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Part I

@ Fibonacci Anyons

e Universality of TQC
@ Universality of TQC: Simulating QC with Braids
@ Universality of TQC: Simulating Braids with QC
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Models of Anyons
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A model of anyons is defined by specifying:
o A finite label set {a, b, c,...} representing anyon charges
@ The fusion rulesax b=> _NS,c
@ The F-matrix (expressing associativity of fusion)

e The R-matrix (braiding rules)
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Fusion

Fusion Rules express the interaction of two anyons:
a b

(/uzl’za 3s~-"Nabc) a b
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Fusion

Fusion Rules express the interaction of two anyons:
a b

(/u:1>2’ 3!"'>Nabc) a b
—o—0—

c c

F-matrix encodes the associativity of the fusion rules:

e b o | (axb)yxc=ax(bxc)
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Braiding Operator

Braiding Two neighboring anyons are exchanged
counterclockwise:

b Na a b 2 ( c ),u
—0—0— —0—0— =

U ba
C c ’ :u

5/ 20



UNIVERSITY OF VERONA

Department of Computer Science

Braiding Operator

Braiding Two neighboring anyons are exchanged

counterclockwise:

b Na a

A%
c

—“eo—o— | | —eo—o—

R-matrix Unitary matrix representing the swapping

/ 20



UNIVERSITY OF VERONA

Braiding Operator

Braiding Two neighboring anyons are exchanged

counterclockwise:
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b Na a

A%
c

—“eo—o— | | —eo—o—

R-matrix Unitary matrix representing the swapping

B-matrix Since two particles may have no direct fusion channel,
B is in general a composition of R and F matrices.
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Consider an abstract quantity, call it a topological charge.
Only two possible values:

@ 1 is the charge of the vacuum

@ 7 is the charge of any single Fibonacci anyon.

0el®1=1,
0l1lxr=71=r,

o TRT=16@T.
Thus for three charges:

0 TRTRT=2-7d1-1.
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Fibonacci Theory

Consider an abstract quantity, call it a topological charge.
Only two possible values:

@ 1 is the charge of the vacuum

@ 7 is the charge of any single Fibonacci anyon.

0el®1=1,
0l1lxr=71=r,

o TRT=16@T.
Thus for three charges:

0 TRTRT=2-7d1-1.

We need to specify the F-matrix and R-matrix.
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One particle in the vacuum:
The (enclosed) total charge is 7.

7/20



UNIVERSITY OF VERONA Department of Computer Science

Fibonacci Theory: Fusion Space

One particle in the vacuum:
The (enclosed) total charge is 7.

p
For two particles, we apply the
fusion rules. The resulting total
charge can be either 1 or 7.
= space dimension dim = 2

lort



UNIVERSITY OF VERONA Department of Computer Science

Fibonacci Theory: Fusion Space

One particle in the vacuum:
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Fibonacci Theory: Fusion Space

One particle in the vacuum:
The (enclosed) total charge is 7.

pn
For two particles, we apply the
fusion rules. The resulting total
charge can be either 1 or 7.
= space dimension dim = 2

lorr

o

+ B
1 T

Note: The storing of information is non-local!
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Fibonacci Theory: Fusion Space

What is the total charge resulting
from the fusion of three particles?

3-dimensional Hilbert space
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The F-matrix

a b b
T T
a=1,71 b=1,71
- [Foo F01]
Fio Fu1
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Base Change

The only two non trivial cases:

= Foof + Foi .
1 T T
p
=  Fuof . + Fuf .
T T T
T
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11 /20



'Y OF VERONA Department of Computer Science

Consistency of F

11 /20



UNIVERSITY OF VERONA Department of Computer Science

Consistency of F

11/20



UNIVERSITY OF VERONA Department of Computer Science

Consistency of F

How many different ways to go from one base to the other?
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The Pentagon Equation

The pentagon equation is obtained by imposing the condition that
the above diagram commutes.
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The Pentagon Equation

7N

The only non-trivial case is the one with five 7's at the outer edges.
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The Pentagon Equation

R

The only non-trivial case is the one with five 7's at the outer edges.
The explicit equation for Fibonacci anyons is:

(FIT)(FT)5 = (FyM)e(FT)E(F5™™)s
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The Pentagon Equation

The unique unitary solution (up to irrelevant phase factor) is the
unitary matrix (set b = ¢ = 1 and use unitarity):

1 ~1/2
F:[ S0—1/2 i —1] Where@:#
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The Pentagon Equation

The unique unitary solution (up to irrelevant phase factor) is the
unitary matrix (set b = ¢ = 1 and use unitarity):

—1 ~1/2
_ ¥ () . e
F= h the gold _ 16
12 /20 |: 1/2 _SO_I :| where @ 1S € golden mean ¢ 3
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The Pentagon Equation

Note that for any number n > 4 of particles, any base change can
always be reduced to paths on the diagram above and if the pentagon
equation is satisfied, then the computation is correct.
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consequence of the fusion rules of this model.
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Hilbert Space Dimensions

The dimension of the Hilbert space of n Fibonacci anyons is a
consequence of the fusion rules of this model.

