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    Introduction



    Introduction

 Markov Decision Process (MDP): formalization of sequential 
decision making problem

 Actions influence not only immediate rewards but also subsequent 
situations (delayed reward)

 Trade-off immediate and delayed reward



    The Agent-Environment Interface



    The Agent-Environment Interface

 MDP: formal framework representing problems of learning from 
interaction to achieve a goal

 Agent: the learner

 Environment: everything outside the agent



    Markov Decision Process (notation)

The main elements of an MDP are: 
 States:          (where t = 0, 1, 2, 3 … represent time steps)

 Actions:

 Rewards:  

 Dynamics function:

 p specifies a probability distribution 

S t∈S

At∈ A

Rt+1∈R⊂ℝ

s , s '∈S , r∈R ,a∈ A (s )



    Markov Decision Processes (notation)

From p we can compute:

 State-transition probabilities 

 Expected rewards

Markov property: The state must include all information about all 
aspects of the past agent-environment interaction

Trajectory:  



    The “art” of generating MDPs

 The MDP framework is abstract and flexible and can be applied to 
different problems in different ways (e.g., low/high level actions)

 High/Low level decisions: in a complex robot many agents may be 
operating at once (e.g., high level decisions can form part of the state 
for lower-level decisions)

 Boundary between agent and environment is typically not the 
same as the physical boundary (anything that cannot be changed 
arbitrarily by the agent is considered part of the environment)

 The agent may know everything about the environment but still face 
a difficult RL task (e.g., Rubik’s cube)



    Example: Recicling Robot

States: 
S={high, low} (charge levels)

Actions:
A(low)={search, wait, recharge}
A(high)={search, wait}

Dynamics/Rewards:
Transition

probabilities
Expected
rewards Transition graph
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    Goals and rewards 

 In RL the goal is formalized in terms of reward
 The agent’s goal is to maximize the total amount of reward
 Not immediate reward but cumulative reward

 Reward hypothesis: All of what we mean by goals and purposes 
can be well thought of as the maximization of the expected value of 
the cumulative sum of a received scalar signal (called reward)

 The use of reward signal to formalize the goal is one of the most 
distinctive features of RL

 Examples: learning to walk, learning to escape from a maze, learning 
to play checkers

 Reward is a way to say the agent what to do, not how
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    Returns and episodes

Episodic tasks: applications in which there is a natural notion of final 
step (e.g., the plays of a game)

 Each episode ends in a state called terminal state, followed by a 
reset to a standard starting state

 At time t the agent seeks to maximize the expected return
 The return is the sum of rewards until the final step T 

Continuing tasks: the agent-environment interactions do not break 
naturally in epiodes but go on continuously without limit (        )

 The agent maximizes the discounted return

where    is the discount factor, with 

T=∞

γ 0≤ γ ≤1



    Returns and episodes

 If        the infinite sum of the expected reward has a finite value as 
long as the reward sequence is bounded

 If         the agent is myopic (i.e., considers only immediate reward). In 
general this reduces access to future rewards, with reduced return 

 The (dicounted) return can be written in a recursive way:

 Note: if       , although the expected return is a sum of infinite 
terms, it is still finite if the reward is nonzero and constant. 

 E.g., if reward is always 1 and        then 

γ<1

γ=0

γ<1

(geometric series)

γ<1



    Example: Pole Balancing

 Objective: to apply forces to a cart moving

along a track to keep a pole hinged to

the cart from falling over

Episodic task:
 Episodes are the repeated attempts to balance the pole
 Reward: +1 for every time step in which failure did not occur
 Return: number of steps until failure
 Problem: successful balancing forever → infinite reward

Continuing task (using discounting):
 Reward: -1 on each failure, 0 at all other times
 Return at each step:           where K is the number of time steps 

before failure
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    Policies and Value Functions

 Almost all RL algorithms involve estimating value functions, i.e., 
functions of state (or state-action pairs) that estimate how good it is 
for the agent to be in a given state (in terms of expected return)

 Since the future expected return depends on what actions the agent 
will take, value functions are defined w.r.t. particular ways of acting, 
called policies

 Policy: is a mapping from states to probabilities of selecting 
each possible action. Symbol          indicates the probability that 
action a is selected from state s. 

 RL algorithms specify how the agent’s policy is changed as a 
result of its experience.

π (a∣s)



    Policies and Value Functions

 The state-value function of a state s under a policy    , denoted by     
is the expected return when starting in s and following     thereafter 

 The action-value function of taking action a in state s under a policy 
denoted by              is the expected return starting from state s, taking 
action a, and therefore following 

 Both state and action value functions can be estimated from 
experience

v π ( s )

qπ ( s , a )

π

π

π

π



    Bellman Equation

 Fundamental property of value functions: they satisfy 

the following recursive relationships (Bellman Equation)

 Last expression: sum over all values of a, s’ and r. 
 For each triple, we 

 compute its probability                               , 
 weight the quantity in brackets by this probability, 
 sum over all possibilities to get an expected value.

