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Fibonacci Anyons Basics

3. The “fusion” rule for combining q-spin is:     1 x 1  =  0 + 1

This means that two Fibonacci anyons can have total q-spin 0 or 1, 
or be in any quantum superposition of these two states.
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Fibonacci Anyon Basics

For N Fibonacci anyons Hilbert space dimension is Fib(N-1)
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The F Matrix
The F Matrix
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The R MatrixThe R Matrix
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Exchanging Particles:

F and R must satisfy certain consistency 
conditions (the “pentagon” and 
“hexagon” equations).  For Fibonacci 
anyons these equations uniquely 
determine F and R.
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Simulating Quantum Circuits with Braids

A universal set of quantum gates acting on qubits encoded using
triplets of Fibonacci anyons can be built entirely out of three stranded
braids.

These three-braids can then be efficiently compiled and improved to
any required accuracy using the Solovay-Kitaev algorithm.

1. Topological Quantum Compiling , L. Hormozi, G. Zikos and N. Bonesteel, Phy. Rev.
Lett. B 75, 165310 — 2007.

2. Topological Quantum Compiling , S. Simon, N. Bonesteel, M. Freedman, N. Petrovic

and L. Hormozi Phy. Rev. Lett. 96, 070503 — 2006.
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Simulating Braids with Quantum Circuits
The Hilbert space on n anyons of total charge 1 does not have a
natural decomposition into a tensor product of subsystems:

V 1
τ ...τ =

⊕

b1,b2...bn−2

V b1
ττ ⊗ V b2

b1τ
⊗ . . .⊗ V

bn−2

bn−3τ
⊗ V 1

bn−2τ

=
⊕

b1,b2...bn−2

V b1
ττ ⊗ V b2

b1τ
⊗ . . .⊗ V

bn−2

bn−3τ

Recall:
dim(V 1

τ...τ ) = Fn (Fibonacci number).

How to map anyons to qubits

How to implement braiding in the qubit space

How to measure fusion outcomes in the qubit basis.
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Encoding

The vector space (aka fusion space) of n anyons is the sum of
n−2 subspaces V b

aτ ,

each included in Hd with d =
∑

c,e N
e
cτ .

Thus n−2 qudit can encode a n-anyon state.

For Fibonacci anyons

Hd is spanned by {|ττ ; 1〉 , |ττ ; τ〉 , |1τ ; τ〉}
Hence d = 3

Thus we need n−2 qutrit or m = d3(n − 1)/2e qubit.
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Braiding
In the anyon standard basis braiding is completely determined by the
B-matrix

Simulating Anyons with Quantum Circuits

Now I will show that the topological and non-topological models of quantum
computation are in fact equally powerful by illuminating how to simulate anyons
with quantum circuits. The argument is a modified version of the proof in
Preskill (2004) (which itself is inspired by Freedman et al. (2002a)).

The mapping of anyons to qubits is a little less obvious than the other way
round, since the topological Hilbert space of n anyons of total charge 1 (the
total topological charge has to be 1 since all anyons are created in pairs from
vacuum)

V 1
⌧...⌧ ⌘

M

b1,b2,...,bn�2

V b1
⌧⌧ ⌦ V b2

b1⌧
⌦ ... ⌦ V

bn�2

bn�3⌧
⌦ V 1

bn�2⌧

=
M

b1,b2,...,bn�3

V b1
⌧⌧ ⌦ V b2

b1⌧
⌦ ... ⌦ V

bn�2=⌧
bn�3⌧

, (56)

does not have a natural decomposition into a tensor product of subsystems.
This is apparent e.g. from the dimension of this space,

dim
�
V 1
⌧...⌧

�
= Fn / �n for large n (57)

which assigns an irrational dimension (the golden ration � = (1+
p

5)/2 ⇡ 1.618)
to each anyon. The task will be to explain a mapping of anyons to qubits, to
show how braiding can be implemented in the qubit space, and to get an idea
of how fusion outcomes can be measured in the qubit basis.

