On-Policy Prediction with Approximation

Reinforcement learning – LM Artificial lintelligence (2022-23)

Alberto Castellini University of Verona

- Introduction
- Value-function approximation
- The Prediction Objective
- Stochastic-Gradient and Semi-Gradient Methods
- Linear Value Function Approximation
- Feature Construction for Linear Methods (Hints)
- Nonlinear Value Function Approximation (Hints)

Introduction

Introduction to the second part of the course

- Second part of the course: How can we extend tabular RL methods to apply them to problems with arbitrarily large state spaces?
- E.g., # possible camera images > # atoms in the universe
- Almost all states encountered have never been seen before →
 Generalization from previously encountered (similar) states
- Optimal policies \rightarrow Good approximate solutions
- Combine RL with function approximation (supervised learning)
- The **RL setting** introduces **new issues** to **supervised learning**: e.g., nonstationarity, bootstrapping, delayed targets

Introduction to this lecture

- Goal of this lecture: substitute tabular representations of statevalue function v_{π} with function approximations
- Approximated v_{π} are **estimated** from **on-policy** data, i.e., from experience generated using the known policy π .
- Approximations are based on **parametrized functions** $\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$ where \mathbf{w} is the vector of parameters
- Example: \hat{v} might be a linear function in features of the state with w vector of feature weights, or a multilayer artificial neural network with w vector of connection weights, or a decision tree with w split points and leaf values of the tree
- Adjusting the weights several functions can be implemented

- Typically, the number of weights is much less than the number of states, i.e., $d \ll |\mathbb{S}|$
- Changing one weight changes the estimated value of many states (generalization)
- Generalization makes reinforcement learning more powerful but also more difficult to manage and understand
- Extending RL to function approximation makes it applicable to **partially observable problems** (i.e., full state not available)

 All prediction metods seen so far are based on updates of an estimated value function

• Can we interpret each **update** as specifying an **example** of the **desired input-output behaviour of the value function? Yes!**

$$s \longrightarrow v_{\pi} \longrightarrow v_{\pi}(s)$$

- Update in tabular representations of the value function: the table entry for the estimated value of state s is shifted a fraction of the way towards the targer u (estimated values of other states are unchanged)
- Update in function approximations of the value function: arbitrary complex parameter updates are available. Updating at state s can change value estimations of other states
- Supervised learning can be used to compute weights w using function approximation methods

- Problem: not all function approximation methods are equally well suited for RL
- In RL, learning must be performed **online**, while the agent interacts with the environment.
- We need **learning methods** that
 - learn efficiently from incrementally acquired data
 - handle nonstationary target functions
- Example: in GPI we seek to learn q_{π} as π changes.
- Methods that cannot deal with such nonstationarity are less suitable for RL

The Prediction Objective

- Which **objective** do we use to **evaluate** the **approximated function**?
- In tabular case a continuous measure of prediction quality was not necessary because
 - the learned value function could become equal to the true one
 - updates affect only single states
- With **function approximation** these two assumptions are not guaranteed
- We define which states we care most about defining a state distribution $\mu(s) \ge 0$, $\sum_{s} \mu(s) = 1$
- Then, a natural objective function is the Mean Squared Value Error

$$\overline{\mathrm{VE}}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) \Big[v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \Big]^2$$

The Prediction Objective

- The square root of $\overline{\rm VE}$ provides a **measure** of how much the **approximate** values differ form the **true** values
- Often $\mu(s)$ is set to the fraction of time spent in state *s* (*on-policy distribution*)
- In episodic tasks: let h(s) the probability an episode starts in state s, then the number of time steps spent, on average, in state s in a single episode is

$$\eta(s) = h(s) + \sum_{\bar{s}} \eta(\bar{s}) \sum_{a} \pi(a|\bar{s}) p(s|\bar{s}, a), \text{ for all } s \in S$$

and the on-policy distribution is then

$$\mu(s) = \frac{\eta(s)}{\sum_{s'} \eta(s')}, \text{ for all } s \in S$$

The Prediction Objective

- In **continuing tasks** the on-policy distribution is the stationary distribution under π . In **episodic tasks** also depends on state initial probability
- The **formal analysis** of the **continuing** and **episodic** cases must be treated separately with value function approximation

