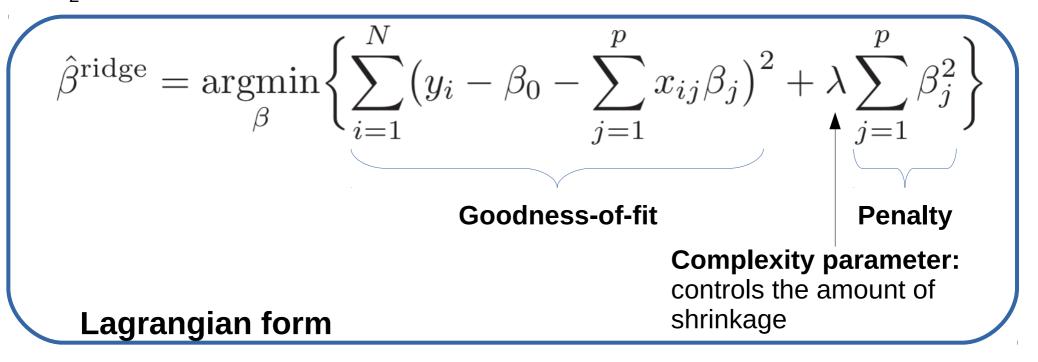
Linear Methods for Regression: Shrinkage Methods (Regularization)

Statistical learning – Part II

Alberto Castellini University of Verona

- **Subset selection** is a **discrete** process (variables are retained or discarded).
- It often exhibits high variance, thus it does not always reduce the prediction error of the full model.
- Shrinkage methods are more continuous and they do not suffer as much from high variability.

Ridge regression shrinks the regression coefficients imposing an L₂ penalty on their size



- The larger the value of λ , the greater the amount of shrinkage.
- Coefficients are **shrunk towards zero**.
- Penalization of the sum-of-squares of parameters is used also in *neural networks* (**weight decay**).

Equivalent way to write the Ridge problem

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 \le t,$$

The size constraint t on parameters is explicit.

In case of **many correlated variables**, coefficients of OLS may become poorly determined (high variance).

- A large positive coefficient in one variable can be **canceled** by a negative coefficient of a correlated variable
- This problem is alleviated by the above formulation (squared constraint penalizes large coefficients)

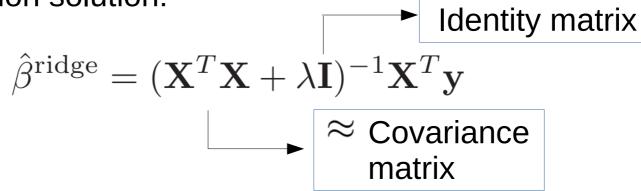
- Data **standardization** is needed since solutions are not equivalent under scaling.
- The intercept β_0 is not shrunk
- The computation of β^{ridge} can be separated in **two steps**:
 - 1. β_0 is estimated by $\bar{y} = \frac{1}{N} \sum_{1}^{N} y_i$
 - 2. **all coefficients except** β_0 are computed from centered x and without intercept by ridge regression

Matrix form for the ridge RSS

• Residual Sum of Squares:

$$RSS(\lambda) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta) + \lambda\beta^T \beta$$

• Ridge regression solution:

