
Multi-armed Bandits

Reinforcement learning – LM Artificial Iintelligence
(2022-23)

Alberto Castellini
University of Verona

 Summary

 Introduction

 K-armed Bandit Problem

 Action-value Methods

 The 10-armed Testbed

 Incremental Implementation

 Optimistic Initial Values

 Upper Confidence Bound (UCB) action selection

 Gradient Bandit Algorithms

 Associative Search (Contextual Bandits)

 Introduction

 Introduction

Main feature distinguishing RL from other types of learning:
 RL uses training information to evaluate agent’s actions
 Other learning methods instruct the agent providing examples of

correct actions

 Evaluative feedback: how good the action taken was (no info about
best/worst actions)

 Instructive feedback: indicates the correct action independently of
actions actually taken

 Active exploration is also needed by RL to search good behaviors

 This lecture: evaluative aspect of RL in the simplified setting of
single state (nonassociative setting)

 k-armed bandit problem
 related learning methods (extended in next lectures to RL setting)

 K-armed Bandit Problem

 K-armed Bandit Problem

Problem:
 Repeatedly choose among k different options (actions)

 After each choice you receive a numerical reward chosen from a
stationary probability distribution depending on the action selected

 Objective: maximize the expected total reward over some time period
(e.g., 1000 action selections)

1-armed bandit

k-armed bandit

 K-armed Bandit Problem

 Each of the k actions has an expected (mean) reward, called value of
the action

 If A
t
 is the action selected at step t and R

t
 is the corresponding reward

then the expected reward given that action a was selected is:

 If you know the value of each action then it is trivial to solve the k-
armed bandit problem: always select the action with the highest
value

 We assume not to know the action values but to estimate them

 The estimated value of action a at time t is Q
t
(a)

 We would like Q
t
(a) to be as close as possible to q

*
(a)

 Exploration-exploitation dilemma

 Given estimates of all action values, we call greedy action the action
with the largest estimated value

 When you choose the greedy action you exploit your current
knowledge of action values

 When you choose nongreedy actions you explore action values to
get new knowledge on them

 Exploitation is the best thing to do to maximize the expected reward
on a one step horizon

 Exploration may produce greater total reward in the long run

 Dilemma: should I explore or exploit? There is a conflict
 There are sophisticated methods for balancing exploration and

exploitation but most of them make strong assumptions

 Action-value Methods

 Action-value methods

 Methods for estimating action values and selecting optimal actions

 Since the value of an action is the mean reward obtained when the
action is selected, a natural way to estimate it is by averaging the
rewards actually received:

where is 1 if predicate is true, 0 otherwise.

 When the denominator goes to infinity, by the law of large numbers,
Q

t
(a) converges to q

*
(a).

 We call this the Sample-Average Method

 Action-value methods
 How the estimate provided by the sample-average method might

be used to select actions?

1. Simplest rule: select one of the actions with the highest estimated
value (greedy action selection)

 Greedy action selection always exploits current knowledge, hence it
maximizes immediate reward

2. Alternative rule: behave greedily most of the times but with small
probability select randomly from nongreedy actions (-greedy
selection)

 It performs exploration. As the number of steps increases, every
action will be sampled infinite number of times ensuring that Q

t
(a)

converges to q
*
(a)

ε ε

 The 10-armed Testbed

 The 10-armed testbed

Goal: to compare performance of different learning methods
 2000 randomly generated instances of the k-armed bandit problem
 Number of actions: k=10
 For each bandit problem action values q

*
(a) are selected according to

a normal (Gaussian) distribution with mean 0 and variance 1

 When an action A
t
 is selected at time t the reward R

t
 is selected from

a normal distribution with mean q
*
(A

t
) and variance 1 (grey plots)

 The 10-armed testbed

 To test a learning method we store its rewards over 1000 steps (run)

 Then we repeat this for 2000 independent runs (each run refers to a
different instance of the 10-armed bandit problem (i.e., different q

*
(a)

values)

 Finally, we average rewards of all runs at the same time t

 Comparing greedy, 0.01-greedy and 0.1-greedy methods

 Comparing greedy, 0.01-greedy and 0.1-greedy methods

 With larger reward variance (e.g., 10 instead of 1) -greedy methods
should perform even better than the greedy method

 If the reward variances are zero then a single try is enough to
discover action values. In this case greedy methods perform best
because they soon find the best action and then never explore

 If the bandit tasks were nonstationary (i.e., true values q
*
(a) change

over time) then exploration is needed also in the deterministic case
(zero variance)

 Nonstationarity is the case most commonly encountered in RL

ε

 Incremental Implementation

 Incremental Implementation

 Action value estimations Q
t
(a) are computed by averaging observed

rewards in action-value methods

 Question: how can we compute/update these averages efficiently
(i.e., constant memory and constant per-time-step computation)?

 Let’s focus on a single action a. Let R
i
 be the reward received at step i

selecting action a, and Q
n
 the estimated value of action a after n-1

selections of this action

 By maintaining a record of rewards we can sum them up and divide
by the current number of selections, at each update

 Memory and computational requirements grow linearly with the
number of rewards

 Incremental Implementation

 It is easy to devise more efficient incremental formulas

 It requires memory only for Q
n
 and n, and only a small computation

(three mathematical operations) at each step

 Incremental Implementation

 This update rule is of a form that occurs frequently in RL. The
general form is:

 Target-OldEstimate is an error in the estimate which is reduced
taking a step toward the Target

 The Target is presumed to indicate a desirable direction in which to
move

 But the Target is a noisy signal (e.g., nth reward)

 The StepSize parameter in the incremental average computation is
1/n, hence it decreases at each step. This parameter, called in
general, can get also other values

α

 Incremental Implementation

R
i

Q
i

1 2 3 4 5 6

i

 Complete bandit algorithm

 Tracking a Nonstationary Problem

 Tracking a Nonstationary Problem

 The averaging methods discussed above are appropriate for
stationary bandit problems (reward probabilities fixed over time)

 RL problems are always nonstationary

 In these cases it makes sense to give more weight to recent rewards
than to long-past rewards → Constant size parameter

 The previous incremental update rule for estimating value Q
n
 from the

n-1 last rewards becomes

 with and constant

 Tracking a Nonstationary Problem

 This recursive formula can be rewritten as

 This is a weighted average because

 is less than 1, thus the weight given to R
i
 decreases as n

increases (weight decreases exponentially according to the exp of 1-) α

 Tracking a Nonstationary Problem

 Sometimes it is convenient to vary the step-size parameter from step
to step.

