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    Introduction



    Introduction

 Unlike in DP, here we do not assume complete knowledge of the 
environment (i.e., model of the dynamics p(s’,r | s,a)) 

→ Monte Carlo (MC) methods are model free RL methods

→ First learning methods for estimating value function and               
discovering optimal policies

 Monte Carlo methods require only experience (sample sequences 
of states, actions, and rewards from actual or simulated 
interactions with the environment)

 Learning from actual experience is striking: it requires no prior 
knowledge of the environment

 Learning from simulated experience is also powerful: a model that 
generates sample transitions is required (easier than complete 
probability distributions over all possible transitions required in DP)



    Introduction

 MC methods solve RL problems by averaging sample returns over 
episodes

 We assume experience is split in episodes. 

 Values and policies are updated after each episode (not after each 
step, as in Temporal Difference methods, next lecture)

 MC methods adapt the idea of general policy iteration (GPI) defined 
in DP methods, however

 DP methods require the model of the dynamics
 MC methods learn the value function from sample returns

 Policy evaluation (prediction)
 Policy improvement 
 Optimal policy approximation (control)



    Monte Carlo Prediction



    Monte Carlo Prediction (policy evaluation)

 Given a policy, we aim to compute its value function

 Recall: the value of a state is its expected return (expected 
cumulative future discounted reward)

 Main idea of MC: to average the returns observed after visits of the 
state

 Given a set of episodes obtained following     and passing through 
state s. Each occurrence of state s in an episode is called visit of s.    
s may be visited multiple times

 First-visit MC method estimates          as the average of the returns 
following the first visit to s 

 Every-visit MC method averages the returns following all visits to s 
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    Monte Carlo Prediction (policy evaluation)
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    Monte Carlo Prediction (policy evaluation)

 Both first-visit and every-visit MC converge to           as the number 
of visits (or first visits) to s goes to infinity. 

First-visit MC convergence (1940s)
 Each return is an independent, identically distributed estimate of          

with finite variance
 Law of large numbers: the sequence of averages converges to the 

expected value
 Each average is an unbiased estimate
 The standard deviation of its error falls as          , where n is the 

number of returns averaged. 

Every-visit MC convergence (Singh and Sutton, 1996): the proof is 
less simple but the estimate also converges quadratically to 
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    Example: Blackjack

Homework: read Example 5.5 in the Sutton and Barto book (page 93). 
Try to understand MDP elements (states, actions, transition model, 
reward function) in the blackjack domain. Try to answer questions of 
Exercize 5.1 (page 94).

Policy



    Example: Blackjack

 Notice: although we have complete knowledge of the environment 
we do not have the distribution p of next events (i.e., model of the 
dynamics)

 E.g., player’s sum is 14, he sticks. What is the probability of 
terminating with a reward of +1 as a function of the dealer’s 
showing card? Very difficult to know.

 All these probabilities must be computed in advance when DP 
methods are used 

→ It is not easy to apply DP for blackjack

→ In contrast, generating the sample games required by 
MC methods is easy

 This happens surprisingly often in practice and makes MC 
methods very useful



    Extension of backup diagrams to MC methods

General idea of backup methods:
 On top: root node to be updated 
 Below: all transitions and leaf nodes whose rewards 

and estimated values contribute to the update

MC estimation of 
 Root: state node
 Below: entire trajectory of transitions along a single 

episode ending at the terminal state

v π



    Important Observation

The estimate for one state in MC methods does not build upon the 
estimate of any other state, as is the case in DP

→ MC methods do not perform bootstrapping

In MC methods the computational expense of estimating the value of 
a single state is independent on the number of states

Useful for online estimation or estimation of subsets of states



    MC Estimation of Action Values



    MC Estimation of Action Values

 Problem: Without a transition model state values are not 
sufficient to determine a policy (which action should I select to 
reach the target state?)

 In MC methods we must esplicitly estimate the value of each 
action              to finally estimate  

 The MC methods are the same used for estimating state values but 
focused on state-action pairs.

 A state-action pair s,a is visited in an episode if the state s is visited 
and action a is taken in it

First-visit MC and every-visit MC converge quadratically to the true 
values (expected returns) as the number of visits to each state-action 
pair approaches infinity

q*qπ ( s , a )



    MC Estimation of Action Values

 Problem: many state-variable pairs may never be visited. 

 E.g., if the policy is deterministic one will observe returns only for one 
of the actions from each state → estimates of the other actions will 
not improve with experience

 This is a problem because the purpose of learning action values is 
to help choosing among the actions available in each state (in the 
policy improvement step)

 We need to estimate values of all the actions from each state

→ Problem of maintaining exploration

→ We must assure continual exploration

 Solution: specify that episodes start in a state-action pair and every 
pair has non-zero probability to be selected (exploring starts)



    MC Estimation of Action Values

 Problem: Exploring starts cannot be relied upon in general (e.g., 
when learning from a real environment)

 Most common alternative: consider only stochastic policies with 
nonzero probability of selecting all actions in each state

(e.g.,   -greedy policies)

 In the following we will analyze MC Control (i.e., optimal policy 
approximation) first with and then without exploring starts.