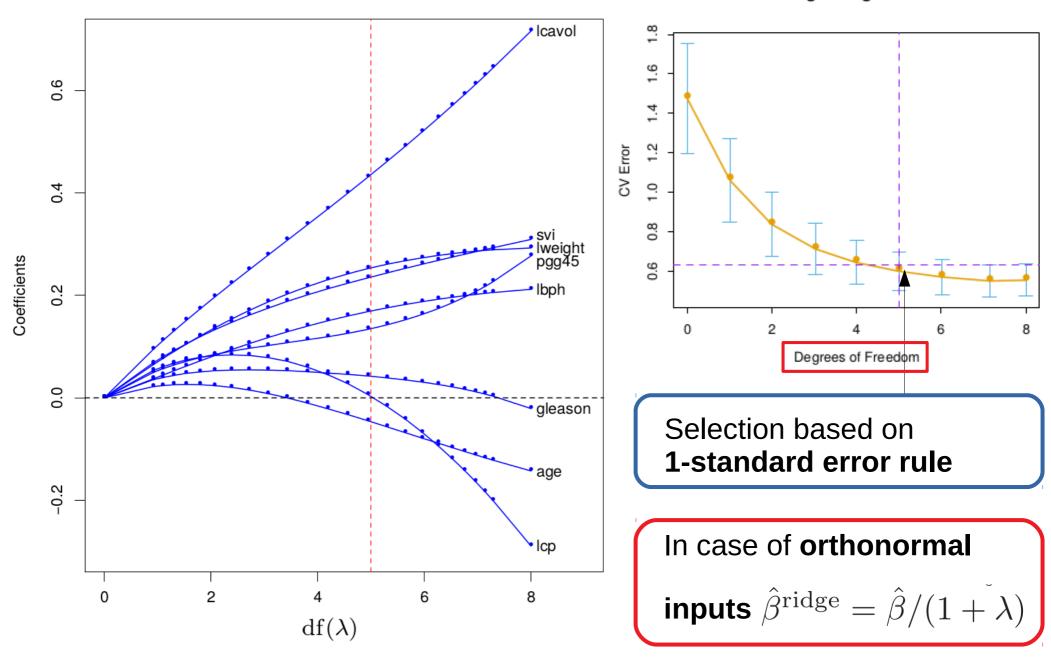


- The quadratic penalty $\beta^T\beta$ ensures that ridge regression solution is a linear function of y.
- The solution adds a positive constant to the diagonal of X^TX before inversion → nonsingular problem even if X has not full rank

Main motivation for ridge regression when it was introduced (Hoerl and Kennard, 1970)

Ridge coefficient estimate for prostate cancer example

Ridge Regression



Singular Value Decomposition (SVD) and Ridge regression

The **SVD** of the centered matrix X provides additional **insight** into the nature of the ridge regression.

The SVD of the N x p matrix **X** can be written as:

 $X = UDV^{T}$

- U and V orthogonal matrices
- Columns of U (Nxp) span the **column space** of X
- Columns of V (pxp) span the **row space** of X
- D is a p x p diagonal matrix with entries d1 >= d2 >= ... >= dp >=0 singular values of X.
- If one or more dj=0 then X is **singular**

Singular Value Decomposition (SVD) and Ridge regression

Using the SVD the **least squares fitted vector** can be written as:

$$\mathbf{X}\hat{\beta}^{\text{ls}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$
$$= \mathbf{U}\mathbf{U}^T\mathbf{y}, \longrightarrow$$

Similar to the OLS case
$$\hat{\mathbf{y}} = \mathbf{Q}\mathbf{Q}^T\mathbf{y}$$

(QR decomposition)

and the **ridge solutions** can be expressed as:

$$\begin{aligned} \mathbf{X} \hat{\beta}^{\text{ridge}} &= \mathbf{X} (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y} \\ &= \mathbf{U} \mathbf{D} (\mathbf{D}^2 + \lambda \mathbf{I})^{-1} \mathbf{D} \mathbf{U}^T \mathbf{y} \\ &= \sum_{j=1}^p \mathbf{u}_j \frac{d_j^2}{d_j^2 + \lambda} \mathbf{u}_j^T \mathbf{y}, \end{aligned}$$

Projection of Y on column space of X

where \mathbf{u}_i are the columns of U and $d_i^2 / (d_i^2 + \lambda) \le 1$.

- As in OLS, ridge regression computes the coordinates of y as linear combinations of the orthonormal basis U. Then it shrinks the coordinates by the factor d²_i / (d²_i + λ).
- The smaller d_i² the larger the amount of shrinkage.

Singular Value Decomposition (SVD) and Ridge regression

Using the SVD the **least squares fitted vector** can be written as:

$$\begin{aligned} \mathbf{X} \hat{\beta}^{\text{ls}} &= \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \\ &= \mathbf{U} \mathbf{U}^T \mathbf{y}, \quad \longrightarrow \quad \end{aligned}$$

Similar to the OLS case
$$\hat{\mathbf{y}} = \mathbf{Q}\mathbf{Q}^T\mathbf{y}$$

(QR decomposition)

and the **ridge solutions** can be expressed as:

$$\begin{aligned} \mathbf{X} \hat{\beta}^{\text{ridge}} &= \mathbf{X} (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y} \\ &= \mathbf{U} \mathbf{D} (\mathbf{D}^2 + \lambda \mathbf{I})^{-1} \mathbf{D} \mathbf{U}^T \mathbf{y} \\ &= \sum_{j=1}^p \mathbf{u}_j \underbrace{\frac{d_j^2}{d_j^2 + \lambda}} \mathbf{u}_j^T \mathbf{y}, \end{aligned}$$

Projection of Y on column space of X

where u_i are the columns of U and $d_i^2 / (d_i^2 + \lambda) \le 1$.

