
On-Policy Prediction with Approximation

Reinforcement learning – LM Artificial Iintelligence
(2022-23)

Alberto Castellini
University of Verona

 Summary

 Introduction

 Value-function approximation

 The Prediction Objective

 Stochastic-Gradient and Semi-Gradient Methods

 Linear Value Function Approximation

 Feature Construction for Linear Methods (Hints)

 Nonlinear Value Function Approximation (Hints)

 Introduction

 Introduction to the second part of the course

 Second part of the course: How can we extend tabular RL methods
to apply them to problems with arbitrarily large state spaces?

 E.g., # possible camera images > # atoms in the universe

 Almost all states encountered have never been seen before →
Generalization from previously encountered (similar) states

 Optimal policies → Good approximate solutions

 Combine RL with function approximation (supervised learning)

 The RL setting introduces new issues to supervised learning:
e.g., nonstationarity, bootstrapping, delayed targets

 Introduction to this lecture

 Goal of this lecture: substitute tabular representations of state-
value function with function approximations

 Approximated are estimated from on-policy data, i.e., from
experience generated using the known policy .

 Approximations are based on parametrized functions
 where is the vector of parameters

 Example: might be a linear function in features of the state with
vector of feature weights, or a multilayer artificial neural network
with vector of connection weights, or a decision tree with split
points and leaf values of the tree

 Adjusting the weights several functions can be implemented

 Introduction to this lecture

 Typically, the number of weights is much less than the number of
states, i.e.,

 Changing one weight changes the estimated value of many states
(generalization)

 Generalization makes reinforcement learning more powerful but
also more difficult to manage and understand

 Extending RL to function approximation makes it applicable to
partially observable problems (i.e., full state not available)

 Value-function approximation

 Value-function approximation

 All prediction metods seen so far are based on updates of an
estimated value function

 MC update:

 TD update:

 DP update:

State updated Update
target

State updated Update
target

State updated Update
target

 Value-function approximation

 Can we interpret each update as specifying an example of the
desired input-output behaviour of the value function? Yes!

 Update in tabular representations of the value function: the table
entry for the estimated value of state s is shifted a fraction of the
way towards the targer u (estimated values of other states are
unchanged)

 Update in function approximations of the value function: arbitrary
complex parameter updates are available. Updating at state s can
change value estimations of other states

 Supervised learning can be used to compute weights using
function approximation methods

 Value-function approximation

 Problem: not all function approximation methods are equally well
suited for RL

 In RL, learning must be performed online, while the agent interacts
with the environment.

 We need learning methods that
 learn efficiently from incrementally acquired data
 handle nonstationary target functions

 Example: in GPI we seek to learn as changes.

 Methods that cannot deal with such nonstationarity are less suitable
for RL

 The Prediction Objective

 The Prediction Objective

 Which objective do we use to evaluate the approximated function?

 In tabular case a continuous measure of prediction quality was not
necessary because

 the learned value function could become equal to the true one
 updates affect only single states

 With function approximation these two assumptions are not
guaranteed

 We define which states we care most about defining a state
distribution

 Then, a natural objective function is the Mean Squared Value Error

 The Prediction Objective

 The square root of provides a measure of how much the
approximate values differ form the true values

 Often is set to the fraction of time spent in state s (on-policy
distribution)

 In episodic tasks: let h(s) the probability an episode starts in state s,
then the number of time steps spent, on average, in state s in a
single episode is

and the on-policy distribution is then

 The Prediction Objective

 In continuing tasks the on-policy distribution is the stationary
distribution under . In episodic tasks also depends on state initial
probability

 The formal analysis of the continuing and episodic cases must be
treated separately with value function approximation

 The Prediction Objective

 The goal of is to find a global optimum, namely, a weight
vector for which

for all possible

 This is possible for simple function approximators (e.g., linear
models) rarely for complex approximators (e.g., ANNs and decision
trees) in which learning usually converges to local optima, i.e.,
for which

 for all in some neighbourhood of

 This is the best that can be done and it is usually enough although in
many cases there is no guarantees of convergence to the
optimum

 The Prediction Objective

In summary, so far we have described:

 A framework for combining RL methods for value prediction with
function approximation methods (using RL updates as training
examples)

 A performance measure that these methods may aspire to
minimize

In the rest of the lecture we will consider function approximation
methods based on gradient-descent since they are particularly
promising and reveal key theoretical properties

 Stochastic-Gradient and Semi-Gradient Methods

 Stochastic-gradient Methods (SDG)

 Class of learning methods for function approximation in value
prediction: Stochastic Gradient Descent (SGD)

 Among the most widely used of all function approximation methods
 Well suited to online RL

Let:
 a weight vector

 is a differentiable function of for all states s

At each time step we observe a new example
 and update

States can be randomly selected or they can be successive
states of an interaction with the environment

 Stochastic-gradient Methods (SGD)

 Values are unknown but even though we could observe their
true values, learning the approximate function would be difficult

 The approximator has limited “resolution”. There is no that gets
all the states exactly correct

