
On lower bounds for the Maximum Consecutive
Subsums Problem and the (min,+)-convolution

Eduardo S. Laber and Wilfredo Bardales R.
Dept. Comp. Sc., PUC-Rio, Brazil

Email: {laber, wroncalla}@inf.puc-rio.br

Ferdinando Cicalese
Dept. Comp. Sc., Univ. Salerno, Italy

Email: cicalese@dia.unisa.it

Abstract—Given a sequence of n numbers, the MAXIMUM
CONSECUTIVE SUBSUMS PROBLEM (MCSP) asks for the max-
imum consecutive sum of lengths ` for each ` = 1, . . . , n. No
algorithm is known for this problem which is significantly better
than the naive quadratic solution. Nor a super linear lower bound
is known. The best known bound for the MCSP is based on the
the computation of the (min,+)-convolution, another problem
for which neither an O(n2−ε) upper bound is known nor a
super linear lower bound. We show that the two problems are in
fact computationally equivalent by providing linear reductions
between them. Then, we concentrate on the problem of finding
super linear lower bounds and provide empirical evidence for our
conjecture that the solution of both problems requires Ω(n logn)
time in the decision tree model.

I. INTRODUCTION

There exists a long line of research on identifying or se-
lecting maximal consecutive subsums in a numerical sequence
A = (a1, . . . , an). The most classical example is perhaps the
MAXIMUM SUM SEGMENT problem (MSS) asking for the
subsequence attaining the maximum among all possible

(
n
2

)
+

n subsequences. The problem was introduced by Grenader [4]
and has found application in pattern matching [20], biological
sequence analysis [1], and data mining [18]. The MSS can be
solved in linear time using Kadane’s algorithm [4].

The k MAXIMUM SUM SEGMENTS (k-MSS), asking to find
the k largest consecutive subsums in a sequence, has also been
investigated [3], [11], [24] and eventually proved to be solvable
in O(n+ k) in [7]. A linear time algorithm exists also for the
case where the maximal disjoint segments of maximum sum
have to be found [28], and for the variants of MSS and k-MSS
where only segments whose length is within a given interval
have to be considered.

All these problems admit a linear solution. In contrast,
notwithstanding the apparent similarity, the following variant
known as MAXIMUM CONSECUTIVE SUBSUMS PROBLEM
has defied so far any attempt to provide a strongly sub-
quadratic solution.

Given a sequence A = (a1, a2, . . . , an) of n numbers,
the MAXIMUM CONSECUTIVE SUBSUMS PROBLEM (MCSP)
asks to compute for all ` = 1, . . . , n, the maximum consecu-
tive subsum of length `, i.e., the sequence m1, . . . ,mn, where

m` = max
i=1,...n−`+1

ai + · · ·+ ai+`−1. (1)

The MCSP appears in several scenarios of both theoretical
and practical interest like approximate pattern matching [8],

mass spectrometry data analysis [14], and in the problem of
locating large empty regions in data sets [5]. Most work has
been done for the case where the input sequence is binary,
since in this case the MCSP coincides with the problem of
constructing membership query indexes for jumbled pattern
matching [8], [9], [2], [19].

It is not difficult to come up with simple O(n2) solutions
for the MCSP since each value m` in (1) can be easily
computed in linear time by one pass over the input sequence.
Surprisingly, despite the growing interest generated by this
problem (see, e.g., [10], [8], [9], [12], [13], [26], [27], and
references therein quoted), no solution is known with running
time O(n2−ε) for some constant ε > 0, nor is a lower bound
better than the trivial Ω(n) known.

When the sequence compresses well, a better complexity
can be achieved for the MCSP on 0/1 sequences [2], [19].
Algorithms that produce approximate solutions for the MCSP
are also known [13]. However, for the general case, the
best available algorithm in the real RAM model runs in
O(n2/ log n) [10], [26], [27] and makes use of the algorithm
proposed in [6] for computing a (min,+)-convolution.

The (min,+)-convolution problem is a natural variation of
the classical convolution problem: Given two sequences X =
(x0, x1, . . . , xn) and Y = (y0, y1, . . . , yn) of real numbers,
the (min,+)-convolution of X and Y is the sequence zk =
min

i=0,...,k
{xi + yk−i}, for k = 0, . . . , 2n.