- As in OLS, ridge regression computes the coordinates of y as linear combinations of the orthonormal basis U. Then it shrinks the coordinates by the factor d²/ (d² + λ).
- The smaller d² the larger the amount of shrinkage.

What are the d?

Principal component interpretation

The **SVD** of the centered matrix X is a way of expressing the **principal component** of the variables in X.

Using the SVD, the **covariance matrix** can be written as:

$$\mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{D}^2 \mathbf{V}^T$$

which is the **eigen decomposition of X^TX**.

- The **eigenvectors** v_j (columns of V) are the **principal component** (Karhunen–Loeve) directions of X.
- The first principal component has the property that z₁ = X*v₁ has the largest sample variance

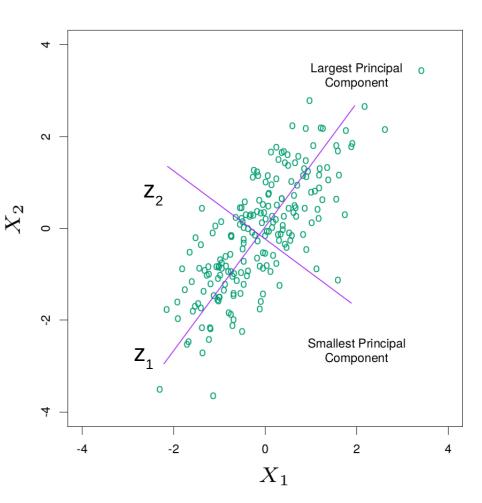
$$\operatorname{Var}(\mathbf{z}_1) = \operatorname{Var}(\mathbf{X}v_1) = \frac{d_1^2}{N}$$

• Similar for other d_i

Principal component interpretation

Subsequent principal components *z_j* have maximum variance **d**_j²/**N**, subject to being **orthogonal** to the earlier ones

- The last principal component has minimum variance
- Small singular values d_j correspond to directions in the column space of X having small variance
- Ridge regression shrinks these directions the most



- Implicit assumption: the response will tend to vary most in the directions of high variance of the inputs
- Often reasonable but need not hold in general

- Although all p coefficients in a ridge fit will be non-zero, they are fit in a restricted fashion controlled by λ.
- The effective degree of freedom of the ridge regression fit is:

$$df(\lambda) = tr[\mathbf{X}(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T]$$
$$= tr(\mathbf{H}_{\lambda})$$
$$= \sum_{j=1}^p \frac{d_j^2}{d_j^2 + \lambda}.$$

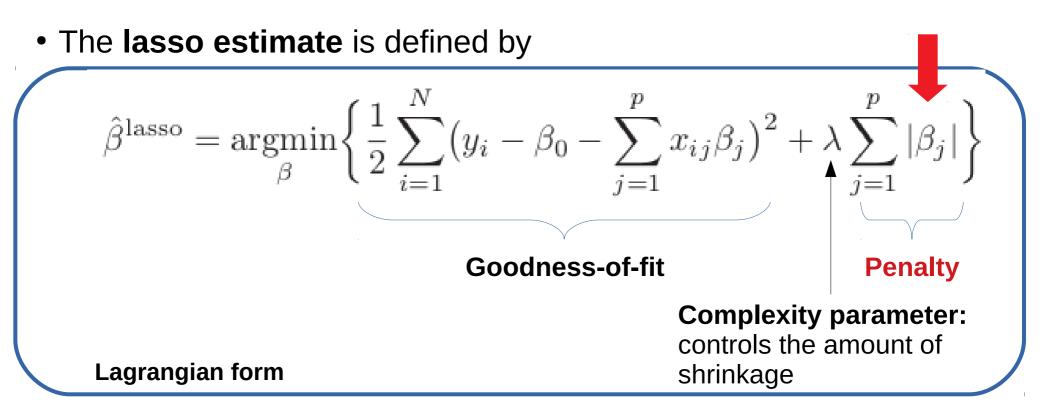
- df(λ) = p when λ = 0 (no regularization)
- df(λ) \rightarrow 0 as $\lambda \rightarrow \infty$.

