Linear Methods for Regression: Shrinkage Methods for variable selection (Regularization)

Statistical methods for data analysis – Machine learning

Alberto Castellini University of Verona

Motivation

- **Subset selection** is a **discrete** process (variables are retained or discarded).
- It often exhibits high variance, thus it does not always reduce the prediction error of the full model.
- Shrinkage methods are more continuous and they do not suffer as much from high variability.

Ridge regression

 Ridge regression shrinks the regression coefficients imposing a penalty on their size

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$
 Goodness-of-fit Penalty

Lagrangian form

Complexity parameter: controls the amount of shrinkage

- The larger the value of λ , the greater the amount of shrinkage.
- Coefficients are shrunk towards zero.
- Penalization of the sum-of-squares of parameters is used also in neural networks (weight decay).

Equivalent way to write the Ridge problem

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$
subject to
$$\sum_{j=1}^{p} \beta_j^2 \le t,$$

The size constraint t on parameters is explicit.

In case of many correlated variables, coefficients may become poorly determined (high variance).

- A large positive coefficient in one variable can be canceled by a negative coefficient of a correlated variable
- This problem is alleviated by the above formulation (squared constraint penalizes large coefficients)

Assumptions

- Data standardization is needed since solutions are not equivalent under scaling.
- The **intercept** β_0 is not shrunk
- The computation of β^{ridge} can be separated in **two steps**:
 - 1. $oldsymbol{eta_{ extbf{o}}}$ is estimated by $ar{y}=rac{1}{N}\sum_{1}^{N}y_{i}$
 - 2. all coefficients except β_0 are computed from centered x and without intercept by ridge regression

Matrix form for the ridge RSS

Residual Sum of Squares:

$$RSS(\lambda) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta) + \lambda \beta^T \beta$$

Ridge regression solution:

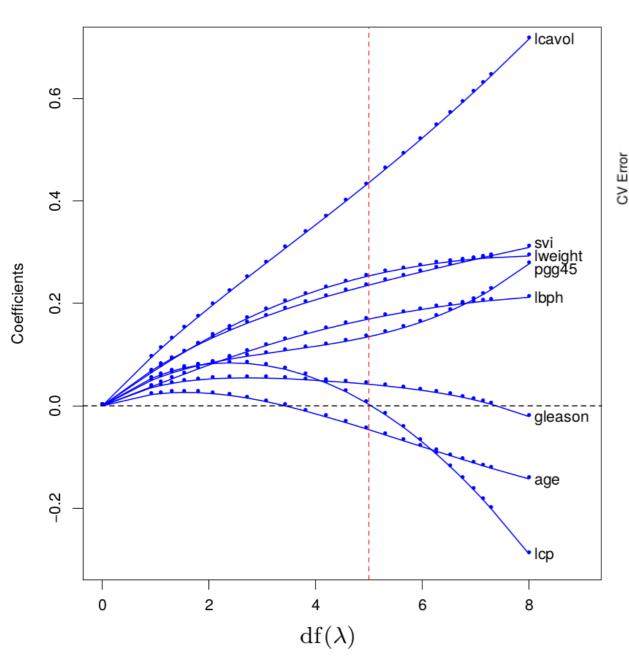
$$\hat{\beta}^{\text{ridge}} = (\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$$

$$\approx \text{Covariance matrix}$$

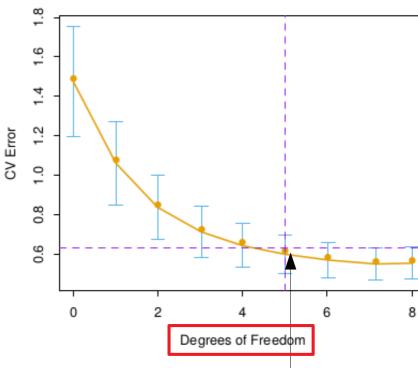
- The quadratic penalty $\beta^T\beta$ ensures that **ridge** regression solution is a **linear** function of **y**.
- The solution adds a positive constant to the diagonal of X^TX before inversion → nonsingular problem even if X has not full rank

Main motivation for ridge regression when it was introduced (Hoerl and Kennard, 1970)

Ridge coefficient estimate for prostate cancer example



Ridge Regression



Selection based on **1-standard error rule**

In case of orthonormal

inputs
$$\hat{\beta}^{\mathrm{ridge}} = \hat{\beta}/(1+\lambda)$$

Singular Value Decomposition (SVD) and Ridge regression

The **SVD** of the centered matrix X provides additional **insight** into the nature of the ridge regression.