Richard Bellman



    Bellman Equation: backup diagrams



    Bellman Equation: observations

 The value function           is the unique solution to its Bellman equation

 The Bellman equation forms the basis of a number of ways to compute, 
approximate and learn            (backup diagrams)

 The Bellman equation is actually a system of equations (one for 
each state) → Method for solving non-linear equations

 Backup operators transfer value information back to a state (or state-
action pair) from its successor state (or state-action pair).

v π ( s )

v π ( s )



    Example: Gridworld

 Actions: N, S, E, W (1 cell in the direction, deterministically)
 Rewards: exceptional rewards (A→A’, all actions from A, +10; B → B’, 

all actions from B, +5); off the grid (-1); other actions (0)
 Policy: uniformly random action selection in all states
 Discount factor: 0.9

Exceptional reward 
dynamics

 v π ( s )

Value function computed by 
solving the Bellman  equation



    Example: Golf

 Reward: -1 for each stroke
 State: location of the ball
 State value: negative number of 

strokes to the hole from the 
location

 Actions: which club we select 
(putter or driver)

Value function for a policy 
that always selects a putter



    Optimal Policies and Optimal Value Functions



    Optimal Policies and Optimal Value Functions

 Solving RL tasks means finding a policy that achieves large reward 
over long runs → Finding an optimal policy

 Value functions define a partial ordering over policies

 A policy      is defined to be better than or equal to a policy       if 
its expected return (i.e., value) is greater than or equal to that of     
   for all states, namely

 There is always at least one policy that is better than or equal to all 
other policies. This is an optimal policy (notation      ).

 All optimal policies share the same optimal state-value function

π ≥π '⇔ v π ( s)≥v π ' (s ) ,∀ s∈S

π*

π 'π

π



    Optimal Policies and Optimal Value Functions

 Optimal policies also share the same optimal action-value function 

    for all         and         

 We can write      in terms of      as

 Example: Optimal Value Function for Golf

q*

s∈S a∈ A

v *

Value of each state if we first 
play a stroke with the driver
and afterward optimally select 
either a driver or a putter



    Optimal Policies and Optimal Value Functions

 Bellman optimality equation for      
 The value of a state under an optimal policy must equal the expected 

return for the best action from that state:

v *



    Optimal Policies and Optimal Value Functions

 Bellman optimality equation for     q*



    Optimal Policies and Optimal Value Functions

 Given     , the optimal policy for a state s is achieved selecting an 
action by which the maximum is obtained in the Bellman optimality 
equation. Any policy that assigns nonzero probability only to these 
actions is optimal (i.e., one-step search, greedy policy w.r.t.     )

 Given      , the optimal policy for a state s is achieved simply 
selecting an action that maximizes              (i.e., zero-step search, 
greedy policy w.r.t.     ) 

v *

v *

q*
q* ( s , a )

q*



    Example: solving the Gridworld

Homework: check the correctness of the optimal values and 
policy of this example using the codes developed in the next lab 
exercise (i.e., value and policy iteration)



    Example: Recycling Robot

Bellman optimality equations for the recycling robot

Homework: check the correctness of the formulas of this example



    Problems of the Bellman optimality equation

 Bellman optimality equation is similar to an exhaustive search, solving 
it needs to invert a matrix with dimension equal to the number of states 
(i.e., complexity O(S3)) → rarely useful in real-world problems

 E.g., Backgammon has        states. It would take thousands of 
years in modern computers

 Assumptions for using Bellman optimality equation to solve an MDP:
 We accurately know the dynamics of the environment
 We have enough computational resources 
 Markov property

 Other decision-making methods are ways to approximatively solve 
the Bellman optimality equation
 Heuristic search methods: expand up to some depth, forming a tree 

of possibilities and evaluate leaves by heuristics (e.g., A*)
 Dynamic programming

1020



    Optimality and Approximation



    Optimality and approximation

 Problem: Optimal policies can be generated only with extreme 
computational cost

 Problem: Even with accurate models of the environment’s dynamics it 
is not always possible to solve Bellman optimality equation

 In problems with small state and action spaces it is possible to 
represent policy and value function approximations by 
arrays/tables: tabular methods (Part I of SutBar)

 In other cases parametrized function representations are used (e.g., 
neural networks) (Part II of SutBar)



    Categorization of RL algorithms

Value based
 Value function: yes
 Policy: no (implicit)

Policy based
 Value function: no
 Policy: yes

Actor-critic
 Value function: yes
 Policy: yes

Model based
 Dynamics model (i.e., 

transition and reward): yes

Model free
 Dynamics model (i.e., 

transition and reward): no
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