Multifusion paths represented by the labelings of the fusion tree form
an orthonormal basis of the degenerate ground-state manifold.

T—>1—> T —1]1

NN

lI—>7—1—>7—1—7

@ Consider n T-anyons in the plane with total charge 7
@ Denote by F, the ground state degeneracy
@ Then F,.1 =F,+ F,_; (Fibonacci sequence).
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The R-matrix

Exchanging two anyons a and b in the plane can be done in two
non-topologically equivalent ways:
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Exchanging two anyons a and b in the plane can be done in two
non-topologically equivalent ways:

)\
( )

Ra,p refers to the process on the rhs.
Let Vca’b be the ground states of anyons a and b with total charge c.

b . . . b b
o If V2" is one-dimensional and e2"° € V2°°, then
a,b _ pb,a_b,a
R.ped” = R29e;
. . b.a . . .
@ In general d-dimensional spaces R:'? is a unitary matrix.
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The R-matrix

Exchanging two anyons a and b in the plane can be done in two
non-topologically equivalent ways:

)\
( )

Ra,p refers to the process on the rhs.
Let Vf’b be the ground states of anyons a and b with total charge c.

o If V2 is one-dimensional and e2? € V2P, then

a,b _ pb,a_b,a
R.ped” = R29e;

. . b.a . . .
@ In general d-dimensional spaces R:'? is a unitary matrix.
o R2? is not the inverse of RZ.
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The Hexagon Equation

The Hexagon equations enforce the condition that braiding is
compatible with fusion. The equations are obtained by imposing the
15, condition that the above diagram commutes.
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The Hexagon Equation

t?gﬂ“@\ig
oA

Explicit hexagon equation for Fibonacci anyons:

RET(FT)SRY™ = S (FI)sREP(FI™)?

b
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The Hexagon Equation

Only two solutions:

ei4m/5 0 :|

R= 0 e—i37r/5
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Braiding

In order to analyse computational models of anyons, the physical
realisation is not of primary importance.
All we need to know are some general properties:

@ What kind of anyons can occur in this theory? v/

@ What are the rules for creation/splitting and fusion? /
@ What is the effect of braiding? X

The answers to these questions define an anyon model or, more
technically, a Topological Field Theory in 2 + 1 dimensions as well as
a Unitary Topological Modular Functor.

1. Simulation of topological field theories by quantum computers, M. Freedman, A.
Kitaev and Z. Wang, Comm. in Math. Phy. 227(3): 587-603 — 2002.

2. A modular functor which is universal for quantum computation, M. Freedman, M.
Larsen and Z. Wang, Comm. in Math. Phy. 227(3): 605-622 — 2002.
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Universal Quantum Computation

Single Qubit Rotation

v) =

U.r- U&|z/;>

Controlled Not

Department of Computer Science

17/ 20

Any N qubit operation can be
carried out using these two gates.

al.M
L)
Aym
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The Solovay-Kitaev Theorem

A physical computer cannot perform all elementary operations in the
uncountable set of SU(2n).

18 /20



UNIVERSITY OF VERONA

Department of Computer Science

The Solovay-Kitaev Theorem

18 /20

A physical computer cannot perform all elementary operations in the
uncountable set of SU(2n).
Nevertheless, we can require that any operation in SU(2n) can be

approximated to arbitrary precision £ by some countable universal set
of operations.



UNIVERSITY OF VERONA

The Solovay-Kitaev Theorem

A physical computer cannot perform all elementary operations in the
uncountable set of SU(2n).

Nevertheless, we can require that any operation in SU(2n) can be
approximated to arbitrary precision £ by some countable universal set
of operations.

Theorem (Solovay-Kitaev)

Let G be a finite set of elements in SU(d) containing its own inverses,
and let € > 0 be the desired accuracy. If G is dense in SU(d), then
there exists a constant c s.t. for any U € SU(d) there exists a finite
sequence S of gates in G of length O(log®(L)) and with d(U, S) < e.
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Simulating Circuits with Fibonacci Anyons

—P

—P

o—e

What braid corresponds to this circuit?
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Simulating Braids with Quantum Circuits

14
1@

What circuit corresponds to this braid?

)
N

|

C.P
1
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