Topological Quantum Computation A very basic introductio

Alessandra Di Pierro
alessandra.dipierro@univr.it

Dipartimento di Informatica Università di Verona

PhD Course on Quantum Computing

Part II

(1) Fibonacci Anyons
(2) Universality of TQC

- Universality of TQC: Simulating QC with Braids
- Universality of TQC: Simulating Braids with QC

Models of Anyons

A model of anyons is defined by specifying:

Models of Anyons

A model of anyons is defined by specifying:

- A finite label set $\{a, b, c, \ldots\}$ representing anyon charges

Models of Anyons

A model of anyons is defined by specifying:

- A finite label set $\{a, b, c, \ldots\}$ representing anyon charges
- The fusion rules $a \times b=\sum_{c} N_{a b}^{c} c$

Models of Anyons

A model of anyons is defined by specifying:

- A finite label set $\{a, b, c, \ldots\}$ representing anyon charges
- The fusion rules $a \times b=\sum_{c} N_{a b}^{c} c$
- The F-matrix (expressing associativity of fusion)

Models of Anyons

A model of anyons is defined by specifying:

- A finite label set $\{a, b, c, \ldots\}$ representing anyon charges
- The fusion rules $a \times b=\sum_{c} N_{a b}^{c} c$
- The F-matrix (expressing associativity of fusion)
- The R-matrix (braiding rules)

Fusion

Fusion Rules express the interaction of two anyons:

Fusion

Fusion Rules express the interaction of two anyons:

F-matrix encodes the associativity of the fusion rules:

$$
(a \times b) \times c=a \times(b \times c)
$$

Braiding Operator

Braiding Two neighboring anyons are exchanged counterclockwise:

Braiding Operator

Braiding Two neighboring anyons are exchanged counterclockwise:

R-matrix Unitary matrix representing the swapping

Braiding Operator

Braiding Two neighboring anyons are exchanged counterclockwise:

R-matrix Unitary matrix representing the swapping
B-matrix Since two particles may have no direct fusion channel, B is in general a composition of R and F matrices.

Fibonacci Theory

Consider an abstract quantity, call it a topological charge.

Fibonacci Theory

Consider an abstract quantity, call it a topological charge. Only two possible values:

Fibonacci Theory

Consider an abstract quantity, call it a topological charge. Only two possible values:

- 1 is the charge of the vacuum

Fibonacci Theory

Consider an abstract quantity, call it a topological charge. Only two possible values:

- 1 is the charge of the vacuum
- τ is the charge of any single Fibonacci anyon.

Fibonacci Theory

Consider an abstract quantity, call it a topological charge. Only two possible values:

- 1 is the charge of the vacuum
- τ is the charge of any single Fibonacci anyon.

Fusion Rules

- $\mathbf{1} \otimes \mathbf{1}=\mathbf{1}$,
- $\mathbf{1} \otimes \tau=\tau \otimes \mathbf{1}=\tau$,
- $\tau \otimes \tau=\mathbf{1} \oplus \tau$.

Thus for three charges:

- $\tau \otimes \tau \otimes \tau=2 \cdot \tau \oplus 1 \cdot \mathbf{1}$.

Fibonacci Theory

Consider an abstract quantity, call it a topological charge. Only two possible values:

- 1 is the charge of the vacuum
- τ is the charge of any single Fibonacci anyon.

Fusion Rules

- $1 \otimes 1=1$,
- $\mathbf{1} \otimes \tau=\tau \otimes \mathbf{1}=\tau$,
- $\tau \otimes \tau=\mathbf{1} \oplus \tau$.

Thus for three charges:

- $\tau \otimes \tau \otimes \tau=2 \cdot \tau \oplus 1 \cdot \mathbf{1}$.

We need to specify the F-matrix and R-matrix.

Fibonacci Theory: Fusion Space

One particle in the vacuum:
The (enclosed) total charge is τ.

Fibonacci Theory: Fusion Space

> One particle in the vacuum: The (enclosed) total charge is τ.

For two particles, we apply the fusion rules. The resulting total charge can be either 1 or τ.
$\Rightarrow \quad$ space dimension $\operatorname{dim}=2$

Fibonacci Theory: Fusion Space

One particle in the vacuum:
The (enclosed) total charge is τ.

For two particles, we apply the fusion rules. The resulting total charge can be either 1 or τ.
$\Rightarrow \quad$ space dimension $\operatorname{dim}=2$

Fibonacci Theory: Fusion Space

> One particle in the vacuum:
> The (enclosed) total charge is τ.

