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    Introduction

● Linear regression model assumption: 

the regression function E(Y|X) is linear in the inputs X
1
,…,X

p
 

● Linear models:

● simple

● interpretable

● can sometime outperform fancier nonlinear models (e.g., small 
training set, low signal-to-noise ratio, sparse data)

● can be applied to transformations of the input



    Linear regression model

● Input vector: XT = (X
1
, X

2
,…,X

p
)

● Goal: to predict a real-valued output Y

● Linear regression model: 

where:

● The           are unknown parameters 

● X
j
 are variables of possibly different type (e.g., quantitative, 

transformations as log or square-root, polynomials, “dummy” 
coding of levels, interactions between variables as X

3
=X

1
*X

2
)

●  coding of levels: example

The model is linear in the parameters



    Least squares

● Training data: (x
1
,y

1
) … (x

N
,y

N
)

● where each x
i
 = (x

i1
, x

i2
,…,x

ip
)T is a vector of feature 

measurements

● Model parameters       are estimated from training data

● Least squares: the most popular estimation method

● We pick the parameters                                        that minimize the 
residual sum of squares:



    Conditions and geometrical interpretation

● The least squares criterion is valid if

● the training observations (x
i
, y

i
) represent independent random 

draws from their population

● The y
i
’s are conditionally independent given the inputs x

i
 

● Geometry of least-squares fitting in a 3 dimensional space

The RSS criterion 
measures the average 

lack of fit



    Parameter estimation: minimization of the RSS

● X is the N x (p + 1) matrix with each row an input vector from the 
training set (with a 1 in the first position, the intercept)

● y is the N-vector of outputs in the training set

● Then the RSS can be written as:

● This is a quadratic function in p+1 parameters. Differentiating w.r.t. 

● Assuming that X has a full column rank, XTX is positive definite, 
then  we set the first derivative to 0

  to obtain the unique solution

.     =

     Covariance 
     matrix

Positive
eigenvalues



    Prediction

● The fitted values of the training inputs are

● The matrix                                       is called “hat” matrix or 
projection matrix

Residual vector orthogonal 
to the column space of X



    Linearly dependent columns

● If the columns of X are not linearly independent than X is not full-
rank (e.g., if x

2
=3x

1
)

● In that case XTX is singular

● Then the least squares coefficients     are not uniquely defined

● There is more than one way to express the projection of y onto X

● A natural way to resolve the non-uniqueness is to drop redundant 
columns from X

● Rank deficiencies can also occur when the number of inputs p 
exceeds the number of training cases N (filtering, regularization)



    Sampling properties for β

● Since independent variables X and response y are random 

variables, and                                 (linear combination of X and y) 

then also     is a random variable, and in particular it follows a 

multivariate normal distribution

where 

● β are the parameters of the correct model 

●                       is the covariance matrix of the least squares 

parameter estimate which can be derived from

● the variance σ2 is typically estimated by

Covariance
matrix

Unbiesed estimator



    Test hypothesis β
j
 = 0

● The significance of a single parameter can be tested by the

Z-score:

where v
j
 is the j-th diagonal element of (XTX)-1

● Under the null hypothesis that β
j
 = 0, z

j 
 is distributed as t

N-p-1
 

(t-distribution with N-p-1 degrees of freedom)

● Large absolute value of z
j
 leads to rejection of the null hypothesis

Rejection null hypothesis



    Test hypothesis (β
j1
, β

j2
, …, β

jk
,)= 0

● The significance of a group of coefficients can be tested 

simultaneously by the F statistic

where 

● RSS
1
 is the residual sum-of-squares for the larger model 

having p
1
 parameters

● RSS
0
 is the residual sum-of-squares for the smaller model having 

p
0
 parameters

● Under the Gaussian assumptions and the null hypothesis that 
the smaller model is correct the F statistics has a F

p1-p0,N-p1-1
 

distribution

● For large N the quantiles of F
p1-p0,N-p1-1

 approach those of χ2
p1-p0

It measures the 
change in RSS per 
additional parameter



    Confidence intervals 

● By isolating β
j
 in                                             we obtain the following  

1 – 2α confidence interval for β
j

where z(1-α) is the 1 – α percentile of the normal distribution

and               is the standard error se(β
j
)

● The standard practice of reporting β
j
 + 2*se(β

j
) amounts to an 

approximate 95% confidence interval



    Exercise: Prediction on the prostate cancer dataset



    Dataset

Reference:

[Stamey et al. (1989)] Stamey, T., Kabalin, J., McNeal, J., Johnstone, I., Freiha, F., 
Redwine, E. and Yang, N. (1989). Prostate specific antigen in the diagnosis and 
treatment of adenocarcinoma of the prostate II radical prostatectomy treated 
patients, Journal of Urology 16: 1076–1083.

Type of analysis:

Correlation between the level of prostate-specific antigen and a number of 
clinical measures in men who were about to receive a radical prostatectomy



    Dataset

Variables:

● lcavol: log cancer volume
● lweight: log prostate weight
● age: the patient age
● lbph: log of the amount of benign prostatic hyperplasia
● svi: seminal vesicle invasion (categorical)
● lcp: log of capsular penetration
● gleason: Gleason score (categorical)
● pgg45: percent of Gleason scores 4 or 5

● lpsa: level of prostate-specific antigen

Independent (X)

Dependent (Y)



    Correlation analysis

Correlation matrix



    Scatter plots

Response

(Cat)

(Cat)



    Linear regression model
● Predictor standardization to have unit variance

● Random split of the dataset 

● 67 samples in the training set
● 30 samples in the test set

● Parameter estimation by least squares on the training set

Model parameters, standard error and Z score



    Analysis of the model

Parameter significance:

● Z score greater than 2 in absolute value is approximately significant at 5% level

● lcavol shows the strongest effect (Z score 5.37)

● lweight and svi also strong (Z scores 2.75 and 2.47, respectively)

● lcp not significant once lcavol in the model (but in a model without lcavol is significant)

● Dropping all non significant terms, namely age, lcp, gleason, pgg45 we get

with p-value 0.17 (Pr(F
4,58

 > 1.67) = 0.17), hence it is not significant.

Model performance:

● Model mean prediction error on test set: 0.521

● Prediction using the mean training value of lpsa has test error of 1.057 (base error 
rate)

● The model reduces the base error rate by about 50% (R2=0.521/1.057=0.493)

H
0
: model without age, lcp, 

gleason, pgg4 is correct 

Not
rejected
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