 Goal of SGD: to minimize error on the observed examples

 Strategy of SGD: adjust after each example by a small amount
in the direction that would most reduce the error on that example

where >0 and gradient of f

 Stochastic-gradient Methods (SGD)

 The negative gradient of the example’s squared error is the
direction in which the error falls most rapidly

 SDG is called “stochastic” when the update is done on only a
single sample

 Over many examples, making small steps, the effect is to minimize

 Why performing only “small” steps? If we completely corrected
each example in one step then we would not balance the error
(which cannot be completely removed) on all samples

 Convergence results on SGD assume that decreases over time
(according to standard stochastic approximation conditions – Lec. 2)

 Stochastic-gradient Methods (SGD)

 In practice the target output observed at time t, , is not the
true value , but some random approximation of it (e.g., noisy
corrupted value of or a bootstrapping target)

 We perform an approximate update using :

 If is an unbiassed estimate of the value, i.e.,
then is guaranteed to converge to a local optimum

 Gradient MC algorithm for estimating the value function

 The Monte Carlo target is an unbiased estimate of ,
hence the SGD version of MC state-value prediction converges

 Notice: MC provides a non-bootstrapping estimate of

 Stochastic-gradient Methods (SGD)

 If a bootstrapping estimate of is used as the target (e.g.,
in TD and DP), then convergence is not guaranteed

 This is because the target must be independent of

 These methods are called semi-gradient (bootstrapping) methods

 They do not converge as robustly as gradient methods but they
converge reliably in important cases (e.g., linear case)

 Advantage of semi-gradient methods:
 They enable faster learning
 They enable learning continual and online, without waiting for

the end of the episode

 Semi-Gradient TD algorithm for estimating the value function

 Example: state aggregation on the 1000-state random walk

State aggregation: simple generalizing function approximation
 States are grouped together with one estimated value (constant)
 Each component of is the estimation for a group of states
 The gradient is 1 for the components of the group of

and 0 for the other components

 Consider a 1000-state version of of the random walk task

 Function approximation by

state aggregation using the

gradient MC algorithm
 100.000 episodes,
 alpha=2x10^-5
 10 groups

 Linear Value Function Approximation

 Linear Methods

 Approximate function with linear function of the weight
vector

 For each state s there is a real-valued feature vector

with the same number of components (features) as (i.e., d). The
value of each feature is a function of the state

 Linear method approximations of the state-value function
implement the inner-product between and :

 The approximate value-function is said to be linear in the weights

 Linear Methods

 It is natural to use SGD updates with linear function approximations

 The gradient of the approximate value function w.r.t. w in this case is

 Hence, the SDG update becomes:

 Simple form → Good for mathematical analysis (e.g., convergence)

 Only one optimum → local optimum = global optimum

 Linear Methods

 The Gradient Monte Carlo algorithm converges to the global
optimum of the under linear function approximation

 The semi-gradient TD(0) algorithm also converges under linear
function approximation. This result requires a separate theorem (the
weight vector converges to a point near the local optimum)

 The update at each time t is

 At steady state the expected next weight vector is

with and

 Linear Methods

 The TD fixed point for linear semi-gradient TD(0) can be computed
as:

 At the TD fixed point it has been proved (in the continuing case) that the
 is within a bounded expansion of the lowest possible error

 Namely, the asimptotic error of the TD method is no more than

times the smallest possible error, i.e., the error reached in the limit by
the Monte Carlo method

 is usually close to 1 → Substantial potential loss but TD methods
have reduced variance and are faster than MC methods in practice

 Feature Constructions for Linear Methods

 Feature Construction for Linear Methods

Advantages of linear approximation:
 convergence guarantees
 data efficiency
 computational efficiency

 These advantages depend a lot on how the states are represented in
terms of features

 Appropriate features → Prior domain knowledge

 Features should correspond to the aspects of the state space along
which generalization may be appropriate

 E.g., states of geometric objects: features for each possible shape,
color, size, etc.

 E.g., states of mobile robot: features for location, remaining battery,
etc.

 Feature Construction for Linear Methods

There exist several ways to construct meaningful features (e.g.,
polynomials, Fourier basis, etc.). This is beyond the scope of the course
(see Sec. 9.5 of the Sutton and Barto book for details)

Limitation of linear approximation: it cannot consider interactions
between features

 E.g., in the pole-balancing task,

high angular velocity can be either good

or bed depending on the angle

 A linear value function cannot represent this if this features are
coded separately for the angle and the angular velocity

 Nonlinear Value Function Approximation

 Nonlinear Value Function Approximation

There exist several non-linear methods for approximating the value
function, such as,
 Artificial Neural networks (ANNs)
 Memory-based (nonparametric) functions
 Kernel-based functions

ANNs: have recently become the most popular approximation functions
 They are universal function approximators

 In deep architectures they can generate

hierarchical representations of features

automatically (vs hand-crafted features)

 They typically learn by stochastic gradient methods

 They can learn value functions (see Deep Q Networks in next slides)

 References

 R. S. Sutton, A. G. Barto. Reinforcement learning, An Introduction.
Second edition. Chapter 9

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