• The **goal** of $\overline{\rm VE}$ is to find a **global optimum**, namely, a **weight** vector \mathbf{w}^* for which

$$\overline{\mathrm{VE}}(\mathbf{w}^*) \le \overline{\mathrm{VE}}(\mathbf{w})$$

for all possible $\, {\bf w}$

 This is possible for simple function approximators (e.g., linear models) rarely for complex approximators (e.g., ANNs and decision trees) in which learning usually converges to local optima, i.e., w* for which

$$\overline{\mathrm{VE}}(\mathbf{w}^*) \le \overline{\mathrm{VE}}(\mathbf{w})$$

for all $w \mbox{ in some neighbourhood of } w^*$

 This is the best that can be done and it is usually enough although in many cases there is no guarantees of convergence to the optimum **In summary**, so far we have described:

- A **framework** for **combining** RL methods for **value prediction** with **function approximation** methods (using RL updates as training examples)
- A $\overline{\mathrm{VE}}$ performance measure that these methods may aspire to minimize

In the rest of the lecture we will consider **function approximation methods** based on **gradient-descent** since they are particularly **promising** and reveal **key theoretical properties**

Stochastic-Gradient and Semi-Gradient Methods

- Class of learning methods for function approximation in value prediction: Stochastic Gradient Descent (SGD)
- Among the most **widely used** of all function approximation methods
- Well suited to online RL

Let:

•
$$\mathbf{w} \doteq (w_1, w_2, \dots, w_d)^ op$$
 a weight vector

• $\hat{v}(s, \mathbf{w})$ is a **differentiable** function of \mathbf{w} for all states s

At each time step t = 0, 1, 2, 3, ..., we observe a new example $S_t \mapsto v_{\pi}(S_t)$ and update \mathbf{w}_t

States S_t can be randomly selected or they can be successive states of an interaction with the environment

where

- Values $v_{\pi}(S_t)$ are **unknown** but even though we could observe their **true values**, learning the approximate function would be difficult
- The approximator has **limited "resolution"**. There is no ${\bf w}$ that gets all the states exactly correct
- Goal of SGD: to minimize error on the observed examples
- Strategy of SGD: adjust ${\bf w}$ after each example by a small amount in the direction that would most reduce the error on that example

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2} \alpha \nabla \Big[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \Big]^2$$

= $\mathbf{w}_t + \alpha \Big[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \Big] \nabla \hat{v}(S_t, \mathbf{w}_t),$
 $\alpha > 0 \text{ and } \nabla f(\mathbf{w}) \doteq \Big(\frac{\partial f(\mathbf{w})}{\partial w_1}, \frac{\partial f(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_d} \Big)^{\top} \text{ gradient of } f$

- The negative gradient of the example's squared error is the direction in which the error falls most rapidly
- SDG is called "stochastic" when the update is done on only a single sample
- Over many examples, making small steps, the effect is to minimize $\overline{\rm VE}$
- Why performing only **"small" steps**? If we **completely corrected each example in one step** then we would **not balance the error** (which cannot be completely removed) **on all samples**
- Convergence results on SGD assume that α decreases over time (according to standard stochastic approximation conditions Lec. 2)

- In practice the target output observed at time t, Ut ∈ ℝ, is not the true value vπ(St), but some random approximation of it (e.g., noisy corrupted value of vπ(St) or a bootstrapping target)
- We perform an **approximate update** using $U_t \in \mathbb{R}$:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \Big[U_t - \hat{v}(S_t, \mathbf{w}_t) \Big] \nabla \hat{v}(S_t, \mathbf{w}_t)$$

