Linear Methods for Regression

Statistical methods for data analysis – Machine learning

Alberto Castellini University of Verona • Linear regression model **assumption**:

the **regression function** E(Y|X) is **linear** in the inputs X_1, \dots, X_p

- Linear models:
 - simple
 - interpretable
 - can sometime outperform fancier nonlinear models (e.g., small training set, low signal-to-noise ratio, sparse data)
 - can be applied to **transformations** of the input

Linear regression model

- Input vector: $X^T = (X_1, X_2, ..., X_p)$
- Goal: to predict a real-valued output Y
- Linear regression **model**:

$$f(X) = \beta_0 + \sum_{j=1}^p X_j \beta_j$$

where:

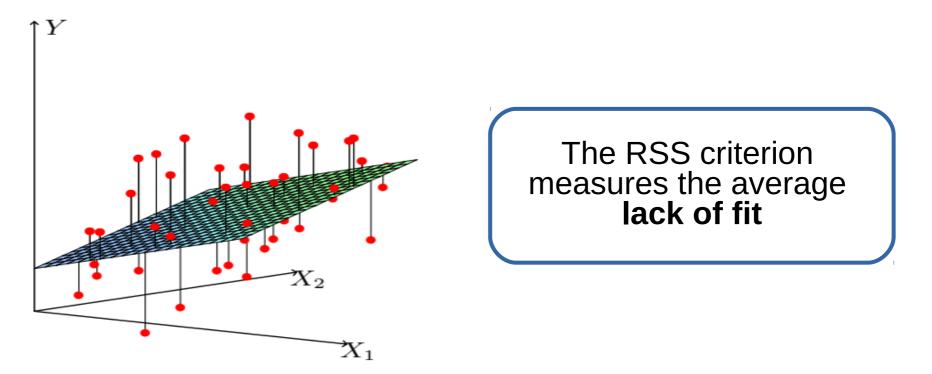
- The β_j 's are unknown parameters
- X_j are variables of possibly different type (e.g., quantitative, transformations as log or square-root, polynomials, "dummy" coding of levels, interactions between variables as X₃=X₁*X₂)
 - coding of levels: example

The model is linear in the parameters

- Training data: $(x_1, y_1) \dots (x_N, y_N)$
 - where each $x_i = (x_{i1}, x_{i2}, \dots, x_{ip})^T$ is a vector of feature measurements
- Model parameters β_j are estimated from training data
- Least squares: the most popular estimation method
 - We pick the parameters $\beta = (\beta_0, \beta_1, \dots, \beta_p)^T$ that minimize the **residual sum of squares**:

RSS(
$$\beta$$
) = $\sum_{i=1}^{N} (y_i - f(x_i))^2$
= $\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2$

- The least squares criterion is **valid** if
 - the training observations (x_i, y_i) represent independent random draws from their population
 - The y_i 's are **conditionally independent** given the inputs x_i
- Geometry of least-squares fitting in a 3 dimensional space



Parameter estimation: minimization of the RSS

- X is the N x (p + 1) matrix with each row an input vector from the training set (with a 1 in the first position, the intercept)
- y is the N-vector of outputs in the training set
- Then the **RSS** can be written as:

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$

• This is a quadratic function in p+1 parameters. Differentiating w.r.t. β

$$\frac{\partial RSS}{\partial \beta} = -2\mathbf{X}^T (\mathbf{y} - \mathbf{X}\beta)$$
$$\frac{\partial^2 RSS}{\partial \beta \partial \beta^T} = 2\mathbf{X}^T \mathbf{X}.$$

 Assuming that X has a full column rank, X^TX is positive definite, then we set the first derivative to 0

$$\mathbf{X}^T(\mathbf{y} - \mathbf{X}\beta) = 0$$

Positive eigenvalues

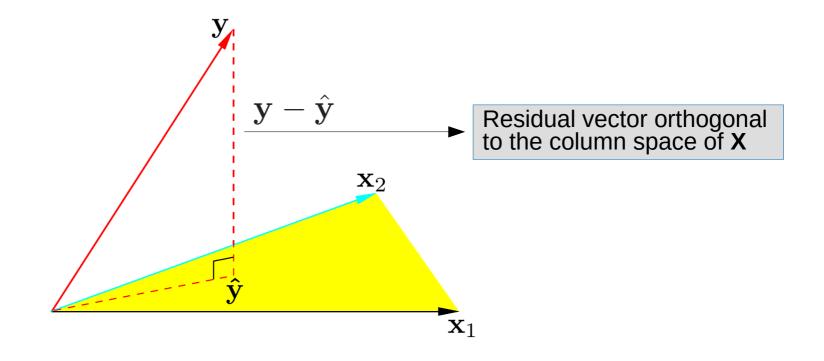
to obtain the unique solution

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

• The fitted values of the training inputs are

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

- The matrix $\mathbf{H}=\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ is called "hat" matrix or projection matrix