The SVD of the N x p matrix \mathbf{X} can be written as:

$$X = UDV^{T}$$

- U and V orthogonal matrices
- Columns of U span the column space of X
- Columns of V span the row space of X
- D is a p x p diagonal matrix with entries d1 >= d2 >= ... >= dp >=0 singular values of X.
- If one or more dj=0 then X is singular

Singular Value Decomposition (SVD) and Ridge regression

Using the SVD the **least squares fitted vector** can be written as:

$$\mathbf{X}\hat{\beta}^{\mathrm{ls}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$
 Similar to the OLS case $\hat{\mathbf{y}} = \mathbf{Q}\mathbf{Q}^T\mathbf{y}$

$$\hat{\mathbf{y}} = \mathbf{Q}\mathbf{Q}^T\mathbf{y}$$

(QR decomposition)

and the **ridge solutions** can be expressed as:

$$\mathbf{X}\hat{\beta}^{\text{ridge}} = \mathbf{X}(\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$$

$$= \mathbf{U}\mathbf{D}(\mathbf{D}^2 + \lambda\mathbf{I})^{-1}\mathbf{D}\mathbf{U}^T\mathbf{y}$$

$$= \sum_{j=1}^{p} \mathbf{u}_j \frac{d_j^2}{d_j^2 + \lambda} \mathbf{u}_j^T\mathbf{y},$$

where u_i are the columns of U and $d_i^2/(d_i^2 + \lambda) \le 1$.

- As in OLS, ridge regression computes the coordinates of y as **linear** combinations of the orthonormal basis **U**. Then it shrinks the coordinates by the factor $d_i^2/(d_i^2 + \lambda)$.
- The smaller d_i² the larger the amount of shrinkage.

Singular Value Decomposition (SVD) and Ridge regression

Using the SVD the **least squares fitted vector** can be written as:

$$\mathbf{X}\hat{eta}^{\mathrm{ls}} = \mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y}$$
 Similar to the OLS case $\hat{\mathbf{y}} = \mathbf{Q}\mathbf{Q}^{T}\mathbf{y}$

$$\hat{\mathbf{y}} = \mathbf{Q}\mathbf{Q}^T\mathbf{y}$$

(QR decomposition)

and the **ridge solutions** can be expressed as:

$$\mathbf{X}\hat{\beta}^{\text{ridge}} = \mathbf{X}(\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$$

$$= \mathbf{U}\mathbf{D}(\mathbf{D}^2 + \lambda\mathbf{I})^{-1}\mathbf{D}\mathbf{U}^T\mathbf{y}$$

$$= \sum_{j=1}^{p} \mathbf{u}_j \frac{d_j^2}{d_j^2 + \lambda} \mathbf{u}_j^T\mathbf{y},$$

where u_i are the columns of U and $d_i^2/(d_i^2 + \lambda) \le 1$.

- As in OLS, ridge regression computes the coordinates of y as linear combinations of the orthonormal basis U. Then it shrinks the coordinates by the factor $\frac{d_i^2}{(d_i^2 + \lambda)}$.
- The smaller d_i² the larger the amount of shrinkage.

What are the d_i?

Principal component interpretation

The **SVD** of the centered matrix X is a way of expressing the **principal component** of the variables in X.

Using the SVD, the **covariance matrix** can be written as:

$$\mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{D}^2 \mathbf{V}^T$$

which is the eigen decomposition of XTX.