• If U_t is an **unbiassed estimate of the value**, i.e., $\mathbb{E}[U_t|S_t=s] = v_{\pi}(S_t)$ then \mathbf{w}_t is guaranteed to converge to a local optimum

Gradient MC algorithm for estimating the value function

• The Monte Carlo target $U_t \doteq G_t$ is an unbiased estimate of $v_{\pi}(S_t)$, hence the SGD version of MC state-value prediction converges

Gradient Monte Carlo Algorithm for Estimating $\hat{v} \approx v_{\pi}$

```
Input: the policy \pi to be evaluated
Input: a differentiable function \hat{v}: S \times \mathbb{R}^d \to \mathbb{R}
Algorithm parameter: step size \alpha > 0
Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0})
Loop forever (for each episode):
Generate an episode S_0, A_0, R_1, S_1, A_1, \dots, R_T, S_T using \pi
Loop for each step of episode, t = 0, 1, \dots, T - 1:
\mathbf{w} \leftarrow \mathbf{w} + \alpha [G_t - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})
```

• Notice: MC provides a non-bootstrapping estimate of $v_{\pi}(S_t)$

- If a **bootstrapping estimate** of $v_{\pi}(S_t)$ is used as the target U_t (e.g., in TD and DP), then **convergence is not guaranteed**
- This is because the **target must be independent of** \mathbf{w}_t
- These methods are called **semi-gradient (bootstrapping) methods**
- They do not converge as robustly as gradient methods but they converge reliably in important cases (e.g., linear case)
- Advantage of semi-gradient methods:
 - They enable faster learning
 - They enable learning continual and online, without waiting for the end of the episode

Semi-gradient TD(0) for estimating $\hat{v} \approx v_{\pi}$

```
Input: the policy \pi to be evaluated

Input: a differentiable function \hat{v}: S^+ \times \mathbb{R}^d \to \mathbb{R} such that \hat{v}(\text{terminal}, \cdot) = 0

Algorithm parameter: step size \alpha > 0

Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0})

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A \sim \pi(\cdot|S)

Take action A, observe R, S'

\mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})] \nabla \hat{v}(S, \mathbf{w})

S \leftarrow S'

until S is terminal
```

Example: state aggregation on the 1000-state random walk

State aggregation: simple generalizing function approximation

- States are grouped together with one estimated value (constant)
- $\ensuremath{\,^\circ}$ Each component of w is the estimation for a group of states
- The gradient $\nabla \hat{v}(S_t, \mathbf{w}_t)$ is 1 for the components of the group of S_t and 0 for the other components
- Consider a 1000-state version of of the random walk task

Linear Value Function Approximation

- Approximate function $\hat{v}(\cdot,\mathbf{w})$ with linear function of the weight vector \mathbf{w}
- For each state s there is a real-valued feature vector

$$\mathbf{x}(s) \doteq (x_1(s), x_2(s), \dots, x_d(s))^\top$$

with the same number of components (features) as w (i.e., d). The value of each feature is a function of the state $x_i : S \to \mathbb{R}$

• Linear method approximations of the state-value function implement the inner-product between \mathbf{w} and $\mathbf{x}(s)$:

$$\hat{v}(s, \mathbf{w}) \doteq \mathbf{w}^{\top} \mathbf{x}(s) \doteq \sum_{i=1}^{d} w_i x_i(s)$$

• The approximate value-function is said to be linear in the weights

- It is natural to use SGD updates with linear function approximations
- The gradient of the approximate value function w.r.t. w in this case is

$$\nabla \hat{v}(s, \mathbf{w}) = \mathbf{x}(s)$$

• Hence, the **SDG update** becomes:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \Big[U_t - \hat{v}(S_t, \mathbf{w}_t) \Big] \mathbf{x}(S_t)$$

- Simple form \rightarrow Good for mathematical analysis (e.g., convergence)
- Only one optimum \rightarrow local optimum = global optimum

- The Gradient Monte Carlo algorithm converges to the global optimum of the $\overline{VE}\,$ under linear function approximation
- The semi-gradient TD(0) algorithm also converges under linear function approximation. This result requires a separate theorem (the weight vector converges to a point near the local optimum)
 - The **update** at each time *t* is