- If the columns of X are not linearly independent than X is not fullrank (e.g., if x₂=3x₁)
- In that case X^TX is **singular**
- Then the least squares coefficients $\hat{\beta}$ are **not uniquely defined**
- There is more than one way to express the projection of y onto X
- A natural way to resolve the non-uniqueness is to drop redundant columns from X
- Rank deficiencies can also occur when the number of inputs p exceeds the number of training cases N (filtering, regularization)

Sampling properties for β

• Since independent variables X and response *y* are random variables, and $\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ (linear combination of X and y) then also $\hat{\beta}$ is a **random variable**, and in particular it follows a **multivariate normal distribution**

$$\hat{\beta} \sim N(\beta, (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2)$$

$$\blacktriangleright \text{ Unbiesed estimator}$$

where

- β are the parameters of the correct model $f(X) = \beta_0 + \sum_{j=1}^{\infty} X_j \beta_j$
- $(\mathbf{X}^T \mathbf{X})^{-1} \sigma^2$ is the **covariance matrix** of the least squares parameter estimate which can be derived from $\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$
- the variance σ^2 is typically estimated by

$$\hat{\sigma}^2 = \frac{1}{N - p - 1} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Test hypothesis $\beta_i = 0$

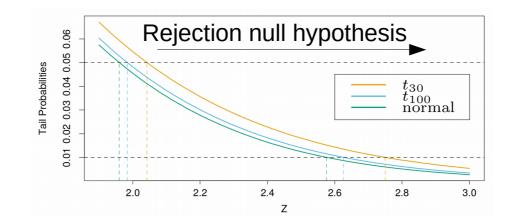
• The significance of a single parameter can be tested by the

Z-score:

$$z_j = \frac{\hat{\beta}_j}{\hat{\sigma}\sqrt{v_j}}$$

where v_i is the j-th diagonal element of $(X^T X)^{-1}$

- Under the **null hypothesis** that $\beta_j = 0$, z_j is distributed as t_{N-p-1} (**t-distribution** with N-p-1 degrees of freedom)
- Large absolute value of z_i leads to rejection of the null hypothesis



Test hypothesis $(\beta_{i1}, \beta_{i2}, ..., \beta_{ik}) = 0$

• The **significance** of a **group of coefficients** can be tested

simultaneously by the F statistic

$$F = \frac{(\text{RSS}_0 - \text{RSS}_1)/(p_1 - p_0)}{\text{RSS}_1/(N - p_1 - 1)}$$

It measures the change in RSS per additional parameter

where

- RSS_1 is the residual sum-of-squares for the larger model having p_1 parameters
- \textbf{RSS}_0 is the residual sum-of-squares for the smaller model having p_0 parameters
- Under the Gaussian assumptions and the **null hypothesis** that the **smaller model is correct** the F statistics has a $F_{p1-p0,N-p1-1}$ **distribution**
- For large N the quantiles of $F_{_{p1-p0,N-p1-1}}$ approach those of $\chi^2_{_{p1-p0}}$

Confidence intervals

• By isolating β_j in $\hat{\beta} \sim N(\beta, (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2)$ we obtain the following $1 - 2\alpha$ confidence interval for β_i

$$(\hat{\beta}_j - z^{(1-\alpha)} v_j^{\frac{1}{2}} \hat{\sigma}, \ \hat{\beta}_j + z^{(1-\alpha)} v_j^{\frac{1}{2}} \hat{\sigma})$$

where $z^{(1-\alpha)}$ is the $1-\alpha$ percentile of the normal distribution

$$z^{(1-0.025)} = 1.96,$$

 $z^{(1-.05)} = 1.645.$

and $\hat{\sigma}\sqrt{v_j}$ is the **standard error** se(β_j)

• The standard practice of reporting $\beta_j + 2*se(\beta_j)$ amounts to an approximate 95% confidence interval

Exercise: Prediction on the prostate cancer dataset

Reference:

[Stamey et al. (1989)] Stamey, T., Kabalin, J., McNeal, J., Johnstone, I., Freiha, F., Redwine, E. and Yang, N. (1989). *Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate II radical prostatectomy treated patients*, Journal of Urology 16: 1076–1083.