Ridge coefficient estimate for prostate cancer example

				1
Term	LS	Best Subset	Ridge	
Intercept	2.465	2.477	2.452	
lcavol	0.680	0.740	0.420	
lweight	0.263	0.316	0.238	
age	-0.141		-0.046	
lbph	0.210		0.162	
svi	0.305		0.227	
lcp	-0.288		0.000	
gleason	-0.021		0.040	
pgg45	0.267		0.133	
Test Error	0.521	0.492	0.492	
Std Error	0.179	0.143	0.165	•

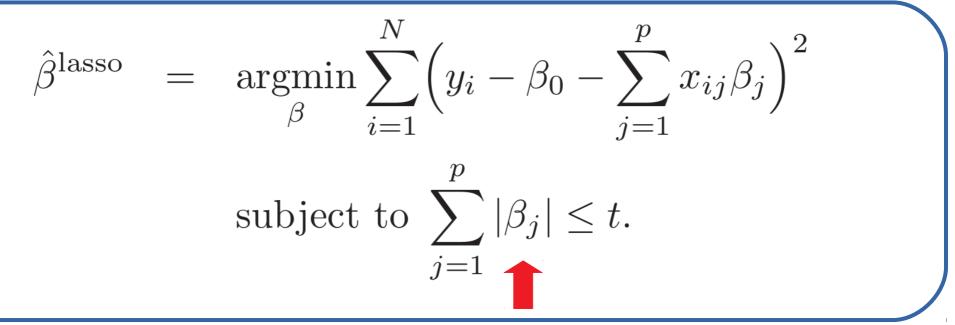
Ridge regression **reduces the test error** of the full least squares estimates by a **small amount**

LASSO regression



- The L₂ ridge penalty $\sum_{1}^{p} \beta_{j}^{2}$ is **replaced** by the L₁ lasso penalty $\sum_{1}^{p} |\beta_{j}|$
- The nature of the shrinkage causes some of the **coefficients to be exactly zero** (kind of **continuous subset selection**)

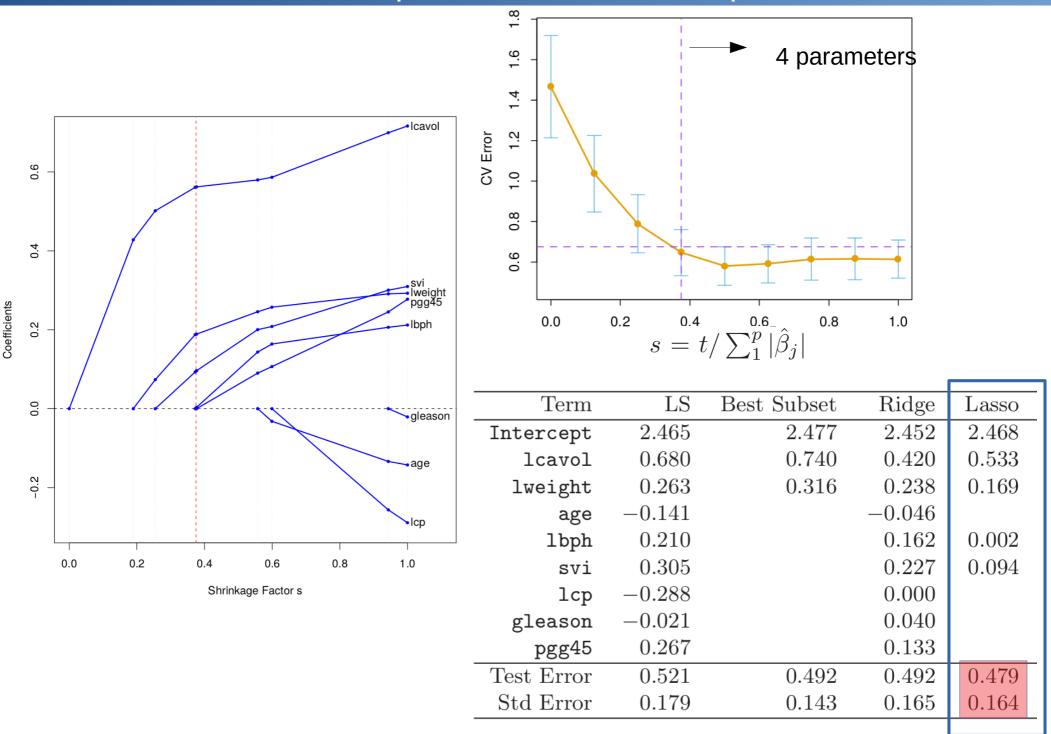
• Alternative (non-Lagrangian) form of the lasso problem:

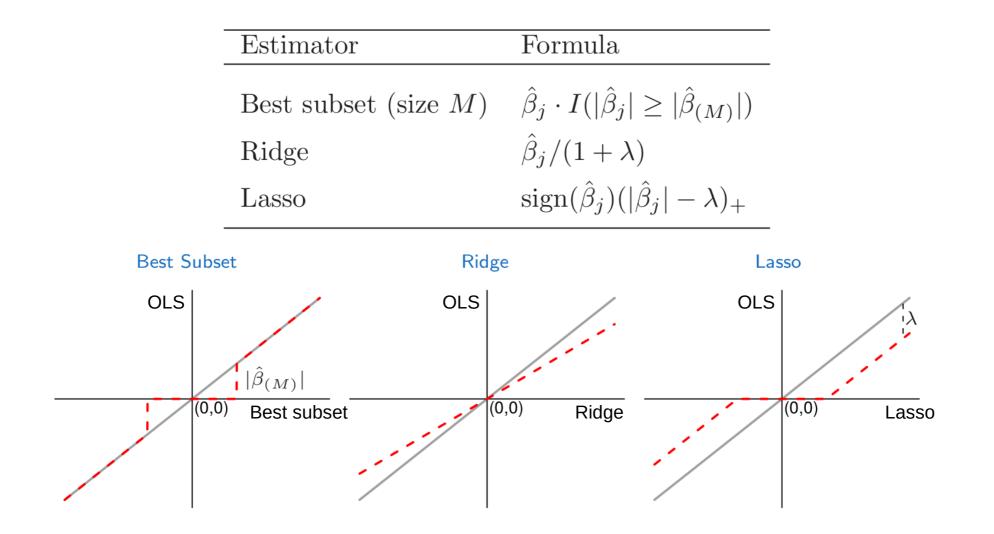


- If t is chosen lager than $t_0 = \sum_{j=1}^{p} |\hat{\beta}_j|$ then no shrinkage is performed.
- For $t = t_0/2$ for instance, OLS coefficients are shrunk of 50% on average.
- The nature of shrinkage is not obvious.

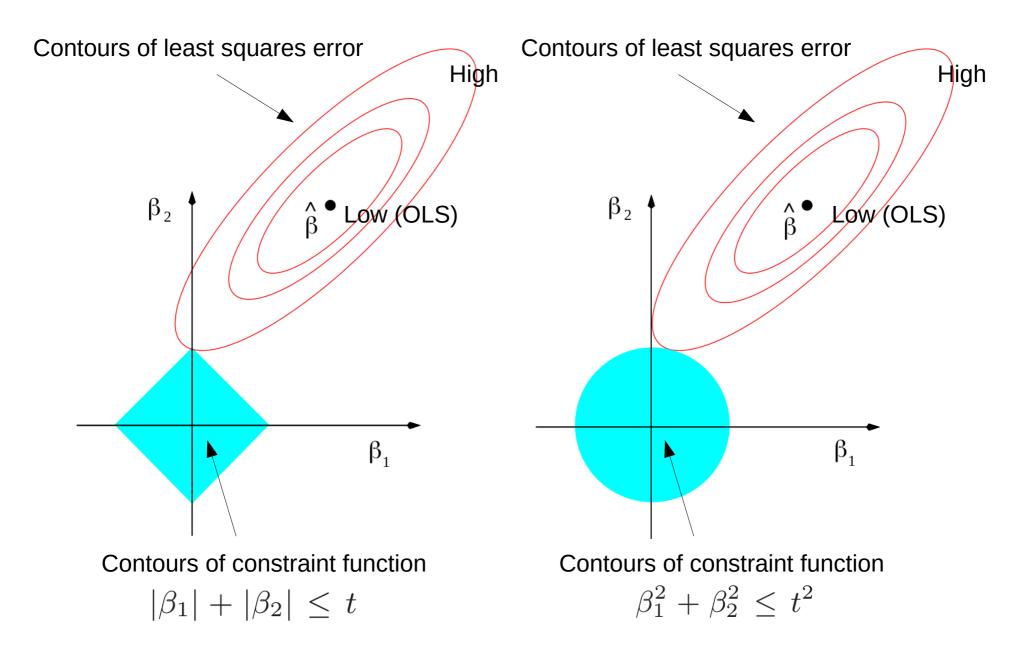
- The LASSO constraint makes the solution **nonlinear** in the y_i
- No closed form expression as in ridge regression
- Quadratic programming problem
- The complexity parameter should be chosen to minimize an estimate of the expected prediction error (cross validation)