(min,+)-convolution has important applications in a vari-
ety of areas, including signal processing, pattern recognition,
computer vision, and mathematical programming. According
to [6], this problem has appeared frequently in the literature
since Bellman’s early work on dynamic programming. Like
for the MCSP, no strongly subquadratic algorithm appears
to be known to compute the min-convolution. The best
known algorithm for computing (min,+)-convolution runs in
O(n2/ log n) [6].1

Taking into account the apparent difficulty to devise an
O(n2−ε) algorithm for the MCSP and for computing the
(min,+)-convolution, a natural question to ask is whether
there exists a non-trivial lower bound for these problems. This
work describes our findings in the quest for a super-linear

1Very recently, Williams [29] announced the computation of (min,+)-
convolution in O(n2/2(logn/ log logn)1/2), which is better than there result
of [6] by more than any polylog factor, though, it is still ω(n2−ε) for any ε.

lower bound in the decision tree model of computation.

Our Contributions. We provide computational evidence that
the running time of both MCSP and (min,+)-convolution prob-
lem is Ω(n log n) in the decision tree model of computation.

We start by showing linear reductions between the two
problems. As a result of this equivalence, any bound for one
problem also holds for the other. Then, in the following, we
only concentrate on the MCSP. In Section III, we argue that a
lower bound for the MCSP in the decision tree model can be
obtained by generating a large set of inputs sequences such
that no pair of them produce a common output. We prove
constructively that there exists such a sets of exponential size,
although, this is still not enough to prove a superlinear lower
bound on MCSP.̇

In Section IV, by using a deterministic approach we show
empirically that for n ≤ 14 there exists a set of inputs, with
the above property, and cardinality larger than (n/2)! so that
n/2 log(n/2) is a lower bound on the depth of any decision
tree that solves the MCSP for instances of size n ≤ 14.
This required 27 hours of CPU time in our computational
environment. In order to address larger values of n, we
employed sampling strategies. We devised a hypothesis test
and showed that the n/2 log(n/2) lower bound also holds for
any n ≤ 100 with confidence much larger than 99.999%.

We believe that our results bring new insight on the
complexity of both the MCSP and the (min,+)-convolution
problem and represent a significant initial step towards proving
a superlinear lower bound for this problems. Moreover, the
techniques employed might be useful in the investigation of
lower bounds for other computational problems with the same
flavor.

II. MCSP AND THE (min,+)-CONVOLUTION PROBLEM
HAVE THE SAME COMPLEXITY

We will show a linear time reduction between the MCSP
and the (min,+)-convolution and vice versa.

Let A = (a1, . . . , an) be an input sequence for the
MCSP and let I(A) = (X,Y) be the instance for the
(min,+)-convolution problem defined by x0 = yn = 0 and
xi = −

∑i
k=1 ak and yn−i =

∑i
k=1 ak, for i = 1, . . . , n.

It is easy to verify that pk is the starting position of a
maximum consecutive sum of length k in A if and only if
zn+k = xpk+k−1 + yn−pk+1.

Vice versa, let I = (X,Y) be an input for the (min,+)-
convolution, where X = (x0, . . . , xn) and Y = (y0, . . . , yn).
Let S be a large enough number and define the input sequence
A = (a1, . . . , a2n+4) for the for the MCSPas follows: an+1 =
an+4 = S; an+3 = −y0; an+2 = −x0; for each i < n+ 1 set
ai = xn−i − xn+1−i and for i > n + 4 set ai = yi−n−5 −
yi−n−4.

Denoting by z0, . . . , z2n − 1 the result of the convolution
of X and Y , one can verify that

zk =

pk+k+1∑
j=pk

ai

− 2S,

where pk is the starting position of the subsequence in A of
length k + 2 which achieves the maximum sum.

Due to these linear time reductions we can conclude that
both problems have the same time complexity. In the follow-
ing, we will focus our discussion on lower bounds for MCSP
and any conclusion reached will also hold for the (min,+)-
convolution.