For two particles, we apply the fusion rules. The resulting total charge can be either 1 or τ.
$\Rightarrow \quad$ space dimension $\operatorname{dim}=2$

Note: The storing of information is non-local!

Fibonacci Theory: Fusion Space

What is the total charge resulting from the fusion of three particles?

Fibonacci Theory: Fusion Space

What is the total charge resulting from the fusion of three particles?

Fibonacci Theory: Fusion Space

What is the total charge resulting from the fusion of three particles?

Fibonacci Theory: Fusion Space

What is the total charge resulting from the fusion of three particles?

Fibonacci Theory: Fusion Space

What is the total charge resulting from the fusion of three particles?

3-dimensional Hilbert space

The F-matrix

$$
a=1, \tau
$$

The F-matrix

$$
a=1, \tau
$$

The F-matrix

$a=1, \tau$
$b=1, \tau$

The F-matrix

Base change : F-matrix

The F-matrix

$$
a=1, \tau
$$

$$
b=1, \tau
$$

The F-matrix

$$
a=1, \tau
$$

$$
b=1, \tau
$$

$$
\mathbf{F}=\left[\begin{array}{ll}
F_{00} & F_{01} \\
F_{10} & F_{11}
\end{array}\right]
$$

Base Change

The only two non trivial cases:

Base Change

The only two non trivial cases:

The Case of $n \geq 4$ Particles

The Case of $n \geq 4$ Particles

The Case of $n \geq 4$ Particles

The Case of $n \geq 4$ Particles

The Case of $n \geq 4$ Particles

Equivalent to

The Case of $n \geq 4$ Particles

Equivalent to

The Case of $n \geq 4$ Particles

Equivalent to

The Case of $n \geq 4$ Particles

Equivalent to

Consistency of F

Consistency of F

Consistency of F

Consistency of F

How many different ways to go from one base to the other?

The Pentagon Equation

The Pentagon Equation

The pentagon equation is obtained by imposing the condition that the above diagram commutes.

The Pentagon Equation

The only non-trivial case is the one with five τ 's at the outer edges.

The Pentagon Equation

The only non-trivial case is the one with five τ 's at the outer edges. The explicit equation for Fibonacci anyons is:

$$
\left(F_{\tau}^{\tau \tau c}\right)_{a}^{d}\left(F_{\tau}^{a \tau \tau}\right)_{b}^{c}=\left(F_{d}^{\tau \tau \tau}\right)_{e}^{c}\left(F_{\tau}^{\tau e \tau}\right)_{b}^{d}\left(F_{b}^{\tau \tau \tau}\right)_{a}^{e}
$$

The Pentagon Equation

The unique unitary solution (up to irrelevant phase factor) is the unitary matrix (set $b=c=1$ and use unitarity):

$$
F=\left[\begin{array}{cc}
\varphi^{-1} & \varphi^{-1 / 2} \\
\varphi^{-1 / 2} & -\varphi^{-1}
\end{array}\right] \text { where } \varphi=\frac{1+\sqrt{5}}{2}
$$

The Pentagon Equation

The unique unitary solution (up to irrelevant phase factor) is the unitary matrix (set $b=c=1$ and use unitarity):
$F=\left[\begin{array}{cc}\varphi^{-1} & \varphi^{-1 / 2} \\ \varphi^{-1 / 2} & -\varphi^{-1}\end{array}\right]$ where φ is the golden mean $\varphi=\frac{1+\sqrt{5}}{2}$

The Pentagon Equation

Note that for any number $n>4$ of particles, any base change can always be reduced to paths on the diagram above and if the pentagon equation is satisfied, then the computation is correct.

Hilbert Space Dimensions

The dimension of the Hilbert space of n Fibonacci anyons is a consequence of the fusion rules of this model.

Hilbert Space Dimensions

The dimension of the Hilbert space of n Fibonacci anyons is a consequence of the fusion rules of this model. Multifusion paths represented by the labelings of the fusion tree form an orthonormal basis of the degenerate ground-state manifold.

Hilbert Space Dimensions

The dimension of the Hilbert space of n Fibonacci anyons is a consequence of the fusion rules of this model. Multifusion paths represented by the labelings of the fusion tree form an orthonormal basis of the degenerate ground-state manifold.