 Let be the parameter used to process the reward received after
the nth selection of action a.

 E.g., in the sample-average method and the value Q
n
 is

guaranteed to converge to the true action value by the law of large
numbers

 Problem: convergence is not guaranteed for all sequences of the
step-size parameter

 Tracking a Nonstationary Problem
 Stochastic approximation theory provides conditions required to

assure convergence with probability 1:

 First condition: guarantees that the steps are large enough to
eventually overcome any initial condition or random fluctuations

 Second condition: guarantees that eventually the steps become small
enough to assure convergence

 Both conditions are met by (, Euler’s proof
of the Basel problem)

 For with constant the second condition is not met
→ The estimate never completely converges but continue to vary in
response to most recently received rewards (desirable in
nonstationary environments)

α

 Optimistic Initial Values

 Optimistic Initial Values

 All methods discussed so far depend on (i.e., they are biased by) initial
action-value estimates, Q

1
(a)

 In practice, this bias is not a problem and can sometimes be helpful
 Downside: biases need extra parameters
 Upside: biases provide an easy way to provide prior knowledge

about expected levels of reward from different actions

 Optimistic initial values (i.e., Q
1
(a) values larger than expected) are

a simple way to encourage exploration

Example: 10-armed testbed with Q
1
(a)=5 instead of Q

1
(a)=0

 Whichever action is selected, the reward is less than the starting
estimate → The greedy learner switches to other actions thus
performing exploration

 Optimistic Initial Values: application to 10-armed bandit

Optimistic initial values:
 simple trick
 effective on stationary problems
 Not suited for nonstationary problems because its drive for

exploration is inherently temporary

 Upper Confidence Bound (UCB) action selection

 Upper-Confidence-Bound (UCB) Action Selection

 Exploration is needed: because of the uncertainty about action-value
estimates

 -greedy action selection forces the non-greedy actions to be tried
indiscriminately (no preference for actions that are nearly greedy or
particularly uncertain)

 Better to select among non-greedy actions according to their
potential for actually being optimal

 How close their estimates are to being maximal
 Uncertainty in those estimates

ε

 Upper-Confidence-Bound (UCB) Action Selection

 UCB action selection:

 where
 t is the total number of action-selections performed so far
 N

t
(a) is the number of times action a has been selected prior to time t

 c>0 controls the degree of exploration
 for N

t
(a)=0, a is considered an action with maximal reward (i.e., to be

tested)

 UCB: application to 10-armed bandit

ε

 UCB performs well
 UCB is more difficult than -greedy to extend beyond bandits to the

more general RL setting (see lecture about model-based RL).
ε

 Gradient Bandit Algorithms

 Gradient Bandit Algorithms

 Idea: learn a numerical preference H
t
(a) for each action a instead of

estimating action values

 The larger the preference, the more often the action is taken

 Only the relative preference of one action over another is important

 Action probabilities are determined according to a soft-max
distribution:

 Notation: probability of taking action a at time t

 Gradient Bandit Algorithm

Learning algorithm:
 Initially all action preferences are the same (e.g., H

1
(a)=0): all actions

have equal probability of being selected

 At each step, after selecting action A
t
 and receiving the reward R

t
, the

action preferences are updated by the following rule based on
stochastic gradient ascent:

where
● > 0: step-size parameter
● : average of all the rewards received so far (from all actions) and

including time t (which can be computed incrementally as seen
before). This term serves as a baseline with which the reward is
compared

α

 Gradient Bandit Algorithm

Idea:

 If the reward is higher than the baseline then the probability of taking
A

t
 in the future is increased

 If the reward is below baseline then the probability is decreased

 The probabilities of non-selected actions move in the opposite
direction

 Gradient Bandit Algorithm: application to 10-armed bandit variant

 Variant of the 10-armed testbed in which the true expected rewards were
selected according to a normal distribution with a mean of +4 instead of 0

 The shift has no effect on the gradient bandit algorithm because of the
reward baseline term that instantaneously adapts to the new level

(i.e., =0)

 Bandit algotithms: Performance comparison

 Associative Search (Contextual Bandits)

 Associative Search (Contextual Bandit)

 From bandit problems (single state) to RL problems (multiple states
with different action values)

 Bandit problems are non-associative: no need to associate different
actions with different situations

 In general RL problems there is more than one situation

 Goal of RL: learn a mapping from situations to actions that are best in
those situations (policy)

 Associative Search (Contextual Bandit)

Non-associative
multi-armed

bandit

Associative multi-armed bandit
(contextual bandit)

Different action values in different situations

A
1

A
2

A
3

...

A
1

A
2

A
3

A
4

A
5A

6

...

Associative search task: involves both trial-and-error learning (as in
nonassociative tasks) and action-situation association

Random transitions between different multi-armed bandits

 References

 R. S. Sutton, A. G. Barto. Reinforcement learning, An Introduction.
Second edition. Chapter 2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