III. TOWARDS A LOWER BOUND FOR THE MCSP
In this section we discuss our approach to prove a lower

bound for the MCSP. It will be convenient to employ the
following alternative formulation of the MCSP

Input. A sequence A = (a1, . . . , an) of n real numbers;

Output. A sequence P = (p1, . . . , pn), where p`, for
` = 1, . . . , n, is the starting position of a consecutive sub-
sequence of A that has maximum sum among the consecutive
subsequences of A with length `.

Using this representation, the subsequence A[pi . . . pi+i−1]
is a maximum consecutive subsum of length i. We call the
sequence P an output configuration or simply a configuration.

For example, for the input sequence A = (3, 0, 5, 0, 2, 4)
the only output configuration is given by the sequence P =
(5, 5, 1, 3, 2, 1), which says, e.g., that there is a maximum
consecutive subsum of length 4 starting at position 3.

We note that there are n! possible configurations because pi,
for i = 1, . . . , n, can assume any value in the set {1, . . . , n−
i + 1}. In particular for the input A = (a1, . . . , an), with
a1 = a2 = · · · = an = 1, all the n! possible configurations
are output configurations for A.

A. An approach based on unique configurations

The previous example shows that some input sequences
have more than one output configuration.

Let A = {A1, . . . , Ak} be an arbitrarily cho-
sen set of inputs for the MCSP and let P(A) =
{P | P is an output configuration for A}.

We say that a configuration P is unique if and only if there
exists an input A for the MCSP for which P(A) = {P}.

Our approach to prove a lower bound on MCSP consists
on finding a large set of distinct unique configurations.

In fact, let P = {P1, P2, . . . , Pk} be a set of distinct unique
configurations. Moreover, let Ai, for i = 1, . . . , k, be an
instance for MCSP such that Pi is its unique configuration.
Then, the instances in the set A = {A1, . . . , Ak} are distinct.
In order to be able to solve the instances in A an algorithm
must be able to uniquely distinguish the configurations in P .
This requires at least dlog ke bits of information. Hence, dlg ke
is a lower bound to the problem in the decision tree model.
In fact, the above considerations shows that we need at least
that number of steps, or decisions, to uniquely identify any
solution from the set P using the decision tree model. We
have proved the following.

Theorem 1: If P is a subset of distinct unique configura-
tions, then log |P| is a lower bound for the running time of
the MCSP in the decision tree model.

We shall observe that if every configuration were unique,
then we could prove a lower bound of Ω(n log n) since there
exists n! configurations of size n. However, there are configu-
rations that are not unique like the configuration P = (1, 2, 1).
In fact, assume that A = (a1, a2, a3) is an input for which P
is its unique configuration. Then, we would have both a1 > a3
and a2 + a3 > a1 + a2, which is not possible.

The following result shows that the number of unique
configurations is indeed very large.

Theorem 2: There exist Ω
(
2

n
2

)
unique configurations.

Proof: Fix a subset S ⊆
{⌈

n
2

⌉
+ 1, . . . , n

}
and define

an input AS = (aS1 , . . . , a
S
n) as follows:

aSi =

0 if 1 ≤ i < dn/2e − 1

2 if i = dn/2e − 1

4n if i = dn/2e

3 if dn/2e < i ≤ n and i /∈ S

1 if dn/2e < i ≤ n and i ∈ S

It is not hard to see that the unique output for AS is the
configuration PS = (pS1 , . . . , p

S
n) given by

pSj =

dn/2e if j ≤ dn/2e and (j + dn/2e − 1) /∈ S

⌈
n
2 − 1

⌉
if j ≤ dn/2e and (j + dn/2e − 1) ∈ S

n− j + 1 if dn/2e < j ≤ n

If dn/2e < j ≤ n it is easy to realize that the maximum
sum of length j in AS has to start at the rightmost feasible
position so that pSj = n− j + 1.

If j ≤
⌈
n
2

⌉
we claim that the maximum sum of length j

either starts at position
⌈
n
2

⌉
or at position

⌈
n
2

⌉
− 1 of AS .

