
Artificial (deep) Neural Networks

Prediction of house value: the California housing dataset

Statistical Learning – Part II

Alberto Castellini
University of Verona

 Overview

● Keras: Python deep learning library

● Case study and dataset: the California housing dataset

● Neural network model generation

● Exercise

 Libraries

 Keras: Python Deep Learning Library

Reference: https://keras.io/

Keras is:
● a high-level neural networks API
● written in Python
● capable of running on top of TensorFlow and other libraries
● developed with a focus on enabling fast experimentation

Use Keras if you need a deep learning library that:
● allows for easy and fast prototyping
● supports both convolutional networks and recurrent networks
● runs seamlessly on CPU and GPU

Keras is compatible with Python 2.7-3.6

https://keras.io/

 TensorFlow and other libraries/environments

TensorFlow is:
● an end-to-end open source platform for machine learning
● comprehensive, flexible ecosystem of tools, libraries and community

resources
● A tool for easily build and deploy ML powered applications
● Reference: https://www.tensorflow.org/

PyTorch is an open source machine learning framework that accelerates the
path from research prototyping to production deployment.

Reference: https://pytorch.org/

Colab is a free Jupyter notebook environment that requires no setup and
runs entirely in the cloud.

Reference: https://colab.research.google.com/

 Case study and dataset

 Dataset: California Housing

This dataset was derived from the 1990 U.S. census, using one row per
census block group. A block group is the smallest geographical unit for which
the U.S. Census Bureau publishes sample data (a block group typically has a
population of 600 to 3,000 people).

References:
● on Scikit-learn:

https://scikit-learn.org/stable/datasets/index.html#california-housing-dataset
● on StatLib repository: http://lib.stat.cmu.edu/datasets/
● Kaggle datasets:

https://www.kaggle.com/camnugent/california-housing-prices

https://scikit-learn.org/stable/datasets/index.html#california-housing-dataset
http://lib.stat.cmu.edu/datasets/

 Dataset: California Housing

Dataset characteristics:
● # instances: 20640

● # variables: 8 numeric predictors, 1 target

● Variable names:
● MedInc (mi): median income in block
● HouseAge (ha): median house age in block
● AveRooms (ar): average number of rooms
● AveBedrms (ab): average number of bedrooms
● Population (p): block population
● AveOccup (ao): average house occupancy
● Latitude (lt): house block latitude
● Longitude (lg): house block longitude
● Target (v): median house value for California districts

● Missing values: none

 Scatter matrix

 Artificial Neural Networks - model generation

 Model creation and usage with Keras: a toy example

model = Sequential() # 1

model.add(Dense(10, input_dim=X_train.shape[1], activation='relu')) # 2

model.add(Dense(30, activation='relu')) # 3

model.add(Dense(40, activation='relu'))

model.add(Dense(1)) # 4

model.compile(optimizer ='adam', loss = 'mean_squared_error', metrics
=[metrics.mae]) # 5

history = model.fit(X_train, y_train, validation_data=(X_val, y_val),
epochs=150, batch_size=32) # 6

model.summary() # 7

pred = model.predict(X_test) # 8

 1. Generation of Sequential model

model = Sequential() # 1

● The Sequential model is a linear stack of layers

● It can be created
i) by passing a list of layer instances to the constructor
ii) by adding layers after the creation via the .add() method

Reference:
● Getting started with the Keras Sequential model (https://keras.io/getting-

started/sequential-model-guide/)

 2. Addition of input layer

model.add(Dense(10, input_dim=X_train.shape[1], activation='relu')) # 2

● The model needs to know what input shape it should expect

● The first layer in a Sequential model (and only the first, because following
layers can do automatic shape inference) needs to receive information
about its input shape

● Dense: implements the operation:

output = activation(dot(input, kernel) + bias)

● activation is the element-wise activation function
● kernel is a weights matrix
● bias is a bias vector

Reference:
● Keras documentation: https://keras.io/layers/core/

I
1

I
8

W

Dense

 2a. Activation functions

Available activation functions:

● sigmoid

● hard sigmoid

● softmax

● tanh: hyperbolic tangent activation function

● relu: rectified linear unit

f(x) = element-wise max(x,0)
where x=sum

j
(I

j
 * w

j
+ b

j
)

Reference:
● Keras documentation: https://keras.io/activations/

Activation
Function

(e.g., sigmoid)
I1

I2

In

...

w1

w2

wn

 3. Addition of internal layer

model.add(Dense(30, activation='relu')) # 3

● Following layers can do automatic shape inference

I
1

I
8

W1

Dense 1

Dense 2

W2

(10)

(30)

 4. Output layer

model.add(Dense(1)) # 4

● Following layers can do automatic shape inference

I
1

I
8

W1

Dense 1

Dense 2

W2

(10)

(30)

Dense 3

W3

(40)

W3

 5. Compilation

model.compile(optimizer ='adam', loss = 'mean_squared_error', metrics
=[metrics.mae]) # 5

● Before training a model, you need to configure the learning process via the

compile method

● Input:
● Optimizer (e.g., adam, see https://arxiv.org/abs/1412.6980v8): an

algorithm for first-order gradient-based optimization of stochastic
objective functions, based on adaptive estimates of lower-order
moments
Ref: https://keras.io/optimizers/

● Loss function: the objective that the model will try to minimize
Ref: https://keras.io/losses/

● A list of metrics: used to judge the performance of your model (e.g.,
accuracy, mean absolute error)
Ref: https://keras.io/metrics/

https://arxiv.org/abs/1412.6980v8
https://keras.io/optimizers/
https://keras.io/losses/
https://keras.io/metrics/

 6. Training

history = model.fit(X_train, y_train, validation_data=(X_val, y_val),
epochs=150, batch_size=32) # 6

● Keras models are trained on Numpy arrays of input data and labels

Load data
df_train = pd.read_csv("../input/test.csv", index_col=0)
df_test = pd.read_csv("../input/train.csv", index_col=0)

df_train_np = df_train.values
df_test_np = df_test.values

● validation_data: data on which to evaluate the loss and any model metrics
at the end of each epoch

● epochs: number of iterations of the training phase

● batch_size: number of samples per gradient update (default: 32)

Conversion to numpy array

Data load

 6. Training

Loss
(training)

MAE
(training)

Loss
(validation)

MAE
(validation)

MAE Loss

 7. Model summary

8 x 10

11 x 30

31 x 40

41

model.summary() # 7

 8. Prediction (on new data)

pred = model.predict(X_test) # 8

RMSE=0.760

 Exercise

 Exercise

● Browse the Keras library (tutorial and documentation cited in the slides)

● Load the California housing dataset

● Generate the artificial neural network model analyzed in this slides and
compare the results

● Test the following network structures and compare the results in terms of
training/validation MAE/loss, RMSE on test set:

● 1 layer containing a single neuron
● 1 layer containing 3 neurons
● 1 layer containing 10 neurons
● 2 layers containing respectively 10 and 30 neurons
● 3 layers containing respectively 10, 30 and 40 neurons

● Generate a chart in which the performance of these models are displayed
and compared

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