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \Big(R_{t+1} + \gamma \mathbf{w}_t^\top \mathbf{x}_{t+1} - \mathbf{w}_t^\top \mathbf{x}_t \Big) \mathbf{x}_t$$
$$= \mathbf{w}_t + \alpha \Big(R_{t+1} \mathbf{x}_t - \mathbf{x}_t \big(\mathbf{x}_t - \gamma \mathbf{x}_{t+1} \big)^\top \mathbf{w}_t \Big)$$

• At steady state the expected next weight vector is

$$\mathbb{E}[\mathbf{w}_{t+1}|\mathbf{w}_{t}] = \mathbf{w}_{t} + \alpha(\mathbf{b} - \mathbf{A}\mathbf{w}_{t})$$

with $\mathbf{b} \doteq \mathbb{E}[R_{t+1}\mathbf{x}_{t}] \in \mathbb{R}^{d}$ and $\mathbf{A} \doteq \mathbb{E}\left[\mathbf{x}_{t}\left(\mathbf{x}_{t} - \gamma\mathbf{x}_{t+1}\right)^{\top}\right] \in \mathbb{R}^{d} \times \mathbb{R}^{d}$

• The **TD fixed point for linear semi-gradient TD(0)** can be computed as: $b - Aw_{TD} = 0$

$$\begin{array}{ll} \Rightarrow & \mathbf{b} = \mathbf{A} \mathbf{w}_{\mathrm{TD}} \\ \Rightarrow & \mathbf{w}_{\mathrm{TD}} \doteq \mathbf{A}^{-1} \mathbf{b}. \end{array}$$

• At the TD fixed point it has been proved (in the continuing case) that the $\overline{\rm VE}$ is within a bounded expansion of the lowest possible error

$$\overline{\mathrm{VE}}(\mathbf{w}_{\mathrm{TD}}) \leq \frac{1}{1-\gamma} \min_{\mathbf{w}} \overline{\mathrm{VE}}(\mathbf{w})$$

- Namely, the **asimptotic error of the TD method** is no more than $\frac{1}{1-\gamma}$ times the smallest possible error, i.e., the error reached in the limit by the Monte Carlo method
- γ is usually close to 1 \rightarrow Substantial potential loss but TD methods have reduced variance and are faster than MC methods in practice

Feature Constructions for Linear Methods

Feature Construction for Linear Methods

Advantages of linear approximation:

- convergence guarantees
- data efficiency
- computational efficiency
- These advantages depend a lot on how the states are represented in terms of features
- Appropriate features \rightarrow Prior domain knowledge
- Features should correspond to the aspects of the state space along which generalization may be appropriate
 - E.g., states of geometric objects: features for each possible shape, color, size, etc.
 - E.g., states of mobile robot: features for location, remaining battery, etc.

There exist **several ways to construct meaningful features** (e.g., polynomials, Fourier basis, etc.). This is beyond the scope of the course (see **Sec. 9.5** of the Sutton and Barto book for details)

Limitation of linear approximation: it cannot consider interactions between features

 E.g., in the pole-balancing task, high angular velocity can be either good or bed depending on the angle

• A linear value function cannot represent this if this features are coded separately for the angle and the angular velocity

Nonlinear Value Function Approximation

Nonlinear Value Function Approximation

There exist several **non-linear methods for approximating the value function**, such as,

- Artificial Neural networks (ANNs)
- Memory-based (nonparametric) functions
- Kernel-based functions

ANNs: have recently become the most popular approximation functions

- They are universal function approximators
- In deep architectures they can generate hierarchical representations of features automatically (vs hand-crafted features)

- They typically learn by **stochastic gradient** methods
- They can learn value functions (see **Deep Q Networks** in next slides)

References

• R. S. Sutton, A. G. Barto. Reinforcement learning, An Introduction. Second edition. Chapter 9