- The **eigenvectors** v_j (columns of V) are the principal component (Karhunen–Loeve) directions of X.
- The first principal component has the property that z1 = X*v1 has the largest sample variance

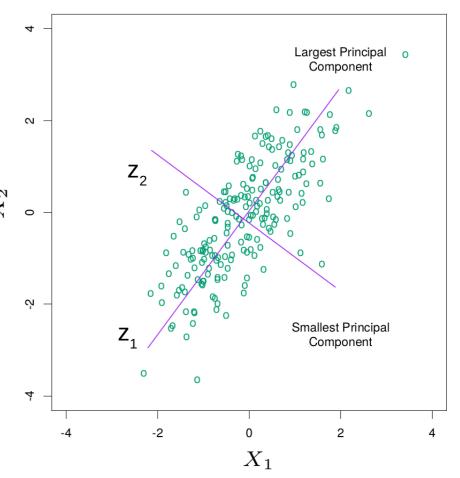
$$\operatorname{Var}(\mathbf{z}_1) = \operatorname{Var}(\mathbf{X}v_1) = \boxed{\frac{d_1^2}{N}}$$

Similar for other d_i

Principal component interpretation

Subsequent principal components z_j have maximum variance d_j^2/N , subject to being **orthogonal** to the earlier ones

- The last principal component has minimum variance
- Small singular values d_j correspond to directions in the column space of X having small variance
- Ridge regression shrinks these directions the most



- Implicit assumption: the response will tend to vary most in the directions of high variance of the inputs
- Often reasonable but need not hold in general

Effective degrees of freedom

- Although all p coefficients in a ridge fit will be non-zero, they are fit in a restricted fashion controlled by λ.
- The effective degree of freedom of the ridge regression fit is:

$$df(\lambda) = tr[\mathbf{X}(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T]$$

$$= tr(\mathbf{H}_{\lambda})$$

$$= \sum_{j=1}^{p} \frac{d_j^2}{d_j^2 + \lambda}.$$

- $df(\lambda) = p$ when $\lambda = 0$ (no regularization)
- $df(\lambda) \rightarrow 0$ as $\lambda \rightarrow \infty$.

Ridge coefficient estimate for prostate cancer example

Term	LS	Best Subset	Ridge
Intercept	2.465	2.477	2.452
lcavol	0.680	0.740	0.420
lweight	0.263	0.316	0.238
age	-0.141		-0.046
lbph	0.210		0.162
svi	0.305		0.227
lcp	-0.288		0.000
gleason	-0.021		0.040
pgg45	0.267		0.133
Test Error	0.521	0.492	0.492
Std Error	0.179	0.143	0.165

Ridge regression **reduces the test error** of the full least squares estimates by a **small amount**

LASSO regression

• The **lasso estimate** is defined by

$$\hat{\beta}^{\mathrm{lasso}} = \operatorname*{argmin}_{\beta} \bigg\{ \frac{1}{2} \sum_{i=1}^{N} \big(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \big)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \bigg\}$$
 Goodness-of-fit Penalty

Lagrangian form

Complexity parameter: controls the amount of shrinkage

- The ${\bf L_2}$ ridge penalty $\sum_1^p\beta_j^2$ is ${\bf replaced}$ by the ${\bf L_1}$ lasso penalty $\sum_1^p|\beta_j|$
- The nature of the shrinkage causes some of the coefficients to be exactly zero (kind of continuous subset selection)

LASSO regression

Alternative (non-Lagrangian) form of the lasso problem:

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$

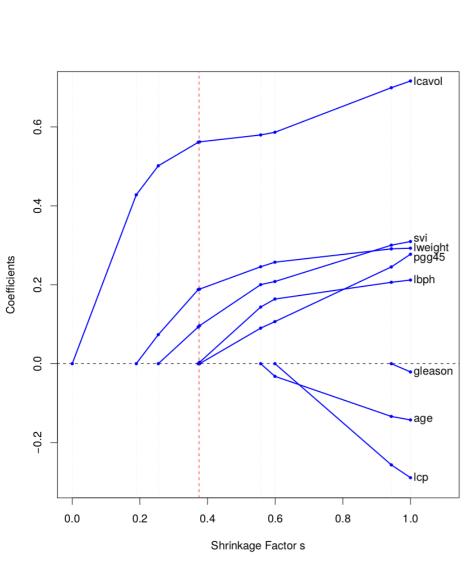
$$\text{subject to } \sum_{j=1}^{p} |\beta_j| \le t.$$

