Markov Decision processes

Reinforcement learning – LM Artificial lintelligence (2022-23)

Alberto Castellini University of Verona

Summary

- Introduction
- The Agent-Environment Interface
- Goals and Rewards
- Returns and Episodes
- Policies and Value Functions
- Optimal Policies and Optimal Value Functions
- Optimality and Approximation

Introduction

- Markov Decision Process (MDP): formalization of sequential decision making problem
- Actions influence not only immediate rewards but also subsequent situations (delayed reward)
- Trade-off immediate and delayed reward

The Agent-Environment Interface

The Agent-Environment Interface

- MDP: formal framework representing problems of learning from interaction to achieve a goal
- Agent: the learner
- Environment: everything outside the agent

Markov Decision Process (notation)

The main elements of an MDP are:

- **States**: $S_t \in S$ (where t = 0, 1, 2, 3 ... represent time steps)
- Actions: $A_t \in A$
- **Rewards**: $R_{t+1} \in R \subset \mathbb{R}$
- **Dynamics** function:

$$p(s', r | s, a) \doteq \Pr\{S_t = s', R_t = r \mid S_{t-1} = s, A_{t-1} = a\},\\s, s' \in S, r \in R, a \in A(s)$$

• *p* specifies a probability distribution

$$\sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{R}} p(s', r | s, a) = 1, \text{ for all } s \in \mathcal{S}, a \in \mathcal{A}(s)$$

From *p* we can compute:

• State-transition probabilities

$$p(s'|s,a) \doteq \Pr\{S_t = s' \mid S_{t-1} = s, A_{t-1} = a\} = \sum_{r \in \mathcal{R}} p(s',r|s,a)$$

• Expected rewards

$$r(s,a) \doteq \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r \mid s, a),$$

$$r(s,a,s') \doteq \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a, S_t = s'] = \sum_{r \in \mathcal{R}} r \frac{p(s', r \mid s, a)}{p(s' \mid s, a)}$$

Markov property: The state must include all information about all aspects of the past agent-environment interaction

Trajectory: $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \ldots$

- The MDP framework is abstract and flexible and can be applied to different problems in different ways (e.g., low/high level actions)
- **High/Low level decisions:** in a complex robot many agents may be operating at once (e.g., high level decisions can form part of the state for lower-level decisions)
- **Boundary between agent and environment** is typically not the same as the physical boundary (anything that cannot be changed arbitrarily by the agent is considered part of the environment)
- The agent may **know** everything about the **environment** but still face a difficult RL task (e.g., Rubik's cube)

Example: Recicling Robot

States:

S={high, low} (charge levels)

Actions:

A(low)={search, wait, recharge} A(high)={search, wait}

Dynamics/Rewards:

probabilities rewards	Expected rewards Transition graph		
s a s' $p(s' s,a)$ $r(s,a,s')$	1, r_{wait} 1- β , -3 β , r_{search}		
high search high $lpha$ $r_{ extsf{search}}$			
high search low $1-lpha$ $r_{ extsf{search}}$	wait • search •		
low search high $1-eta$ -3			
low search low β r_{search}	1 0 recharge		
high wait high 1 r_{wait}	(high) (low)		
high wait low 0 -			
low wait high 0 -			
low wait low 1 r_{wait}	wait		
low recharge high 1 0			
low recharge low 0 -	$\alpha, r_{\text{search}}$ $1-\alpha, r_{\text{search}}$ $1, r_{\text{wait}}$		

Goals and Rewards

Goals and rewards

- In RL the goal is formalized in terms of reward
- The agent's goal is to **maximize the total amount of reward**
- Not immediate reward but **cumulative reward**
- **Reward hypothesis:** All of what we mean by **goals** and purposes can be well thought of as the **maximization** of the **expected value** of the **cumulative sum of** a received scalar signal (called **reward**)
- The use of reward signal to formalize the goal is one of the most **distinctive features of RL**
- Examples: learning to walk, learning to escape from a maze, learning to play checkers
- Reward is a way to say the agent **what** to do, **not how**

Returns and Episodes

Episodic tasks: applications in which there is a natural notion of final step (e.g., the plays of a game)

- Each **episode** ends in a state called **terminal state**, followed by a reset to a standard **starting state**
- At time *t* the agent seeks to maximize the **expected return**
- The return is the sum of rewards until the final step T

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

Continuing tasks: the agent-environment interactions do not break naturally in epiodes but go on continuously without limit $(T = \infty)$

• The agent maximizes the **discounted return**

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

 ∞

where *y* is the discount factor, with $0 \le y \le 1$

- If γ <1 the infinite sum of the expected reward has a finite value as long as the reward sequence is bounded
- If $\gamma = 0$ the agent is **myopic** (i.e., considers only immediate reward). In general this reduces access to future rewards, with reduced return
- The (dicounted) return can be written in a recursive way:

$$G_{t} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

= $R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$
= $R_{t+1} + \gamma G_{t+1}$