In fact, if pSj >
⌈
n
2

⌉
then we would have the maximum sum

of length j smaller than 3n which is not possible because the
value of AS at position

⌈
n
2

⌉
is 4n. Moreover, we cannot have

pSj <
⌈
n
2

⌉
− 1 for otherwise the sum of the subsequence of

length j starting at position pSj +1 of AS would be larger than
the maximum sum. Hence, our claim is correct.

To decide whether the maximum of length j starts at
position

⌈
n
2

⌉
or at position

⌈
n
2

⌉
− 1 we just need to compare

the value of AS at position
⌈
n
2

⌉
+j−1 (which is either 1 or 3)

with that of AS at position
⌈
n
2

⌉
− 1 (which is 2). If the former

is larger, what happens when
⌈
n
2

⌉
+ j − 1 /∈ S, then we must

have pSj =
⌈
n
2

⌉
. Otherwise, we must have pSj =

⌈
n
2

⌉
− 1.

Clearly, for any two distinct S1, S2 ⊆
{dn/2e+ 1, . . . , n} we have PS1 6= PS2 . Thus the
set

{
PS |S ⊆ {dn/2e+ 1, . . . , n}

}
is a set of unique

configurations of cardinality 2n/2, which establishes or result.

The existence of at least exponentially many (in n) con-
figurations supports our approach and is an indication of its
potential. However, this result combined with Theorem 1 is
still not enough to obtain a non trivial (superlinear) lower
bound for the MCSP.̇

This motivated us to enrich our analysis by empirically
exploring the number of unique configurations.

IV. EMPIRICAL EVIDENCES THAT MCSP REQUIRES
Ω(n log n) TIME

In order to count the number of unique configurations it
is important to decide whether a given configuration P is
unique or not. For that we test whether there exists an input
sequence A = (a1, . . . , an) for which P is its unique output
configuration. For i ∈ {1, . . . , n − 1} and a configuration P ,
let Q(P, i) be the following set of inequalities:

pi+i−1∑
k=pi

ak >

j+i−1∑
k=j

ak for j = 1, . . . , n−i+1 and j 6= pi

It is easy to realize that the contiguous subsequence of length
i that starts at position pi of A has sum larger than the sum
of any other contiguous subsequence of length i if and only
if the point A = (a1, . . . , an) ∈ Rn satisfies the above set of
inequalities. Thus, P is a unique configuration if and only if
the set of inequalities Q(P, 1)∪Q(P, 2)∪· · ·∪Q(P, n−1) has
a feasible solution. In our experiments we employed a linear
programming solver to perform this verification.

In order to speed up our computation we also employ a
sufficient condition for the non-uniqueness of a configuration,
which is provided by the following proposition whose proof
is deferred to the appendix.

Proposition 1: Let P = (p1, . . . , pn) be an output config-
uration. If there exist 1 ≤ i < j ≤ n such that pj = pi + i,
then P is not unique.

For instance, consider the configuration P = (5, 1, 3, 4, 1).
By taking i = 2 and j = 3, we have pi + i = pj and, can
conclude that P is not unique, as can be easily verified.

Unfortunately, this non-adjacency property does not com-
pletely characterize the set of unique configurations be-
cause there exist configurations with no adjacent maximums
that are not unique. For example, the configuration P =
(2, 4, 2, 1, 2, 1) has no adjacent maximums and is not unique.
In fact, if A = (a1, . . . , a6) is an input sequence for which P
is its unique configuration then we must have simultaneously:
(i) a2 > a4 because of p1 = 2; (ii) a4 +a5 > a1 +a2 because
of p2 = 4; and (iii) a1+a2+a3+a4 > a2+a3+a4+a5 because
of p4 = 1. However, this is impossible, since by summing the
first two inequality and adding a3 on both sides, we obtain a
contradiction to the third inequality.

Nonetheless, we can effectively use the condition to speed
up our algorithms.