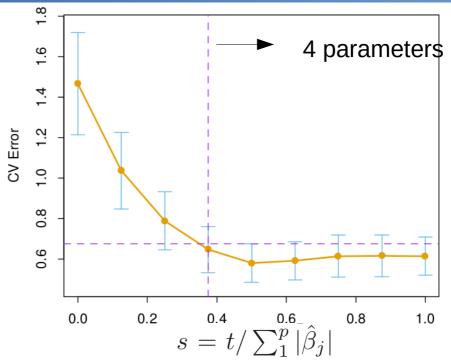
- If t is chosen lager than $t_0 = \sum_1^p |\hat{\beta}_j|$ then no shrinkage is performed.
- For $t=t_0/2$ for instance, OLS coefficients are shrunk of 50% on average.
- The nature of shrinkage is not obvious.

Complexity

- The LASSO constraint makes the solution **nonlinear** in the yi
- No closed form expression as in ridge regression
- Quadratic programming problem
- The complexity parameter should be chosen to minimize an estimate of the expected prediction error (cross validation)

Coefficient estimate for prostate cancer example

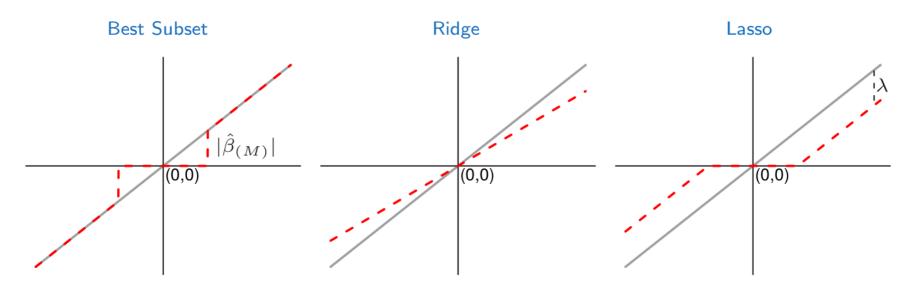




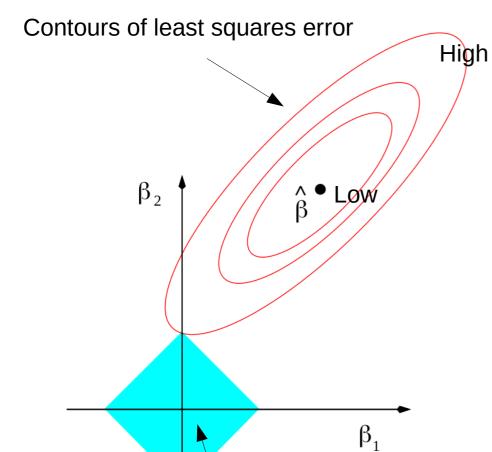
Term	LS	Best Subset	Ridge	Lasso
Intercept	2.465	2.477	2.452	2.468
lcavol	0.680	0.740	0.420	0.533
lweight	0.263	0.316	0.238	0.169
age	-0.141		-0.046	
lbph	0.210		0.162	0.002
svi	0.305		0.227	0.094
lcp	-0.288		0.000	
gleason	-0.021		0.040	
pgg45	0.267		0.133	
Test Error	0.521	0.492	0.492	0.479
Std Error	0.179	0.143	0.165	0.164

"Nature of shrinkage": comparison (1/2)

Estimator	Formula
Best subset (size M)	$\hat{\beta}_j \cdot I(\hat{\beta}_j \ge \hat{\beta}_{(M)})$
Ridge	$\hat{\beta}_j/(1+\lambda)$
Lasso	$\operatorname{sign}(\hat{\beta}_j)(\hat{\beta}_j - \lambda)_+$



