
Markov Decision processes

Reinforcement learning – LM Artificial Iintelligence
(2022-23)

Alberto Castellini
University of Verona

 Summary

 Introduction

 The Agent-Environment Interface

 Goals and Rewards

 Returns and Episodes

 Policies and Value Functions

 Optimal Policies and Optimal Value Functions

 Optimality and Approximation

 Introduction

 Introduction

 Markov Decision Process (MDP): formalization of sequential
decision making problem

 Actions influence not only immediate rewards but also subsequent
situations (delayed reward)

 Trade-off immediate and delayed reward

 The Agent-Environment Interface

 The Agent-Environment Interface

 MDP: formal framework representing problems of learning from
interaction to achieve a goal

 Agent: the learner

 Environment: everything outside the agent

 Markov Decision Process (notation)

The main elements of an MDP are:
 States: (where t = 0, 1, 2, 3 … represent time steps)

 Actions:

 Rewards:

 Dynamics function:

 p specifies a probability distribution

S t∈S

At∈ A

Rt+1∈R⊂ℝ

s , s '∈S , r∈R ,a∈ A (s)

 Markov Decision Processes (notation)

From p we can compute:

 State-transition probabilities

 Expected rewards

Markov property: The state must include all information about all
aspects of the past agent-environment interaction

Trajectory:

 The “art” of generating MDPs

 The MDP framework is abstract and flexible and can be applied to
different problems in different ways (e.g., low/high level actions)

 High/Low level decisions: in a complex robot many agents may be
operating at once (e.g., high level decisions can form part of the state
for lower-level decisions)

 Boundary between agent and environment is typically not the
same as the physical boundary (anything that cannot be changed
arbitrarily by the agent is considered part of the environment)

 The agent may know everything about the environment but still face
a difficult RL task (e.g., Rubik’s cube)

 Example: Recicling Robot

States:
S={high, low} (charge levels)

Actions:
A(low)={search, wait, recharge}
A(high)={search, wait}

Dynamics/Rewards:
Transition

probabilities
Expected
rewards Transition graph

 Goals and Rewards

 Goals and rewards

 In RL the goal is formalized in terms of reward
 The agent’s goal is to maximize the total amount of reward
 Not immediate reward but cumulative reward

 Reward hypothesis: All of what we mean by goals and purposes
can be well thought of as the maximization of the expected value of
the cumulative sum of a received scalar signal (called reward)

 The use of reward signal to formalize the goal is one of the most
distinctive features of RL

 Examples: learning to walk, learning to escape from a maze, learning
to play checkers

 Reward is a way to say the agent what to do, not how

 Returns and Episodes

 Returns and episodes

Episodic tasks: applications in which there is a natural notion of final
step (e.g., the plays of a game)

 Each episode ends in a state called terminal state, followed by a
reset to a standard starting state

 At time t the agent seeks to maximize the expected return
 The return is the sum of rewards until the final step T

Continuing tasks: the agent-environment interactions do not break
naturally in epiodes but go on continuously without limit ()

 The agent maximizes the discounted return

where is the discount factor, with

T=∞

γ 0≤ γ ≤1

 Returns and episodes

 If the infinite sum of the expected reward has a finite value as
long as the reward sequence is bounded

 If the agent is myopic (i.e., considers only immediate reward). In
general this reduces access to future rewards, with reduced return

 The (dicounted) return can be written in a recursive way:

 Note: if , although the expected return is a sum of infinite
terms, it is still finite if the reward is nonzero and constant.

 E.g., if reward is always 1 and then

γ<1

γ=0

γ<1

(geometric series)

γ<1

 Example: Pole Balancing

 Objective: to apply forces to a cart moving

along a track to keep a pole hinged to

the cart from falling over

Episodic task:
 Episodes are the repeated attempts to balance the pole
 Reward: +1 for every time step in which failure did not occur
 Return: number of steps until failure
 Problem: successful balancing forever → infinite reward

Continuing task (using discounting):
 Reward: -1 on each failure, 0 at all other times
 Return at each step: where K is the number of time steps

before failure

 Policies and Value Functions

 Policies and Value Functions

 Almost all RL algorithms involve estimating value functions, i.e.,
functions of state (or state-action pairs) that estimate how good it is
for the agent to be in a given state (in terms of expected return)

 Since the future expected return depends on what actions the agent
will take, value functions are defined w.r.t. particular ways of acting,
called policies

 Policy: is a mapping from states to probabilities of selecting
each possible action. Symbol indicates the probability that
action a is selected from state s.

 RL algorithms specify how the agent’s policy is changed as a
result of its experience.

