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    Introduction



    Introduction

Main feature distinguishing RL from other types of learning:
 RL uses training information to evaluate agent’s actions
 Other learning methods instruct the agent providing examples of 

correct actions 

 Evaluative feedback: how good the action taken was (no info about 
best/worst actions)

 Instructive feedback: indicates the correct action independently of 
actions actually taken

 Active exploration is also needed by RL to search good behaviors

 This lecture: evaluative aspect of RL in the simplified setting of 
single state (nonassociative setting) 

 k-armed bandit problem
 related learning methods (extended in next lectures to RL setting)



    K-armed Bandit Problem



    K-armed Bandit Problem

Problem: 
 Repeatedly choose among k different options (actions)

 After each choice you receive a numerical reward chosen from a 
stationary probability distribution depending on the action selected

 Objective: maximize the expected total reward over some time period 
(e.g., 1000 action selections)

1-armed bandit

k-armed bandit



    K-armed Bandit Problem

 Each of the k actions has an expected (mean) reward, called value of 
the action

 If A
t
 is the action selected at step t and R

t
 is the corresponding reward 

then the expected reward given that action a was selected is:

 If you know the value of each action then it is trivial to solve the k-
armed bandit problem: always select the action with the highest 
value

 We assume not to know the action values but to estimate them

 The estimated value of action a at time t is Q
t
(a) 

 We would like Q
t
(a) to be as close as possible to q

*
(a) 



    Exploration-exploitation dilemma

 Given estimates of all action values, we call greedy action the action 
with the largest estimated value 

 When you choose the greedy action you exploit your current 
knowledge of action values

 When you choose nongreedy actions you explore action values to 
get new knowledge on them

 Exploitation is the best thing to do to maximize the expected reward 
on a one step horizon

 Exploration may produce greater total reward in the long run

 Dilemma: should I explore or exploit? There is a conflict
 There are sophisticated methods for balancing exploration and 

exploitation but most of them make strong assumptions
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    Action-value methods

 Methods for estimating action values and selecting optimal actions  

 Since the value of an action is the mean reward obtained when the 
action is selected, a natural way to estimate it is by averaging the 
rewards actually received:

where                is 1 if predicate is true, 0 otherwise.

 When the denominator goes to infinity, by the law of large numbers, 
Q

t
(a) converges to q

*
(a).

 We call this the Sample-Average Method



    Action-value methods
 How the estimate provided by the sample-average method might 

be used to select actions? 

1. Simplest rule: select one of the actions with the highest estimated 
value (greedy action selection)

 Greedy action selection always exploits current knowledge, hence it 
maximizes immediate reward

2. Alternative rule: behave greedily most of the times but with small 
probability     select randomly from nongreedy actions (   -greedy 
selection)

 It performs exploration. As the number of steps increases, every 
action will be sampled infinite number of times ensuring that Q

t
(a) 

converges to q
*
(a)

ε ε



    The 10-armed Testbed



    The 10-armed testbed

Goal: to compare performance of different learning methods 
 2000 randomly generated instances of the k-armed bandit problem
 Number of actions: k=10
 For each bandit problem action values q

*
(a) are selected according to 

a normal (Gaussian) distribution with mean 0 and variance 1

 When an action A
t
 is selected at time t the reward R

t
 is selected from 

a normal distribution with mean q
*
(A

t
) and variance 1 (grey plots)



    The 10-armed testbed

 To test a learning method we store its rewards over 1000 steps (run)

 Then we repeat this for 2000 independent runs (each run refers to a 
different instance of the 10-armed bandit problem (i.e., different q

*
(a) 

values)

 Finally, we average rewards of all runs at the same time t



    Comparing greedy, 0.01-greedy and 0.1-greedy methods



    Comparing greedy, 0.01-greedy and 0.1-greedy methods

 With larger reward variance (e.g., 10 instead of 1)    -greedy methods 
should perform even better than the greedy method

 If the reward variances are zero then a single try is enough to 
discover action values. In this case greedy methods perform best 
because they soon find the best action and then never explore

 If the bandit tasks were nonstationary (i.e., true values q
*
(a) change 

over time) then exploration is needed also in the deterministic case 
(zero variance)

 Nonstationarity is the case most commonly encountered in RL

ε



    Incremental Implementation



    Incremental Implementation

 Action value estimations Q
t
(a) are computed by averaging observed 

rewards in action-value methods 

 Question: how can we compute/update these averages efficiently 
(i.e., constant memory and constant per-time-step computation)?

 Let’s focus on a single action a. Let R
i
 be the reward received at step i 

selecting action a, and Q
n
 the estimated value of action a after n-1 

selections of this action

 By maintaining a record of rewards we can sum them up and divide 
by the current number of selections, at each update

 Memory and computational requirements grow linearly with the 
number of rewards  



    Incremental Implementation

 It is easy to devise more efficient incremental formulas

 It requires memory only for Q
n
 and n, and only a small computation 

(three mathematical operations) at each step



    Incremental Implementation

 This update rule is of a form that occurs frequently in RL. The 
general form is:

 Target-OldEstimate is an error in the estimate which is reduced 
taking a step toward the Target

 The Target is presumed to indicate a desirable direction in which to 
move

 But the Target is a noisy signal (e.g., nth reward)

 The StepSize parameter in the incremental average computation is    
1/n, hence it decreases at each step. This parameter, called     in 
general, can get also other values 

α



    Incremental Implementation

R
i

Q
i

1 2 3 4 5 6

i



    Complete bandit algorithm



    Tracking a Nonstationary Problem



    Tracking a Nonstationary Problem

 The averaging methods discussed above are appropriate for 
stationary bandit problems (reward probabilities fixed over time)

 RL problems are always nonstationary

 In these cases it makes sense to give more weight to recent rewards 
than to long-past rewards → Constant size parameter

 The previous incremental update rule for estimating value Q
n
 from the 

n-1 last rewards becomes

 with                   and constant



    Tracking a Nonstationary Problem

 This recursive formula can be rewritten as

 This is a weighted average because 

              is less than 1, thus the weight given to R
i
 decreases as n 

increases (weight decreases exponentially according to the exp of 1-   ) α



    Tracking a Nonstationary Problem

 Sometimes it is convenient to vary the step-size parameter from step 
to step. 