ε



    Monte Carlo Control



    Monte Carlo Control (i.e., MC-based GPI)

 MC estimation can be used in control (control=optimal policy 
approximation)

 GPI approach: 
 Maintain both approximate policy and 

approximate value function
 Value function is altered to better approximate

the value function of the current policy
 The policy is improved w.r.t. the current 

value function



    Monte Carlo Control (i.e., MC-based GPI)
 Policy evaluation: is performed using MC prediction (let’s assume to 

observe an infinite number of episodes, hence we get the exact      )

 Policy improvement: is done by making the policy greedy w.r.t. the 
current value function

 We have an action-value function hence no model is needed to 
construct the greedy policy

 For the policy improvement theorem we have

qπ k

+1
⇒



    Monte Carlo Control (i.e., MC-based GPI)

 Hence the policy is ensured to improve and to converge to the 
optimal policy (and value function)

MC methods can be used to find optimal policies given only 
sample episodes and no other knowledge of the environment

 Problem: we made 2 unlikely assumptions:
 A1: Availability of infinite number of episodes

→ similar to DP. Solution 1: determine # iterations to guarantee 
theoretical bounds (expansive). Solution 2: reduce iterations in 
evaluation (it works in practice, e.g., value iteration)

 A2: Exploring starts → removed later on

 In MC it is however natural to alternate between evaluation and 
improvement on an episode-by-episode-basis



    Monte Carlo Control with Exploring Starts (MCES)

Convergence: MC ES cannot converge to any suboptimal policy. If it did, 
than the value function would eventually converge to the value function of 
that policy, which would cause the policy to change.

Convergence seems inevitable but has not yet been formally proved.



    Solving blackjack



    Monte Carlo Control without Exploring Starts



    Monte Carlo Control without Exploring Starts

 How can we avoid the unlikely assumption of exploring starts?

 Two approaches:
 On-policy methods: evaluate or improve the policy that is used to 

make decisions (and produce data)
 Off-policy methods: evaluate or improve a policy different from 

that used to generate the data

 MC ES is an example of an on-policy method
 An alternative on-policy method which does not use exploring 

starts is defined here. Off-policy methods will be defined afterwards

 In on-policy control methods the policy is in general soft

i.e., 

but gradually shifted closer and closer to deterministic optimal policies

π (s , a )>0 ∀ s∈S ,a∈ A



    Monte Carlo Control without Exploring Starts

 The on-policy method here presented uses   -greedy policies, i.e.,

 They choose the action with maximal estimated action value most of 
the times but with probability     they instead select an action at 
random.

 The methodology uses the GPI idea

 As in MC ES we use first-visit MC methods to estimate the action-
value function for the current policy

 GPI does not require that the improved policy is always greedy but it 
requires only that it moves towards a greedy policy

 We move the policy toward an   -greedy policy. For any   -soft 
policy    , any   -greedy policy w.r.t.      is guaranteed to be better than 
or equal to  

ε
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    Monte Carlo Control without Exploring Starts

  



    Monte Carlo Control without Exploring Starts

 Convergence: the policy improvement theorem assures that any      
   -greedy policy w.r.t.      is an improvement over any    -soft policy. Let 
     be the   -greedy policy, for each state s:

 Thus           . The equality can hold only when both policies are optimal 
among the   -soft policies (proof in the SutBar, Sec 5.4).

ε qπ ε
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    Off-policy Prediction via Importance Sampling (hints)



    Off-policy Prediction via Importance Sampling

 Dilemma of learning control methods: they seek to learn action 
values conditional on subsequent optimal behaviour, but they need to 
behave non-optimally to explore all actions and find optimal ones

 Question: How can they learn about the optimal policy while 
behaving according to an exploratory policy?

 The on-policy approach is a compromise. It learns action values not 
for the optimal policy but for a near-optimal policy (i.e.,   -greedy) that 
still explores

 Solution: use two policies
 Target policy: learned policy, it becomes the optimal policy
 Behavior policy: exploratory policy, it is used to generate data

 Learning is from data “off” the target policy → Off-policy learning

ε



    Off-policy Prediction via Importance Sampling

 We will consider both on-policy and off-policy methods

 On-policy methods are simpler and considered first

 Off-policy methods require additional concepts, they are often of 
greater variance and slower to converge but also more powerful 
and general

→ They include on-policy methods as a special case              
(target=behavior)

→ Additional uses in applications, e.g., learning from data 
generated by non-learning controllers or human experts



    Off-policy Prediction via Importance Sampling

 Almost all off-policy methods utilize importance sampling, a general 
technique for estimating expected values under one distribution 
given samples from another

 Idea: we weight returns according to the relative probability of their 
trajectories occuring under target and behavior policies

 Given a starting state S
t
, the probability of the subsequent 

trajectory occurring under any policy     is

where p is the state-transition probability function 

π



    Off-policy Prediction via Importance Sampling

 Importance sampling ratio: the relative probability of the trajectory 
under the target and behavior policies is

 The ratio depends ony on the two policies and the sequence, not 
on the MDP (i.e., transition model)

 Goal: We want to estimate expected returns (values) under the 
target policy but we have returns G

t
 due to the behavior policy

 Problem: These returns have the wrong expectation                               
hence they cannot be averaged to obtain  

 The importance-sampling ratio transforms the return:

v π



    Summary

 MC methods learn from sample episodes

 Four advantages over DP methods

1) no model of the environment is required

2) they can be used with simulators of the environment

3) they can focus on subset of states (scaling)

4) they do not bootstrap, hence they may be less harmed by 
violation of the Markov property

 Problem of maintaining sufficient exploration:
 Exploring starts: ok only for simulated episodes
 On-policy prediction/control: not completely precise
 Off-policy prediction/control: the best method but more complex

 Target/Behavior policy
 Ordinary/weighted Importance Sampling
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