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    Introduction



    Introduction to the second part of the course

 Second part of the course: How can we extend tabular RL methods 
to apply them to problems with arbitrarily large state spaces?

 E.g., # possible camera images > # atoms in the universe

 Almost all states encountered have never been seen before → 
Generalization from previously encountered (similar) states

 Optimal policies → Good approximate solutions

 Combine RL with function approximation (supervised learning)

 The RL setting introduces new issues to supervised learning:  
e.g., nonstationarity, bootstrapping, delayed targets



    Introduction to this lecture

 Goal of this lecture: substitute tabular representations of state-
value function       with function approximations

 Approximated       are estimated from on-policy data, i.e., from 
experience generated using the known policy    .

 Approximations are based on parametrized functions                        
 where      is the vector of parameters

 Example:     might be a linear function in features of the state with     
vector of feature weights, or a multilayer artificial neural network 
with     vector of connection weights, or a decision tree with      split 
points and leaf values of the tree

 Adjusting the weights several functions can be implemented



    Introduction to this lecture

 Typically, the number of weights is much less than the number of 
states, i.e.,              

 Changing one weight changes the estimated value of many states 
(generalization)

 Generalization makes reinforcement learning more powerful but 
also more difficult to manage and understand

 Extending RL to function approximation makes it applicable to 
partially observable problems (i.e., full state not available)



    Value-function approximation



    Value-function approximation

 All prediction metods seen so far are based on updates of an 
estimated value function

 MC update:

 TD update: 

 DP update: 

State updated Update 
target

State updated Update 
target

State updated Update 
target



    Value-function approximation

 Can we interpret each update as specifying an example of the 
desired input-output behaviour of the value function? Yes!

 Update in tabular representations of the value function: the table 
entry for the estimated value of state s is shifted a fraction of the 
way towards the targer u (estimated values of other states are 
unchanged)

 Update in function approximations of the value function: arbitrary 
complex parameter updates are available. Updating at state s can 
change value estimations of other states

 Supervised learning can be used to compute weights     using 
function approximation methods



    Value-function approximation

 Problem: not all function approximation methods are equally well 
suited for RL

 In RL, learning must be performed online, while the agent interacts 
with the environment.

 We need learning methods that 
 learn efficiently from incrementally acquired data
 handle nonstationary target functions

 Example: in GPI we seek to learn       as      changes. 

 Methods that cannot deal with such nonstationarity are less suitable 
for RL



    The Prediction Objective



    The Prediction Objective

 Which objective do we use to evaluate the approximated function?

 In tabular case a continuous measure of prediction quality was not 
necessary because 

 the learned value function could become equal to the true one
 updates affect only single states

 With function approximation these two assumptions are not 
guaranteed

 We define which states we care most about defining a state 
distribution 

 Then, a natural objective function is the Mean Squared Value Error



    The Prediction Objective

 The square root of        provides a measure of how much the 
approximate values differ form the true values

 Often          is set to the fraction of time spent in state s (on-policy 
distribution)

 In episodic tasks: let h(s) the probability an episode starts in state s, 
then the number of time steps spent, on average, in state s in a 
single episode is

and the on-policy distribution is then      



    The Prediction Objective

 In continuing tasks the on-policy distribution is the stationary 
distribution under    . In episodic tasks also depends on state initial 
probability

 The formal analysis of the continuing and episodic cases must be 
treated separately with value function approximation



    The Prediction Objective

 The goal of         is to find a global optimum, namely, a weight 
vector       for which

for all possible       

 This is possible for simple function approximators (e.g., linear 
models) rarely for complex approximators (e.g., ANNs and decision 
trees) in which learning usually converges to local optima, i.e.,       
for which

   for all      in some neighbourhood of 

 This is the best that can be done and it is usually enough although in 
many cases there is no guarantees of convergence to the 
optimum



    The Prediction Objective

In summary, so far we have described:

 A framework for combining RL methods for value prediction with 
function approximation methods (using RL updates as training 
examples)

 A         performance measure that these methods may aspire to 
minimize

In the rest of the lecture we will consider function approximation 
methods based on gradient-descent since they are particularly 
promising and reveal key theoretical properties



    Stochastic-Gradient and Semi-Gradient Methods



    Stochastic-gradient Methods (SDG)

 Class of learning methods for function approximation in value 
prediction: Stochastic Gradient Descent (SGD)

 Among the most widely used of all function approximation methods
 Well suited to online RL

Let:
                                             a weight vector

              is a differentiable function of      for all states s

At each time step                              we observe a new example             
                   and update       

States      can be randomly selected or they can be successive 
states of an interaction with the environment



    Stochastic-gradient Methods (SGD)

 Values             are unknown but even though we could observe their 
true values, learning the approximate function would be difficult

 The approximator has limited “resolution”. There is no      that gets 
all the states exactly correct

 Goal of SGD: to minimize error on the observed examples

 Strategy of SGD: adjust      after each example by a small amount 
in the direction that would most reduce the error on that example

where     >0 and                                                              gradient of f