- Consider $n \tau$-anyons in the plane with total charge τ

Hilbert Space Dimensions

The dimension of the Hilbert space of n Fibonacci anyons is a consequence of the fusion rules of this model. Multifusion paths represented by the labelings of the fusion tree form an orthonormal basis of the degenerate ground-state manifold.

- Consider $n \tau$-anyons in the plane with total charge τ
- Denote by \mathbf{F}_{n} the ground state degeneracy

Hilbert Space Dimensions

The dimension of the Hilbert space of n Fibonacci anyons is a consequence of the fusion rules of this model. Multifusion paths represented by the labelings of the fusion tree form an orthonormal basis of the degenerate ground-state manifold.

- Consider $n \tau$-anyons in the plane with total charge τ
- Denote by \mathbf{F}_{n} the ground state degeneracy
- Then $\mathbf{F}_{n+1}=\mathbf{F}_{n}+\mathbf{F}_{n-1}$ (Fibonacci sequence).

The R-matrix

Exchanging two anyons a and b in the plane can be done in two non-topologically equivalent ways:

The R-matrix

Exchanging two anyons a and b in the plane can be done in two non-topologically equivalent ways:

$R_{a, b}$ refers to the process on the rhs.

The R-matrix

Exchanging two anyons a and b in the plane can be done in two non-topologically equivalent ways:

$R_{a, b}$ refers to the process on the rhs.
Let $V_{c}^{a, b}$ be the ground states of anyons a and b with total charge c.

The R-matrix

Exchanging two anyons a and b in the plane can be done in two non-topologically equivalent ways:

$R_{a, b}$ refers to the process on the rhs.
Let $V_{c}^{a, b}$ be the ground states of anyons a and b with total charge c.

- If $V_{c}^{a, b}$ is one-dimensional and $e_{c}^{a, b} \in V_{c}^{a, b}$, then

$$
R_{a, b} e_{c}^{a, b}=R_{c}^{b, a} e_{c}^{b, a}
$$

The R-matrix

Exchanging two anyons a and b in the plane can be done in two non-topologically equivalent ways:

$R_{a, b}$ refers to the process on the rhs.
Let $V_{c}^{a, b}$ be the ground states of anyons a and b with total charge c.

- If $V_{c}^{a, b}$ is one-dimensional and $e_{c}^{a, b} \in V_{c}^{a, b}$, then

$$
R_{a, b} e_{c}^{a, b}=R_{c}^{b, a} e_{c}^{b, a}
$$

- In general d-dimensional spaces $R_{c}^{b, a}$ is a unitary matrix.

The R-matrix

Exchanging two anyons a and b in the plane can be done in two non-topologically equivalent ways:

$R_{a, b}$ refers to the process on the rhs.
Let $V_{c}^{a, b}$ be the ground states of anyons a and b with total charge c.

- If $V_{c}^{a, b}$ is one-dimensional and $e_{c}^{a, b} \in V_{c}^{a, b}$, then

$$
R_{a, b} e_{c}^{a, b}=R_{c}^{b, a} e_{c}^{b, a}
$$

- In general d-dimensional spaces $R_{c}^{b, a}$ is a unitary matrix.
- $R_{c}^{b, a}$ is not the inverse of $R_{c}^{a, b}$.

The Hexagon Equation

The Hexagon equations enforce the condition that braiding is compatible with fusion. The equations are obtained by imposing the $15 / 20$ condition that the above diagram commutes.

The Hexagon Equation

Explicit hexagon equation for Fibonacci anyons:

$$
R_{c}^{\tau, \tau}\left(F_{\tau}^{\tau \tau \tau}\right)_{a}^{c} R_{a}^{\tau, \tau}=\sum_{b}\left(F_{\tau}^{\tau \tau \tau}\right)_{b}^{c} R_{\tau}^{\tau, b}\left(F_{\tau}^{\tau \tau \tau}\right)_{a}^{b}
$$

The Hexagon Equation

Only two solutions:

$$
R=\left[\begin{array}{cc}
e^{i 4 \pi / 5} & 0 \\
0 & e^{-i 3 \pi / 5}
\end{array}\right] \quad \text { and } \quad R=\left[\begin{array}{cc}
e^{-i 4 \pi / 5} & 0 \\
0 & e^{i 3 \pi / 5}
\end{array}\right]
$$

Braiding

In order to analyse computational models of anyons, the physical realisation is not of primary importance.