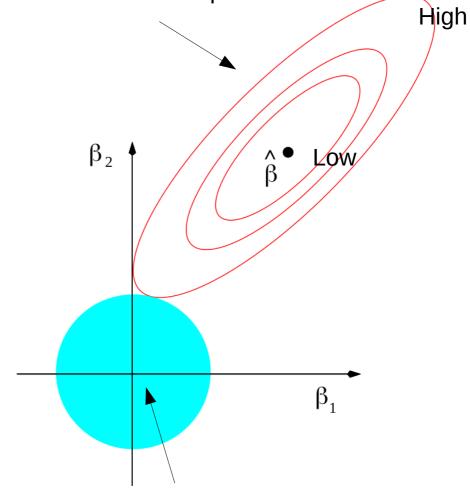
"Nature of shrinkage": comparison (2/2)



Contours of constraint function

$$|\beta_1| + |\beta_2| \le t$$

Contours of least squares error



Contours of constraint function

$$\beta_1^2 + \beta_2^2 \le t^2$$

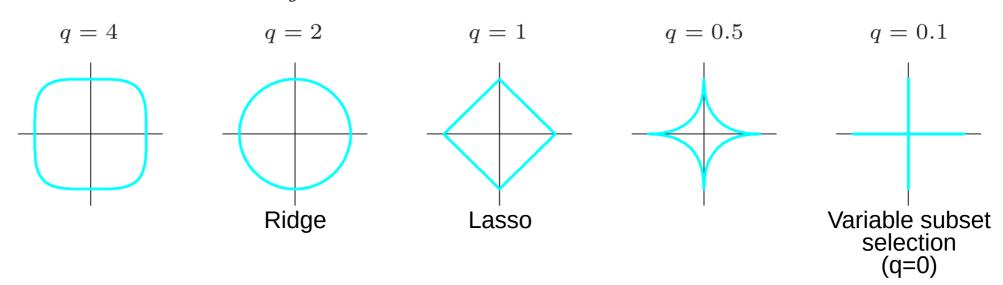
Generalizations of ridge and lasso regression

Ridge regression and lasso can be generalized by

$$\tilde{\beta} = \operatorname{argmin}_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\}$$

where $q \ge 0$.

• The contours of $\sum_{j} |\beta_{j}|^{q}$ for different q are shown in the following:



- **Lasso** sets coefficients to zero because its $|\beta|^1$ is not differentiable at 0 **Ridge** shrinks together coefficients of correlated variables
- How to put these two effects together?

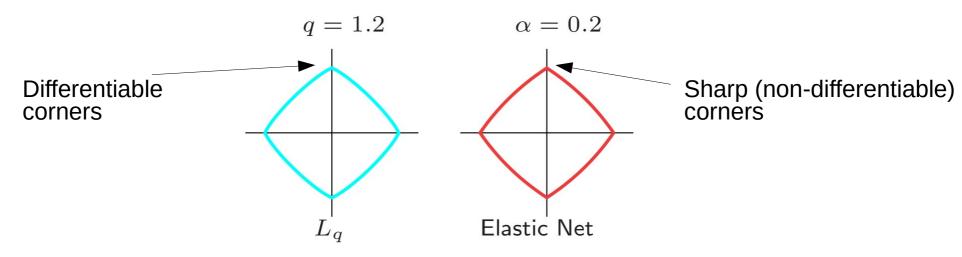
Elastic net regression

- One possibility is to use q in (1,2), such as q=1.2
- The elastic net penalty (Zou and Hastie, 2005)

$$\lambda \sum_{j=1}^{p} \left(\alpha \beta_{j}^{2} + (1-\alpha)|\beta_{j}|\right),$$
Ridge Lasso

is a different compromise

 It selects variable like lasso, and shrinks together the coefficients of correlated predictors like ridge



Contours of constraint function

See text of Exercise 4

References

[Hastie 2009] Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (second edition). Springer. 2009.