    Stochastic-gradient Methods (SGD)

 The negative gradient of the example’s squared error is the 
direction in which the error falls most rapidly

 SDG is called “stochastic” when the update is done on only a 
single sample

 Over many examples, making small steps, the effect is to minimize

 Why performing only “small” steps? If we completely corrected 
each example in one step then we would not balance the error 
(which cannot be completely removed) on all samples

 Convergence results on SGD assume that     decreases over time 
(according to standard stochastic approximation conditions – Lec. 2)



    Stochastic-gradient Methods (SGD)

 In practice the target output observed at time t,            , is not the 
true value           , but some random approximation of it (e.g., noisy 
corrupted value of            or a bootstrapping target) 

 We perform an approximate update using             : 

 If       is an unbiassed estimate of the value, i.e.,                               
then        is guaranteed to converge to a local optimum



    Gradient MC algorithm for estimating the value function

 The Monte Carlo target                is an unbiased estimate of           , 
hence the SGD version of MC state-value prediction converges

 Notice: MC provides a non-bootstrapping estimate of 



    Stochastic-gradient Methods (SGD)

 If a bootstrapping estimate of            is used as the target       (e.g., 
in TD and DP), then convergence is not guaranteed

 This is because the target must be independent of 

 These methods are called semi-gradient (bootstrapping) methods

 They do not converge as robustly as gradient methods but they 
converge reliably in important cases (e.g., linear case)

 Advantage of semi-gradient methods:
 They enable faster learning
 They enable learning continual and online, without waiting for 

the end of the episode



    Semi-Gradient TD algorithm for estimating the value function



    Example: state aggregation on the 1000-state random walk

State aggregation: simple generalizing function approximation
 States are grouped together with one estimated value (constant)
 Each component of      is the estimation for a group of states
 The gradient                    is 1 for the components of the group of      

and 0 for the other components

 Consider a 1000-state version of of the random walk task

 Function approximation by 

state aggregation using the 

gradient MC algorithm
 100.000 episodes,
 alpha=2x10^-5
 10 groups



    Linear Value Function Approximation



    Linear Methods

 Approximate function             with linear function of the weight 
vector 

 For each state s there is a real-valued feature vector  

with the same number of components (features) as      (i.e., d). The 
value of each feature is a function of the state 

 Linear method approximations of the state-value function 
implement the inner-product between      and        :

 The approximate value-function is said to be linear in the weights

 



    Linear Methods

 It is natural to use SGD updates with linear function approximations

 The gradient of the approximate value function w.r.t. w in this case is

 Hence, the SDG update becomes: 

 Simple form → Good for mathematical analysis (e.g., convergence)

 Only one optimum → local optimum = global optimum



    Linear Methods

 The Gradient Monte Carlo algorithm converges to the global 
optimum of the        under linear function approximation 

 The semi-gradient TD(0) algorithm also converges under linear 
function approximation. This result requires a separate theorem (the 
weight vector converges to a point near the local optimum)

 The update at each time t is

 At steady state the expected next weight vector is 

with                                   and 



    Linear Methods

 The TD fixed point for linear semi-gradient TD(0) can be computed 
as: 

 At the TD fixed point it has been proved (in the continuing case) that the 
       is within a bounded expansion of the lowest possible error

 Namely, the asimptotic error of the TD method is no more than

times the smallest possible error, i.e., the error reached in the limit by 
the Monte Carlo method

     is usually close to 1 → Substantial potential loss but TD methods 
have reduced variance and are faster than MC methods in practice



    Feature Constructions for Linear Methods 



    Feature Construction for Linear Methods

Advantages of linear approximation:
 convergence guarantees
 data efficiency
 computational efficiency

 These advantages depend a lot on how the states are represented in 
terms of features

 Appropriate features → Prior domain knowledge

 Features should correspond to the aspects of the state space along 
which generalization may be appropriate

 E.g., states of geometric objects: features for each possible shape, 
color, size, etc.

 E.g., states of mobile robot: features for location, remaining battery, 
etc.



    Feature Construction for Linear Methods

There exist several ways to construct meaningful features (e.g., 
polynomials, Fourier basis, etc.). This is beyond the scope of the course 
(see Sec. 9.5 of the Sutton and Barto book for details)

Limitation of linear approximation: it cannot consider interactions 
between features 

 E.g., in the pole-balancing task,

high angular velocity can be either good 

or bed depending on the angle

 A linear value function cannot represent this if this features are 
coded separately for the angle and the angular velocity



    Nonlinear Value Function Approximation



    Nonlinear Value Function Approximation

There exist several non-linear methods for approximating the value 
function, such as,
 Artificial Neural networks (ANNs)
 Memory-based (nonparametric) functions
 Kernel-based functions

ANNs: have recently become the most popular approximation functions
 They are universal function approximators

 In deep architectures they can generate 

hierarchical representations of features

automatically (vs hand-crafted features)

 They typically learn by stochastic gradient methods

 They can learn value functions (see Deep Q Networks in next slides)
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