π (a∣s)

 Policies and Value Functions

 The state-value function of a state s under a policy , denoted by
is the expected return when starting in s and following thereafter

 The action-value function of taking action a in state s under a policy
denoted by is the expected return starting from state s, taking
action a, and therefore following

 Both state and action value functions can be estimated from
experience

v π (s)

qπ (s , a)

π

π

π

π

 Bellman Equation

 Fundamental property of value functions: they satisfy

the following recursive relationships (Bellman Equation)

 Last expression: sum over all values of a, s’ and r.
 For each triple, we

 compute its probability ,
 weight the quantity in brackets by this probability,
 sum over all possibilities to get an expected value.

Richard Bellman

 Bellman Equation: backup diagrams

 Bellman Equation: observations

 The value function is the unique solution to its Bellman equation

 The Bellman equation forms the basis of a number of ways to compute,
approximate and learn (backup diagrams)

 The Bellman equation is actually a system of equations (one for
each state) → Method for solving non-linear equations

 Backup operators transfer value information back to a state (or state-
action pair) from its successor state (or state-action pair).

v π (s)

v π (s)

 Example: Gridworld

 Actions: N, S, E, W (1 cell in the direction, deterministically)
 Rewards: exceptional rewards (A→A’, all actions from A, +10; B → B’,

all actions from B, +5); off the grid (-1); other actions (0)
 Policy: uniformly random action selection in all states
 Discount factor: 0.9

Exceptional reward
dynamics

 v π (s)

Value function computed by
solving the Bellman equation

 Example: Golf

 Reward: -1 for each stroke
 State: location of the ball
 State value: negative number of

strokes to the hole from the
location

 Actions: which club we select
(putter or driver)

Value function for a policy
that always selects a putter

 Optimal Policies and Optimal Value Functions

 Optimal Policies and Optimal Value Functions

 Solving RL tasks means finding a policy that achieves large reward
over long runs → Finding an optimal policy

 Value functions define a partial ordering over policies

 A policy is defined to be better than or equal to a policy if
its expected return (i.e., value) is greater than or equal to that of
 for all states, namely

 There is always at least one policy that is better than or equal to all
other policies. This is an optimal policy (notation).

 All optimal policies share the same optimal state-value function

π ≥π '⇔ v π (s)≥v π ' (s) ,∀ s∈S

π*

π 'π

π

 Optimal Policies and Optimal Value Functions

 Optimal policies also share the same optimal action-value function

 for all and

 We can write in terms of as

 Example: Optimal Value Function for Golf

q*

s∈S a∈ A

v *

Value of each state if we first
play a stroke with the driver
and afterward optimally select
either a driver or a putter

 Optimal Policies and Optimal Value Functions

 Bellman optimality equation for
 The value of a state under an optimal policy must equal the expected

return for the best action from that state:

v *

 Optimal Policies and Optimal Value Functions

 Bellman optimality equation for q*

 Optimal Policies and Optimal Value Functions

 Given , the optimal policy for a state s is achieved selecting an
action by which the maximum is obtained in the Bellman optimality
equation. Any policy that assigns nonzero probability only to these
actions is optimal (i.e., one-step search, greedy policy w.r.t.)

 Given , the optimal policy for a state s is achieved simply
selecting an action that maximizes (i.e., zero-step search,
greedy policy w.r.t.)

v *

v *

q*
q* (s , a)

q*

 Example: solving the Gridworld

Homework: check the correctness of the optimal values and
policy of this example using the codes developed in the next lab
exercise (i.e., value and policy iteration)

 Example: Recycling Robot

Bellman optimality equations for the recycling robot

Homework: check the correctness of the formulas of this example

 Problems of the Bellman optimality equation

 Bellman optimality equation is similar to an exhaustive search, solving
it needs to invert a matrix with dimension equal to the number of states
(i.e., complexity O(S3)) → rarely useful in real-world problems

 E.g., Backgammon has states. It would take thousands of
years in modern computers

 Assumptions for using Bellman optimality equation to solve an MDP:
 We accurately know the dynamics of the environment
 We have enough computational resources
 Markov property

 Other decision-making methods are ways to approximatively solve
the Bellman optimality equation
 Heuristic search methods: expand up to some depth, forming a tree

of possibilities and evaluate leaves by heuristics (e.g., A*)
 Dynamic programming

1020

 Optimality and Approximation

 Optimality and approximation

 Problem: Optimal policies can be generated only with extreme
computational cost

 Problem: Even with accurate models of the environment’s dynamics it
is not always possible to solve Bellman optimality equation

 In problems with small state and action spaces it is possible to
represent policy and value function approximations by
arrays/tables: tabular methods (Part I of SutBar)

 In other cases parametrized function representations are used (e.g.,
neural networks) (Part II of SutBar)

 Categorization of RL algorithms

Value based
 Value function: yes
 Policy: no (implicit)

Policy based
 Value function: no
 Policy: yes

Actor-critic
 Value function: yes
 Policy: yes

Model based
 Dynamics model (i.e.,

transition and reward): yes

Model free
 Dynamics model (i.e.,

transition and reward): no

 References

 R. S. Sutton, A. G. Barto. Reinforcement learning, An Introduction.
Second edition. Chapter 3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