Braiding

In order to analyse computational models of anyons, the physical realisation is not of primary importance.
All we need to know are some general properties:

Braiding

In order to analyse computational models of anyons, the physical realisation is not of primary importance.
All we need to know are some general properties:

- What kind of anyons can occur in this theory?

Braiding

In order to analyse computational models of anyons, the physical realisation is not of primary importance.
All we need to know are some general properties:

- What kind of anyons can occur in this theory?
- What are the rules for creation/splitting and fusion?

Braiding

In order to analyse computational models of anyons, the physical realisation is not of primary importance.
All we need to know are some general properties:

- What kind of anyons can occur in this theory?
- What are the rules for creation/splitting and fusion?
- What is the effect of braiding?

Braiding

In order to analyse computational models of anyons, the physical realisation is not of primary importance.
All we need to know are some general properties:

- What kind of anyons can occur in this theory?
- What are the rules for creation/splitting and fusion?
- What is the effect of braiding?

Braiding

In order to analyse computational models of anyons, the physical realisation is not of primary importance.
All we need to know are some general properties:

- What kind of anyons can occur in this theory?
- What are the rules for creation/splitting and fusion?
- What is the effect of braiding?

Braiding

In order to analyse computational models of anyons, the physical realisation is not of primary importance.
All we need to know are some general properties:

- What kind of anyons can occur in this theory?
- What are the rules for creation/splitting and fusion?
- What is the effect of braiding? \boldsymbol{X}

Braiding

In order to analyse computational models of anyons, the physical realisation is not of primary importance.
All we need to know are some general properties:

- What kind of anyons can occur in this theory?
- What are the rules for creation/splitting and fusion?
- What is the effect of braiding? \boldsymbol{X}

The answers to these questions define an anyon model or, more technically, a Topological Field Theory in $2+1$ dimensions as well as a Unitary Topological Modular Functor.

Braiding

In order to analyse computational models of anyons, the physical realisation is not of primary importance.
All we need to know are some general properties:

- What kind of anyons can occur in this theory?
- What are the rules for creation/splitting and fusion?
- What is the effect of braiding? \boldsymbol{X}

The answers to these questions define an anyon model or, more technically, a Topological Field Theory in $2+1$ dimensions as well as a Unitary Topological Modular Functor.

1. Simulation of topological field theories by quantum computers, M. Freedman, A. Kitaev and Z. Wang, Comm. in Math. Phy. 227(3): 587-603 - 2002.
2. A modular functor which is universal for quantum computation, M. Freedman, M.

Larsen and Z. Wang, Comm. in Math. Phy. 227(3): 605-622 - 2002.

Universal Quantum Computation

Single Qubit Rotation
$|\psi\rangle-U_{\vec{\phi}}-U_{\vec{\phi}}|\psi\rangle$

Controlled Not

$|1\rangle-\quad|1\rangle$

Any N qubit operation can be carried out using these two gates.

$$
\left|\Psi_{f}\right\rangle=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 M} \\
\vdots & \ddots & \vdots \\
a_{M 1} & \cdots & a_{M M}
\end{array}\right)\left|\Psi_{i}\right\rangle
$$

The Solovay-Kitaev Theorem

A physical computer cannot perform all elementary operations in the uncountable set of $\mathbf{S U}(2 n)$.

The Solovay-Kitaev Theorem

A physical computer cannot perform all elementary operations in the uncountable set of $\mathbf{S U}(2 n)$.
Nevertheless, we can require that any operation in $\mathbf{S U}(2 n)$ can be approximated to arbitrary precision ε by some countable universal set of operations.

The Solovay-Kitaev Theorem

A physical computer cannot perform all elementary operations in the uncountable set of $\mathbf{S U}(2 n)$.
Nevertheless, we can require that any operation in $\mathbf{S U}(2 n)$ can be approximated to arbitrary precision ε by some countable universal set of operations.

Theorem (Solovay-Kitaev)

Let G be a finite set of elements in $\mathbf{S U}(d)$ containing its own inverses, and let $\varepsilon>0$ be the desired accuracy. If G is dense in $\mathbf{S U}(d)$, then there exists a constant c s.t. for any $U \in \mathbf{S U}(d)$ there exists a finite sequence S of gates in G of length $\mathcal{O}\left(\log ^{c}\left(\frac{1}{\varepsilon}\right)\right)$ and with $d(U, S)<\varepsilon$.

Simulating Circuits with Fibonacci Anyons

What braid corresponds to this circuit?

Simulating Braids with Quantum Circuits

What circuit corresponds to this braid?