- Note: if γ <1, although the expected return is a sum of infinite terms, it is still finite if the reward is nonzero and constant.
- E.g., if reward is always 1 and $\gamma < 1$ then

$$G_t = \sum_{k=0}^{\infty} \gamma^k = \frac{1}{1-\gamma}$$
 (geometric series)

 Objective: to apply forces to a cart moving along a track to keep a pole hinged to the cart from falling over

Episodic task:

- **Episodes** are the repeated attempts to balance the pole
- Reward: +1 for every time step in which failure did not occur
- Return: number of steps until failure
- Problem: successful balancing forever \rightarrow infinite reward

Continuing task (using discounting):

- Reward: -1 on each failure, 0 at all other times
- Return at each step: $-\gamma^K$ where K is the number of time steps before failure

Policies and Value Functions

Policies and Value Functions

- Almost all RL algorithms involve estimating value functions, i.e., functions of state (or state-action pairs) that estimate *how good* it is for the agent to be in a given state (in terms of expected return)
- Since the future expected return depends on what actions the agent will take, value functions are defined w.r.t. particular ways of acting, called policies
- Policy: is a mapping from states to probabilities of selecting each possible action. Symbol $\pi(a|s)$ indicates the probability that action *a* is selected from state *s*.
- **RL algorithms** specify how the **agent's policy** is **changed** as a result of its **experience**.

Policies and Value Functions

• The state-value function of a state *s* under a policy π , denoted by $v_{\pi}(s)$ is the expected return when starting in *s* and following π thereafter

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right], \text{ for all } s \in S$$

The action-value function of taking action *a* in state *s* under a policy π denoted by *q_π(s,a)* is the expected return starting from state *s*, taking action *a*, and therefore following π

$$q_{\pi}(s,a) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a\right]$$

 Both state and action value functions can be estimated from experience • Fundamental **property** of **value functions**: they satisfy the following recursive relationships (**Bellman Equation**)

$$\begin{aligned} v_{\pi}(s) &\doteq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s] \end{aligned}$$
 Richard Bellman
$$&= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \Big[r + \gamma \mathbb{E}_{\pi}[G_{t+1}|S_{t+1} = s'] \Big] \\ &= \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) \Big[r + \gamma v_{\pi}(s') \Big], \quad \text{for all } s \in \mathbb{S}, \end{aligned}$$

- Last expression: sum over all values of *a*, *s'* and *r*.
- For each triple, we
 - compute its **probability** $\pi(a|s)p(s',r|s,a)$,
 - weight the quantity in brackets by this probability,
 - **sum** over all possibilities to get an expected value.

Bellman Equation: backup diagrams

 q_π backup diagram

- The value function $v_{\pi}(s)$ is the unique solution to its Bellman equation
- The Bellman equation forms the basis of a number of ways to compute, approximate and learn $v_{\pi}(s)$ (backup diagrams)
- The Bellman equation is actually a system of equations (one for each state) → Method for solving non-linear equations
- **Backup operators** transfer value information back to a state (or state-action pair) from its successor state (or state-action pair).

Example: Gridworld

- Actions: N, S, E, W (1 cell in the direction, deterministically)
- **Rewards**: exceptional rewards ($A \rightarrow A'$, all actions from A, +10; $B \rightarrow B'$, all actions from B, +5); off the grid (-1); other actions (0)
- **Policy**: uniformly random action selection in all states
- Discount factor: 0.9

- Reward: -1 for each stroke
- State: location of the ball
- **State value**: negative number of strokes to the hole from the location
- Actions: which club we select (putter or driver)

Value function for a policy that always selects a putter

- Solving RL tasks means finding a policy that achieves large reward over long runs → Finding an optimal policy
- Value functions define a **partial ordering over policies**
- A policy π is defined to be better than or equal to a policy π' if its expected return (i.e., value) is greater than or equal to that of π for all states, namely

$$\pi \ge \pi' \Leftrightarrow v_{\pi}(s) \ge v_{\pi'}(s), \forall s \in S$$

- There is always at least one policy that is better than or equal to all other policies. This is an optimal policy (notation π_*).
- All optimal policies share the same **optimal state-value function**

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s)$$

Optimal policies also share the same optimal action-value function

$$q_*(s,a) \doteq \max_{\pi} q_{\pi}(s,a)$$

for all $s \in S$ and $a \in A$

• We can write q_* in terms of v_* as

$$q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a]$$

• Example: Optimal Value Function for Golf

Value of each state if we first play a stroke with the driver and afterward optimally select either a driver or a putter

- Bellman optimality equation for v_*
- The **value** of a **state** under an **optimal policy** must equal the expected return for the **best action** from that state:

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$

= $\max_{a} \mathbb{E}_{\pi_*}[G_t \mid S_t = s, A_t = a]$
= $\max_{a} \mathbb{E}_{\pi_*}[R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a]$
= $\max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$
= $\max_{a} \sum_{s', r} p(s', r \mid s, a) [r + \gamma v_*(s')].$

• Bellman optimality equation for q_*

$$q_*(s,a) = \mathbb{E} \Big[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1},a') \mid S_t = s, A_t = a \Big] \\ = \sum_{s',r} p(s',r|s,a) \Big[r + \gamma \max_{a'} \underline{q_*(s',a')} \Big].$$

- **Given** *v*_{*}, the **optimal policy for a state** *s* is achieved selecting an action by which the **maximum** is obtained in the Bellman optimality equation. Any policy that assigns nonzero probability only to these actions is optimal (i.e., **one-step search**, **greedy policy w.r.t.** *v*_{*})
- Given q_{*}, the optimal policy for a state s is achieved simply selecting an action that maximizes q_{*}(s, a) (i.e., zero-step search, greedy policy w.r.t. q_{*})

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

Gridworld

 v_*

 π_*

Figure 3.5: Optimal solutions to the gridworld example.

Homework: check the correctness of the optimal values and policy of this example using the codes developed in the next lab exercise (i.e., value and policy iteration)

Example: Recycling Robot

Bellman optimality equations for the recycling robot

$$\begin{aligned} v_*(\mathbf{h}) &= \max \left\{ \begin{array}{ll} p(\mathbf{h}|\mathbf{h},\mathbf{s})[r(\mathbf{h},\mathbf{s},\mathbf{h}) + \gamma v_*(\mathbf{h})] + p(\mathbf{l}|\mathbf{h},\mathbf{s})[r(\mathbf{h},\mathbf{s},\mathbf{l}) + \gamma v_*(\mathbf{l})] \\ p(\mathbf{h}|\mathbf{h},\mathbf{w})[r(\mathbf{h},\mathbf{w},\mathbf{h}) + \gamma v_*(\mathbf{h})] + p(\mathbf{l}|\mathbf{h},\mathbf{w})[r(\mathbf{h},\mathbf{w},\mathbf{l}) + \gamma v_*(\mathbf{l})] \\ \end{array} \right\} \\ &= \max \left\{ \begin{array}{l} \alpha[r_{\mathbf{s}} + \gamma v_*(\mathbf{h})] + (1 - \alpha)[r_{\mathbf{s}} + \gamma v_*(\mathbf{l})], \\ 1[r_{\mathbf{w}} + \gamma v_*(\mathbf{h})] + 0[r_{\mathbf{w}} + \gamma v_*(\mathbf{l})] \end{array} \right\} \\ = \max \left\{ \begin{array}{l} r_{\mathbf{s}} + \gamma[\alpha v_*(\mathbf{h}) + (1 - \alpha)v_*(\mathbf{l})], \\ r_{\mathbf{w}} + \gamma v_*(\mathbf{h}) \end{array} \right\}. \end{aligned} \end{aligned}$$

$$v_*(1) = \max \left\{ \begin{array}{l} \beta r_s - 3(1-\beta) + \gamma[(1-\beta)v_*(h) + \beta v_*(1)], \\ r_w + \gamma v_*(1), \\ \gamma v_*(h) \end{array} \right\}$$

Homework: check the correctness of the formulas of this example

Problems of the Bellman optimality equation

- Bellman optimality equation is similar to an exhaustive search, solving it needs to invert a matrix with dimension equal to the number of states (i.e., complexity O(S³)) → rarely useful in real-world problems
 - E.g., Backgammon has 10^{20} states. It would take thousands of years in modern computers
- Assumptions for using Bellman optimality equation to solve an MDP:
 - We accurately know the dynamics of the environment
 - We have enough computational resources
 - Markov property
- Other decision-making methods are ways to approximatively solve the Bellman optimality equation
 - Heuristic search methods: expand up to some depth, forming a tree of possibilities and evaluate leaves by heuristics (e.g., A*)
 - Dynamic programming

Optimality and Approximation

- **Problem:** Optimal policies can be generated only with extreme computational cost
- **Problem: Even with accurate models of the environment's dynamics** it is not always possible to solve Bellman optimality equation
- In problems with small state and action spaces it is possible to represent policy and value function approximations by arrays/tables: tabular methods (Part I of SutBar)
- In other cases parametrized function representations are used (e.g., neural networks) (Part II of SutBar)

Categorization of RL algorithms

Value based

- Value function: **yes**
- Policy: no (implicit)

Policy based

- Value function: **no**
- Policy: yes

Actor-critic

- Value function: **yes**
- Policy: yes

Model based

• Dynamics model (i.e., transition and reward): **yes**

Model free

• Dynamics model (i.e., transition and reward): **no**

References

• R. S. Sutton, A. G. Barto. Reinforcement learning, An Introduction. Second edition. Chapter 3