Algorithm 1 shows the pseudo-code of our method that
recursively constructs all unique configurations of length n.
When DETERMINISTIC-COUNTING(P, i) is called, the values
of the positions 1, 2, . . . , i − 1 of the configuration P , under
construction, are already fixed. Then, for each j ∈ {1, . . . , n−
i + 1}, the procedure ISFEASIBLE(P, i, j), explained below,
is called to verify whether it is possible to extend the partial
configuration P by setting the value of position i to j. If
this is the case, the algorithm set pi = j and it recursively
calls DETERMINISTIC-COUNTING(P, i + 1) to construct all
unique configurations that are extensions of P . As soon as the
algorithm set the values of all positions of P , it increments the
global variable count of unique configurations. The procedure
has to be initially called with i = 1 and the variable count
shoud be initially set to 0.

The procedure IS-FEASIBLE(P, i, j) first verifies if the
subsequence of A starting at position j is adjacent to some
maximum subsequence that has already been fixed. This test
can be done in O(1) time by using a suitable data structure.
If this test is positive it rules out j as a value for pi due to
Proposition 1. Otherwise, the procedure verifies whether the
set of inequalities Q(P, 1) ∪ · · · ∪ Q(P, i) is feasible and it
returns TRUE or FALSE, accordingly.

Algorithm 1 DETEMINISTIC-COUNTING(P, i)

1: if i = n then
2: count← count + 1
3: return
4: end if
5: for j ← 1 to n− i + 1 do
6: if ISFEASIBLE(P, i, j) then
7: pi ← j
8: DETERMINISTIC-COUNTING(P, i + 1)
9: end if

10: end for

Algorithm 2 ISFEASIBLE(P, i, j)

1: if the subsequence of length i starting at position j is adajcent to
the subsequence of length k starting at pk for some k < i then

2: return FALSE
3: else
4: pi = j % this is only to verify if this extension if feasible.
5: if the set of inequalities Q(P, 1) ∪ · · · ∪ Q(P, i)is feasible
6: then return TRUE
7: else return FALSE
8: end if

Table I presents the results obtained by the deterministic
approach. We were able to determine the number of unique
configurations up to n = 14. The results suggest a super
exponential growth. Indeed, notice the growth of the ratio
between the number of unique configurations and (n/2)!.

All the executions required 27 hours of CPU time under
the following hardware and software specifications: Main
Hardware Platform: Intel R© CoreTM i7 3960X, 3.30GHz

TABLE I
THE NUMBER OF UNIQUE CONFIGURATIONS FOR n = 1, . . . , 14

COMPARED TO THE VALUE n/2!.

n U(n) = No Unique Config. n
2
! Ratio U(n)

(n/2)!

1 1 0.8 1.25x
2 2 1.0 2.00x
3 4 1.3 3.07x
4 12 2.0 6.00x
5 36 3.3 10.90x
6 148 6.0 24.66x
7 586 11.6 50.51x
8 2,790 24.0 116.25x
9 13,338 52.3 255.02x

10 71,562 120.0 596.35x
11 378,024 287.9 1,313.03x
12 2,222,536 720.0 3,086.85x
13 12,770,406 1,871.3 6,824.34x
14 78,968,306 5,040.0 15,668.31x

CPU, 32GB RAM, 64-bit; OS: Windows 7 Professional
x64; Compiler: Microsoft R©Visual C# 2010 Compiler version
4.0.30319.1; Solver: Gurobi Optimizer.

In order to extend our analysis to larger instances we then
employed a probabilistic approach.

A. A Probabilistic Approach

The first idea for estimating the number of unique configu-
rations is to sample a large number M of configurations and
then employ Procedure IS-FEASIBLE to decide whether each
of them is unique or not. The number of unique configurations
found over M is an unbiased estimator for the number of
unique configurations. With this approach we managed to
obtain strong evidence of the super linear lower bound for n up
to 28. To extend our range we followed a different approach.