Encoding The braiding operation acting on the topological Hilbert space in eq.
56 swaps around labels, but does not change the general structure of the vector
space. Each summand in eq. 56 consists of n � 2 fusion spaces

V b
a⌧ 2

O

c,d

V d
c⌧ ⌘ Hd, (58)

so that for each summand from eq. 56
⇣
V b1
⌧⌧ ⌦ V b2

b1⌧
⌦ ... ⌦ V ⌧

bn�3⌧

⌘
2 (Hd)

⌦(n�2)
. (59)

The dimension of Hd is given by

d =
X

c,d

Nd
c⌧ . (60)

Thus n � 2 d-qudits can encode an n-anyon state. For Fibonacci anyons, Hd is
spanned by {|⌧⌧ ;1i , |⌧⌧ ; ⌧i , |1⌧ ; ⌧i}, so d = 3. (A change to an m-qubit system
is easily done via C2dd(n�2)/2e = C2m, i.e. m = dd(n � 2)/2e, but the qudit
representation is more convenient for now.)

Braiding The e↵ect of braiding in the anyon standard basis is completely de-
termined by the B-matrix:

a ⌧

b

⌧

c
=
X

d

�
Bb

a⌧⌧

�d
c

·

a ⌧

b

⌧

d

20
i.e., explicitly,

|aτ ; c〉 |cτ ; b〉 =
∑

d

(Bb
aττ )dc |aτ ; d〉 |dτ ; b〉

with |aτ ; c〉 |cτ ; b〉 ∈ Hd ⊗Hd and |aτ ; d〉 |dτ ; b〉 ∈ Hd ⊗Hd .
Thus braiding can be implemented as a d2 × d2 unitary matrix

B : Hd ⊗Hd = Cd2 → Cd2
.
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with |aτ ; c〉 |cτ ; b〉 ∈ Hd ⊗Hd and |aτ ; d〉 |dτ ; b〉 ∈ Hd ⊗Hd .
Thus braiding can be implemented as a d2 × d2 unitary matrix

B : Hd ⊗Hd = Cd2 → Cd2
.
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M
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bn�2=⌧
bn�3⌧

, (56)

does not have a natural decomposition into a tensor product of subsystems.
This is apparent e.g. from the dimension of this space,

dim
�
V 1
⌧...⌧

�
= Fn / �n for large n (57)

which assigns an irrational dimension (the golden ration � = (1+
p

5)/2 ⇡ 1.618)
to each anyon. The task will be to explain a mapping of anyons to qubits, to
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V b
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O

c,d

V d
c⌧ ⌘ Hd, (58)

so that for each summand from eq. 56
⇣
V b1
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⌘
2 (Hd)

⌦(n�2)
. (59)

The dimension of Hd is given by

d =
X

c,d

Nd
c⌧ . (60)

Thus n � 2 d-qudits can encode an n-anyon state. For Fibonacci anyons, Hd is
spanned by {|⌧⌧ ;1i , |⌧⌧ ; ⌧i , |1⌧ ; ⌧i}, so d = 3. (A change to an m-qubit system
is easily done via C2dd(n�2)/2e = C2m, i.e. m = dd(n � 2)/2e, but the qudit
representation is more convenient for now.)
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Fusion
We can calculate the outcome of fusing two anyons in the standard
basis by applying the F -matrix:

a ⌧

b

⌧

c
=

X
d

�
F b

a⌧⌧

�
d

c

·

a ⌧

b

⌧

d

X� �
d

|aτ ; c〉 |cτ ; b〉 =
∑

d

(F b
aττ )dc |ad ; b〉 |ττ ; d〉

= (F b
aττ )1c |a1; b〉 |ττ ; 1〉+ (F b

aττ )τc |aτ ; b〉 |ττ ; τ〉

Now we can perform a projective measurement on the second qubit in
the {|ττ ; 1〉 , |ττ ; τ〉} basis and sample the probabilities of getting 1
and τ .
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Open Questions

So far, among the experimentally observed systems, only
Fractional Quantum Hall systems are believed to possess
topological order.

Numerous other possibilities have been
discussed recently (cf. 1.)

How to control topological excitations, a crucial part of building
a topological quantum computer, also remains to be explored.

Topological Algorithms and Computational Architectures ?

1. Non-abelian anyons and topological quantum computation , C. Nayak, S. Simon, A.

Stern, M. Freedman and D. Sarma, Reviews of Modern Phy. 80(3): 1083 — 2008.
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Hymn to the Anyon
Anyon, anyon, where do you roam?
Braid for a while before you go home.

Though you’re condemned just to slide on a table,
A life in 2D also means that you’re able
To be of a type neither Fermi nor Bose
And to know left from right — that’s a kick, I suppose.

You and your buddy were made in a pair
Then wandered around, braiding here, braiding there.
You’ll fuse back together when braiding is through
Well bid you adieu as you vanish from view.
. . .
Anyon, anyon, where do you roam?
Braid for a while before you go home.

John Preskill
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