Type of analysis:

Correlation between the **level of prostate-specific antigen** and a number of **clinical measures** in men who were about to receive a radical prostatectomy

	А	В	С	D	E	F	G	Н	1	J	К
1		lcavol	lweight	age	lbph	<u>svi</u>	lcp	gleason	pgg45	lpsa	train
2	1	-0.579818495	2.769459	50	-1.38629436	0	-1.38629436	6	0	-0.4307829	Т
3	2	-0.994252273	3.319626	58	-1.38629436	0	-1.38629436	6	0	-0.1625189	Т
4	3	-0.510825624	2.691243	74	-1.38629436	0	-1.38629436	7	20	-0.1625189	Τ

Variables:

- Icavol: log cancer volume
- *lweight:* log prostate weight
- age: the patient age
- **Ibph**: log of the amount of benign prostatic hyperplasia
- **svi**: seminal vesicle invasion (categorical)
- *Icp*: log of capsular penetration
- gleason: Gleason score (categorical)
- pgg45: percent of Gleason scores 4 or 5
- Ipsa: level of prostate-specific antigen

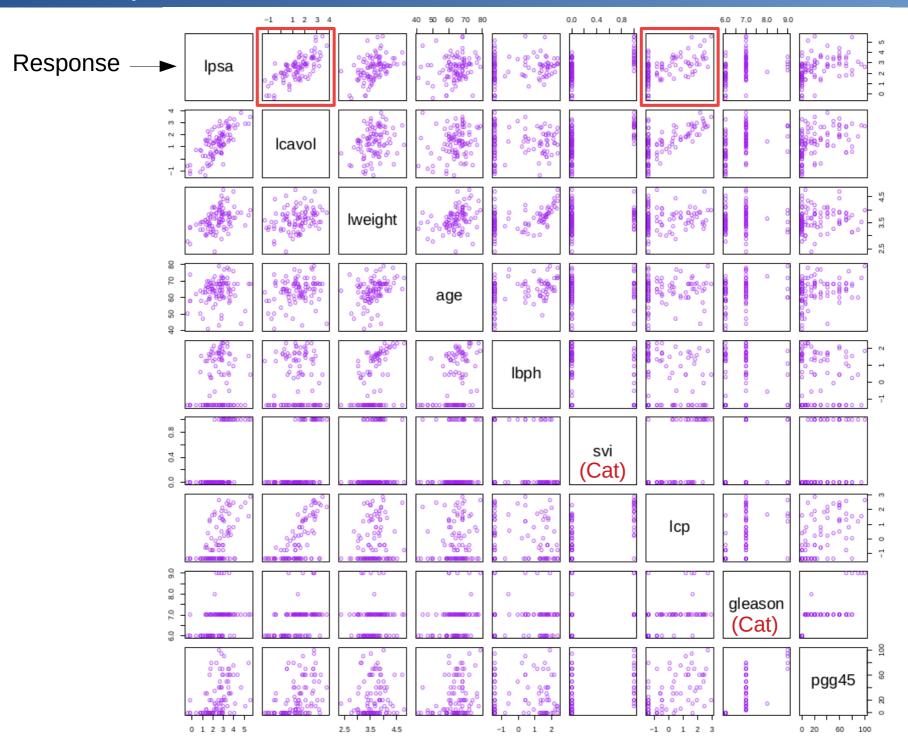
Independent (X)

Dependent (Y)

	lcavol	lweight	age	lbph	svi	lcp	gleason
lweight	0.300						
age	0.286	0.317					
lbph	0.063	0.437	0.287				
svi	0.593	0.181	0.129	-0.139			
lcp	0.692	0.157	0.173	-0.089	0.671		
gleason	0.426	0.024	0.366	0.033	0.307	0.476	
pgg45	0.483	0.074	0.276	-0.030	0.481	0.663	0.757

Correlation matrix

Scatter plots



Linear regression model

- Predictor standardization to have unit variance
- Random **split** of the dataset
 - 67 samples in the training set
 30 samples in the test set
- Parameter estimation by **least squares** on the training set

Term	Coefficient	Std. Error	Z Score
Intercept	2.46	0.09	27.60
lcavol	0.68	0.13	5.37
lweight	0.26	0.10	2.75
age	-0.14	0.10	-1.40
lbph	0.21	0.10	2.06
svi	0.31	0.12	2.47
lcp	-0.29	0.15	-1.87
gleason	-0.02	0.15	-0.15
pgg45	0.27	0.15	1.74

Model parameters, standard error and Z score

Analysis of the model

Parameter significance:

- Z score greater than 2 in absolute value is approximately significant at 5% level
- *Icavol* shows the strongest effect (Z score 5.37)
- *Iweight* and *svi* also strong (Z scores 2.75 and 2.47, respectively)
- Icp not significant once Icavol in the model (but in a model without Icavol is significant)
- Dropping all non significant terms, namely **age**, **Icp**, **gleason**, **pgg45** we get

$$F = \frac{(32.81 - 29.43)/(9 - 5)}{29.43/(67 - 9)} = 1.67$$

H_o: model without age, lcp, gleason, pgg4 is correct

with p-value 0.17 ($Pr(F_{4.58} > 1.67) = 0.17$), hence it is not significant. \rightarrow rejected

Model performance:

- Model mean prediction error on test set: 0.521
- Prediction using the mean training value of *lpsa* has test error of 1.057 (base error rate)
- The model reduces the base error rate by about 50% (R²=0.521/1.057=0.493)

References

[Hastie 2009] Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (second edition). Springer. 2009.