In the deterministic case, we explore the configuration
space via a depth first search over the back-tracking tree
of all possible configurations. In our probabilistic approach,
presented in Algorithm 3, we randomly traverse a path in the
back-tracking tree that corresponds to a unique configuration.
Assume that we have already fixed the values for the positions
1, 2, . . . , i−1 of the configuration P that is under construction.
Then, in order to set the value of pi, we construct a list S of all
values j ∈ {1, . . . , n − i + 1} such that ISFEASIBLE(P, i, j)
returns TRUE. Let bi = |S| be the branching factor of our
path at level i. Then, we randomly choose one of the values
in S for pi and continue to set the values of pj for j > i; if
the method observes the branching factors b1, b2, . . . , bn, in a

root to leaf path, then it outputs X =

n∏
i=1

bi. as a guess for the

number of unique configurations.
The value X can be used to estimate the number of unique

configurations because X is a sample of a random variable
X whose expected value E[X] is equal to the number of the
unique configurations. In fact, let ` be a leaf located at depth
n of the backtracking tree, that is, ` corresponds to a unique
configuration. The probability of reaching ` in our random
walk is 1/B(`), where B(`) is the product of the branching
factors in the path from the root of the tree to `. In addition,

Algorithm 3 BRANCHING-PRODUCT(n)

1: X ← 1
2: for i← 1 to n do
3: S ← ∅
4: for j ← 1 to n− i + 1 do
5: if ISFEASIBLE(P, i, j) then
6: Add j to the list S of possible branchings
7: end if
8: end for
9: if S is empty then

10: return 0
11: else
12: X ← X × |S|
13: pi ← value randomly selected from list S
14: end if
15: end for
16: return X

if ` is reached, the method outputs B(`). Let L be the set
of leaves located at level n in the backtracking tree. Thus we
have that

E[X] =
∑
`∈L

1

B(`)
×B(`) = |L|.

After coming up with this approach, we found out that it
had already been proposed to study heuristics for backtracking
algorithms [23], [22].

We do not use directly the observed value X to estimate
the number of unique configurations; instead, we assume that
E[X], the number of unique configurations, is smaller than or
equal to (n2 !) and use the sampled value of X to reject this
hypothesis with some level of confidence.

Under the hypothesis that E[X] ≤ (n2)!, using Markov’s
inequality [25] it follows that:

Pr
[
X ≥ cn

2
!
]
≤ Pr[X ≥ cE[X]] ≤ 1

c

which implies that Pr
[
X < c

n

2
!
]
≥ 1− 1

c
.

Therefore, if we sample X and find a value larger than cn2 !,
we can reject the hypothesis and conclude that the number of
unique configurations is > n

2 ! with confidence of 1− 1
c .

We can extend this approach by taking the maximum of k
samples. Let X1, . . . , Xk be the values for k samples of the
random variable X. Then, with the hypothesis E[X] ≤ n

2 ! and
using the above inequality we have

Pr

[
max{X1, . . . , Xk} < c

n

2
!
]

= Pr

[
k∧
i=1

(
Xi < c

n

2
!
)]

=

k∏
i=1

Pr
[
Xi < c

n

2
!
]
≥
(

1− 1

c

)k
.

In other words, assuming that E[X] ≤ n
2 !, and using

the max{X1, X2, . . . , Xk}, the probability of all the samples
being less or equal than cn2 !, for a large enough c, is very
high, and if in those k values we find a value greater or equal
than cn2 !, then we can reject the hypothesis and conclude that
E[X] ≥ n

2 ! with confidence (1− 1/c)
k
.

TABLE II
Pr
[
max{X1, . . . , Xk} < cn

n
2
!
]

FOR k = 1,000

n cn Pr[maxk1{Xi} < cn
n
2
!]

10 6,048 99.98346560846560%
11 23,760 99.99579124579120%
12 38,880 99.99742798353910%
13 439,296 99.99977236305360%
14 558,835 99.99982105636870%
20 372,252,672 99.99999973136530%
30 102,827,922,078 99.99999999902750%
40 4,680,410,711,674 99.99999999997860%
50 69,590,788,615,385 99.99999999999860%
60 562,841,769,233,371 99.99999999999980%
70 136,904,322,455,757 99.99999999999930%
80 87,399,891,508,924 99.99999999999890%
90 73,279,283,017 99.99999999863540%
100 204,252,401 99.99999951040970%

For example, for n = 10 and k = 10, suppose that
max{X1, . . . , X10} = 378000 which is equal to 3,150 10

2 !.
In this case,

Pr

[
max{X1, . . . , X10} < c

10

2
!

