tef ] Generative modeling with NISQ devices, beyond Boltzmann

QCBMs: Benedetti, Garcia-Pintos, Perdomo, Leyton-Ortega, Nam, and Perdomo-Ortiz. A generative modeling
approach for benchmarking and training shallow quantum circuits. npj Ql, 5, 45 (2019).



Unsupervised generative modeling with NISQ devices
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Ludwig Boltzmann (1844-1906)

Boltzmann machines Born machines  Pa(x) = |(x[1)(8)) 2.

PBottzman < exp[=&(s1, .., 8n)/Tesy] Tensor networks: Chen, Chen, Wang. arXiv:1712.04144.
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