Coefficient estimate for prostate cancer example





"Nature of shrinkage": comparison (2/2)



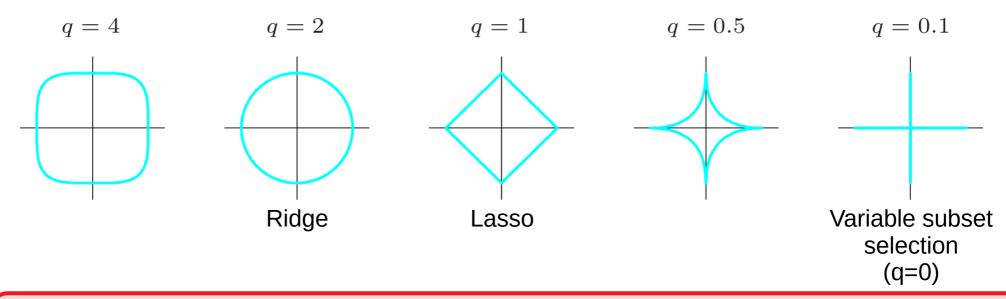
Generalizations of ridge and lasso regression

• Ridge regression and lasso can be generalized by

$$\tilde{\beta} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\}$$

where $q \ge 0$.

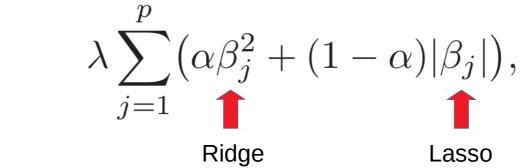
• The contours of $\sum_{j} |\beta_{j}|^{q}$ for different q are shown in the following:



- Lasso sets coefficients to zero because its $|\beta|^1$ is not differentiable at 0
- **Ridge** shrinks together coefficients of correlated variables
- How to put these two effects together?

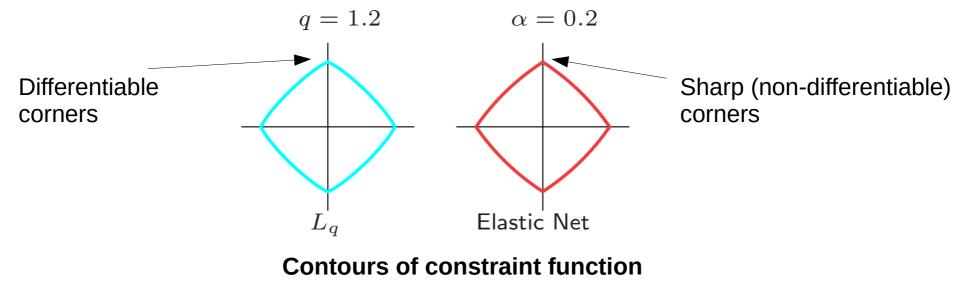
Elastic net regression

- One possibility is to use q in (1,2), such as q=1.2
- The elastic net penalty (Zou and Hastie, 2005)



is a different compromise

• It **selects variable** like lasso, and shrinks together the coefficients of correlated predictors like ridge



Exercise: Prediction on the prostate cancer dataset

See text of Exercise 4

References

[Hastie 2009] Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (second edition). Springer. 2009.