]
≥
(

1− 1

3,150

)10

≈ 99.68%

This implies that we can reject the hypothesis with a con-
fidence of 99.68% because we’ve found a value of 3,150 10

2 !.
But, if the number of samples were 1000 and the maximum
remains the same, the confidence level would drop to 72.79%,
which clearly shows the trade-off between the number values
sampled and the confidence level.

In our experiments we sampled 1000 values of X for
different values of n. Let max(n, 1000) be the maximum value
found in the 1,000 samples and let cn = bmax(n, 1000)/n2 !c.
Table II shows the probability of Pr[max{X1, . . . , X1000} <
cn

n
2 !] assuming that E[X] ≤ n

2 ! for configurations up to size
n = 100. This probability also expresses our confidence to
reject the hypothesis because in fact we’ve found a value
greater or equal than cn

n
2 !. Based on these results we state

the following conjecture.
Conjecture 1: The running time of MCSP is Ω(n log n) in

the decision tree model.

V. CONCLUSIONS

We have described an approach to prove lower bounds
for the MCSP and the (min,+)-convolution problem in the
decision tree model. Using this approach we gave probabilistic
evidence supporting the conjecture that both problems require
Ω(n log n) computational steps in the decision tree model of
computation.

Moreover, we believe that the techniques employed here can
be of independent interest in investigating theoretical lower
bounds on other related computational problems.

REFERENCES

[1] L. Allison, Longest biased interval and longest non-negative sum interval,
Bioinformatics 19(10),1294-1295, 2003.

[2] G. Badkobeh, G. Fici, S. Kroon, Z. Lipták, Binary jumbled string match-
ing for highly run-length compressible texts, IPL 113:604-608,2013.

[3] S.E. Bae and T.Takaoka, Improved algorithms for the k-maximum sub-
array problem, Comput. J. 49(3), 358-374, 2006.

[4] J. L. Bentley, Programming pearls (Addison-Wesley, 1986).
[5] A. Bergkvist, P. Damaschke, Fast algorithms for finding disjoint subse-

quences with extremal densities, Proc. ISAAC’05, LNCS 3827, 714-723.
[6] D. Bremner, T.M. Chan, E.D. Demaine, J. Erickson, F. Hurtado, J. Iacono,

S. Langerman, M. Patrascu, P. Taslakian, Necklaces, convolutions, and
x+y. CoRR, abs/1212.4771, 2012. See also Proc. of ESA’06, LNCS 4168,
pp. 160-171, 2006.

[7] G. S. Brodal and A. G. Jorgensen, A linear time algorithm for the k
maximal sums problem, Proc. of MFCS07, pp. 442-453, 2007.

[8] P. Burcsi, F. Cicalese, G. Fici and Zs. Lipták, Algorithms for jumbled
pattern matching in strings, IJFCS, 23, 357-374, 2012.

[9] P. Burcsi, F. Cicalese, G. Fici and Zs. Lipták, On approximate jumbled
pattern matching in strings, Th. of Comp. Systems 50(1), 35-51, 2012.

[10] P. Burcsi, F. Cicalese, G.Fici and Zs. Lipták, On table arrangements,
scrabble freaks, and jumbled pattern matching, Proc. of Fun with Algo-
rithms, LNCS 6099, pp. 89-101, 2010.

[11] C.-H. Cheng, K.-Y. Chen, W.-C. Tien and K.-M. Chao, Improved
algorithms for the k maximum-sums problems, Proc. of ISAAC05, LNCS
3827, pp. 799-808.

[12] F. Cicalese, G. Fici and Zs. Lipták, Searching for jumbled patterns in
strings, Proc. of the Prague Stringology Conference, pp. 105-117, 2009.

[13] F. Cicalese, E. Laber, O. Weimann and R. Yuster, Near linear time
construction of an approximate index for all maximum consecutive sub-
sums of a sequence, Proc. of CPM2012, LNCS 7354, pp. 149158, 2012.