 Let             be the parameter used to process the reward received after 
the nth selection of action a. 

 E.g., in the sample-average method                      and the value Q
n
 is 

guaranteed to converge to the true action value by the law of large 
numbers 

 Problem: convergence is not guaranteed for all sequences of the 
step-size parameter



    Tracking a Nonstationary Problem
 Stochastic approximation theory provides conditions required to 

assure convergence with probability 1:

 First condition: guarantees that the steps are large enough to 
eventually overcome any initial condition or random fluctuations

 Second condition: guarantees that eventually the steps become small 
enough to assure convergence

 Both conditions are met by                        (                   , Euler’s proof 
of the Basel problem)

 For                          with constant       the second condition is not met 
→ The estimate never completely converges but continue to vary in 
response to most recently received rewards (desirable in 
nonstationary environments)

α



    Optimistic Initial Values



    Optimistic Initial Values

 All methods discussed so far depend on (i.e., they are biased by) initial 
action-value estimates, Q

1
(a)

 In practice, this bias is not a problem and can sometimes be helpful
 Downside: biases need extra parameters
 Upside: biases provide an easy way to provide prior knowledge 

about expected levels of reward from different actions

 Optimistic initial values (i.e., Q
1
(a) values larger than expected) are 

a simple way to encourage exploration

Example: 10-armed testbed with Q
1
(a)=5 instead of Q

1
(a)=0

 Whichever action is selected, the reward is less than the starting 
estimate → The greedy learner switches to other actions thus 
performing exploration



    Optimistic Initial Values: application to 10-armed bandit

Optimistic initial values:
 simple trick 
 effective on stationary problems
 Not suited for nonstationary problems because its drive for 

exploration is inherently temporary



    Upper Confidence Bound (UCB) action selection



    Upper-Confidence-Bound (UCB) Action Selection

 Exploration is needed: because of the uncertainty about action-value 
estimates

   -greedy action selection forces the non-greedy actions to be tried 
indiscriminately (no preference for actions that are nearly greedy or 
particularly uncertain)

 Better to select among non-greedy actions according to their 
potential for actually being optimal

 How close their estimates are to being maximal
 Uncertainty in those estimates

ε



    Upper-Confidence-Bound (UCB) Action Selection

 UCB action selection:

 where 
 t is the total number of action-selections performed so far
 N

t
(a) is the number of times action a has been selected prior to time t

 c>0 controls the degree of exploration
 for N

t
(a)=0, a is considered an action with maximal reward (i.e., to be 

tested)



    UCB: application to 10-armed bandit

ε

 UCB performs well
 UCB is more difficult than   -greedy to extend beyond bandits to the 

more general RL setting (see lecture about model-based RL).
ε
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    Gradient Bandit Algorithms

 Idea: learn a numerical preference H
t
(a) for each action a instead of 

estimating action values

 The larger the preference, the more often the action is taken

 Only the relative preference of one action over another is important

 Action probabilities are determined according to a soft-max 
distribution:

 Notation:            probability of taking action a at time t



    Gradient Bandit Algorithm

Learning algorithm:
 Initially all action preferences are the same (e.g., H

1
(a)=0): all actions 

have equal probability of being selected

 At each step, after selecting action A
t
 and receiving the reward R

t
, the 

action preferences are updated by the following rule based on 
stochastic gradient ascent:

where 
●    > 0: step-size parameter
●     : average of all the rewards received so far (from all actions) and 

including time t (which can be computed incrementally as seen 
before). This term serves as a baseline with which the reward is 
compared

α



    Gradient Bandit Algorithm

Idea: 

 If the reward is higher than the baseline then the probability of taking 
A

t
 in the future is increased

 If the reward is below baseline then the probability is decreased 

 The probabilities of non-selected actions move in the opposite 
direction



    Gradient Bandit Algorithm: application to 10-armed bandit variant

 Variant of the 10-armed testbed  in which the true expected rewards were 
selected according to a normal distribution with a mean of +4 instead of 0

 The shift has no effect on the gradient bandit algorithm because of the 
reward baseline term that instantaneously adapts to the new level

(i.e.,     =0)



    Bandit algotithms: Performance comparison



    Associative Search (Contextual Bandits)



    Associative Search (Contextual Bandit)

 From bandit problems (single state) to RL problems (multiple states 
with different action values)

 Bandit problems are non-associative: no need to associate different 
actions with different situations

 In general RL problems there is more than one situation

 Goal of RL: learn a mapping from situations to actions that are best in 
those situations (policy)



    Associative Search (Contextual Bandit)

Non-associative
multi-armed 

bandit

Associative multi-armed bandit
(contextual bandit)

Different action values in different situations

A
1

A
2

A
3

...

A
1

A
2

A
3

A
4

A
5A

6

... ... ...

Associative search task: involves both trial-and-error learning (as in 
nonassociative tasks) and action-situation association 

Random transitions between different multi-armed bandits 
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