Linear Methods for Regression: Methods using derived input directions

Statistical methods for data analysis – Machine learning

Alberto Castellini University of Verona

- When a large number of (correlated) variables X_j, j=1,...,p are available, they may be linearly combined in a small number of components (projections) Z_m, m=1,...,M, with M<=p.
- These **components** can be used as inputs in **regression**.
- Different methods are available for constructing linear combinations of variables
 - Principal components regression
 - Partial least squares

- When a large number of (correlated) variables X_j, j=1,...,p are available, they may be linearly combined in a small number of components (projections) Z_m, m=1,...,M, with M<=p.
- These **components** can be used as inputs in **regression**.
- Different methods are available for constructing linear combinations of variables
 - Principal components regression
 - Partial least squares

Principal Component Regression (PCR)

Linear components Z_m are defined by **Principal Component** Analysis (PCA).

- Principal components (Karhunen-Loeve) directions of X are computed by SVD of X (eigenvalue decomposition of X^TX , if X is standardized).
- The **SVD** of the N x p matrix **X** can be written as:

$X = UDV^{T}$

where:

- U (N x p) and V (p x p) are **orthogonal** matrices

- Columns of U span the column space of X
 Columns of V span the row space of X
 D is a p x p diagonal matrix with entries d1 >= d2 >= ... >= dp >=0 singular values of X.

The **SVD** of the centered matrix X is another way of expressing the **principal components** of X.

In fact, the covariance matrix can be decomposed as

 $\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\mathbf{D}^{2}\mathbf{V}^{\mathsf{T}}$

which is the **eigen decomposition** of **X**^T**X**.

The eigenvectors v_j (columns of V) are also called principal components (Karhunen-Loeve) directions of X.

Principal Components: directions and variance

The first principal components direction v₁ (eigenvector of X^TX) has the property that z₁ = X*v₁ has the largest sample variance amongst all normalized linear combinations of columns of X

$$Var(z_1) = Var(X*v_1) = d_1^2/N$$

where d_1 is the eigenvalue of $X^T X$ with maximum absolute value and N is the total number of observations.

• Subsequent principal components z_j have maximum variance and are orthogonal to the earlier ones.

Principal Component Regression: parameter learning

Principal Component Regression forms the **derived input columns** $z_m = X^* V_m$ and then regresses **y** on $z_1, z_2, ..., z_M$, for some M<=p

Since the z_m are orthogonal, this regression is a sum of univariate regressions:

Inner product
$$\hat{\mathbf{y}}_{(M)}^{\text{pcr}} = \bar{y}\mathbf{1} + \sum_{m=1}^{M} \hat{\theta}_{m}\mathbf{z}_{m},$$
Parameter on the m-th principal component where $\hat{\theta}_{m} = \langle \mathbf{z}_{m}, \mathbf{y} \rangle / \langle \mathbf{z}_{m}, \mathbf{z}_{m} \rangle.$

• Since the z_m are linear combinations of the original x_j , the coefficients of variables x_i can be written as

$$\hat{\beta}^{\mathrm{pcr}}(M) = \sum_{m=1}^{M} \hat{\theta}_m v_m.$$

Observations

- Data **standardization** is needed (as in ridge regression) since principal components depend on variable scale.
- If **M=p** then PCR corresponds to OLS since the columns of **Z=UD** span the column space of **X**.

Similarities between ridge regression and PCR:

- Both operate on principal components of X
- Ridge shrinks more the components with small eigenvalues (directions with smaller variance)
- PCR discards the p-M smallest eigenvalue components

PCR on the prostate cancer dataset

Regression Coefficients

Term LS Best Subset Ridge Lasso	PCR
Intercept 2.465 2.477 2.452 2.468	2.497
lcavol 0.680 0.740 0.420 0.533	0.543
lweight 0.263 0.316 0.238 0.169	0.289
age -0.141 -0.046 -	-0.152
lbph 0.210 0.162 0.002	0.214
svi 0.305 0.227 0.094	0.315
1cp - 0.288 0.000 -	-0.051
gleason -0.021 0.040	0.232
pgg45 0.267 0.133 -	-0.056
Test Error 0.521 0.492 0.492 0.479	0.449
Std Error0.1790.1430.1650.164	0.105

Exercise: Prediction on the prostate cancer dataset

See text of Exercise 5

References

[Hastie 2009] Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (second edition). Springer. 2009.