[14] M. Cieliebak, T. Erlebach, Z. Lipták, J. Stoye and E. Welzl, Algorithmic
complexity of protein identification: combinatorics of weighted strings,
Discrete Applied Mathematics 137(1), 27-46, 2004.

[15] D. Eppstein, Efficient algorithms for sequence analysis with concave and
convex gap costs, PhD thesis, Comp. Sc. Dept., Columbia Univ., 1989.

[16] T.H. Fan, S. Lee, H.I. Lu, T.S. Tsou, T.C. Wang and A. Yao, An
optimal algorithm for maximum-sum segment and its application in
bioinformatics, Proc. of CIAA03, pp. 251-257, 2003.

[17] P.F. Felzenszwalb, D.P. Huttenlocher and J.M. Kleinberg, Fast algo-
rithms for large- state-space HMMs with applications to web usage
analysis, Proc. of NIPS 2003.

[18] T. Fukuda, Y. Morimoto, S. Morishita and T. Tokuyama, Data mining
with optimized two-dimensional association rules, ACM Trans. Database
Syst. 26, 179-213, 2001.

[19] T. Gagie, D. Hermelin, G. M. Landau, O. Weimann, Binary Jumbled
Pattern Matching on Trees and Tree-Like Structures, Proc. of ESA 2013,
LNCS 8125, pp. 517-528, 2013

[20] U. Grenander, Pattern Analysis (New York : Springer-Verlag, 1978).
[21] X. Huang, An algorithm for identifying regions of a dna sequence that

satisfy a content requirement, Bioinformatics 10(3), 219-225, 1994.
[22] D. E. Knuth, Estimating the efficiency of backtrack programs, Mathe-

matics of computation 29(129), 122-136, 1975.
[23] O. Kullmann, Fundaments of branching heuristics, Handbook of Sat-

isfiability, Frontiers in Artificial Intelligence and Applications 185, pp.
205-244, 2009.

[24] T.-C.Lin and D.T. Lee, Randomized algorithm for the sum selection
problem, Theor. Comput. Sci. 377 (May 2007) 151-156.

[25] M. Mitzenmacher and E. Upfal, Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis (Cambridge University Press,
New York, NY, USA, 2005).

[26] T. M. Moosa and M. S. Rahman, Indexing permutations for binary
strings, Inf. Process. Lett. 110, 795-798, 2010.

[27] T.M. Moosa and M.S.Rahman, Sub-quadratic time and linear space
data structures for permutation matching in binary strings, J. of Discrete
Algorithms 10, pp. 5-9, 2012.

[28] W. L. Ruzzo and M. Tompa, A linear time algorithm for finding all
maximal scoring subsequences., ISMB, (AAAI, 1999), pp. 234-241, 1999.

[29] R. Williams, Faster all-pairs shortest paths via circuit complexity,
arXiv:1312.6680, 2013.

APPENDIX

A. The Proof of Proposition 1

Proof: Let i, j be such that pj = pi + i. In addition,
assume that there is an input A for which P is its unique
configuration.

By definition, the subsequence of length j starting at pj has
sum greater than any other subsequence of length j, so that:

pi+j−1∑
k=pi

ak <

pj+j−1∑
k=pj

ak

By decomposing the previous inequality

pi+i−1∑
k=pi

ak +

pi+j−1∑
k=pi+i

ak <

pj+(j−i)−1∑
k=pj

ak +

pj+j−1∑
k=pj+(j−i)

ak

Replacing pj by pi + i in the first summand of the right hand
side

pi+i−1∑
k=pi

ak +

pi+j−1∑
k=pi+i

ak <

pi+j−1∑
k=pi+i

ak +

pj+j−1∑
k=pj+(j−i)

ak so that

pi+i−1∑
k=pi

ak <

pj+j−1∑
k=pj+(j−i)

ak (2)

By definition, for pi we also have that:

pj+j−1∑
k=pj+(j−i)

ak <

pi+i−1∑
k=pi

ak (3)

Adding (2) and (3) we get

pi+i−1∑
k=pi

ak +

pj+j−1∑
k=pj+(j−i)

ak <

pj+j−1∑
k=pj+(j−i)

ak +

pi+i−1∑
k=pi

ak

which is a contradiction.

