
Introduction to Reinforcement Learning

Reinforcement learning – LM Artificial Iintelligence
(2022-23)

Alberto Castellini
University of Verona

 Summary

 What is Reinforcement Learning

 Examples and Applications of Reinforcement Learning

 Elements of Reinforcement Learning

 An extended example: Tic-Tac-Toe

 History of Reinforcement Learning

 What is Reinforcement Learning

 From traditional computer science to machine learning

 Traditional computer science: computers are programmed for every
task they have to perform (notice: a program is a function)

 Machine learning paradigm: examples are provided to machines
and machines learn to perform tasks based on examples (notice: a
model is a function)

 The nature of learning

 Nature of learning: we learn by interacting with our environment

 Infants have no explicit teacher but direct sensorimotor
connection to the environment

 Exercising this connection produces information about
 cause-effect relationships (consequences of actions)
 what to do to achieve goals

 Learning from interaction

 We are aware of how our environment responds to what we do
and we seek to influence what happens through our behaviour

 Learning from interaction: foundational idea underlying nearly all
theories of learning and intelligence

Learning to drive a car Learning to hold a conversation

 This course

We explore
Reinforcement Learning

a computational approach to learning from interaction

 We evaluate the effectiveness of various learning methods

 We adopt the perspective of artificial intelligence

 We explore designs for machines that are effective in solving
learning problems

 Reinforcement learning: definitions and features

Reinforcement learning:
 Learning what to do so as to maximize a numerical reward signal
 Learn how to map situations to actions

Two most important features of RL:

1) Trial-and-error search

The learner is not told which action to take in each situation (as in
supervised learning)

but

it must discover which action yields the most reward by trying them

2) Delayed reward:

Actions may affect not only the immediate reward

but

also the next situation and, through that, all subsequent rewards

 Reinforcement learning: problem, solution methods, research topic

RL is simultaneously:
 a problem
 a class of solution methods
 a research field that studies this problem and its solution methods

 It is important to distinguish the three to avoid confusion

Problem of reinforcement learning. Ideas from:
 Dynamical systems theory
 Optimal control of incompletely-known Markov Decision Processes

 Reinforcement learning problem: main ingredients

All these elements are present in Markov Decision Processes (MDP)
which we introduce in the next lectures

 An example: learning to drive

https://youtu.be/eRwTbRtnT1I

https://youtu.be/eRwTbRtnT1I

 Reinforcement Learning vs Supervised Learning

Reinforcement Learning is different from Supervised Learning

 Supervised learning: learning from a training set of labeled
samples (external supervisor)

 Each sample:

situation → correct action (label/category)

 Object of supervised learning:

To generate an agent able to generalize its responses to act
correctly in situations not present in the training set

 Not adequate for learning from interactions
 In interactive problems it is impractical to get informative training

sets. The agent should learn from its own experience

 Reinforcement Learning vs Unsupervised Learning

Reinforcement Learning is different from Unsupervised Learning

 Unsupervised learning: finding structure hidden in collections of
unlabelled data

 Reinforcement learning tries to maximize a reward signal instead
of trying to find a hidden structure in the dataset

 Discovering a structure in an agent’s experience is useful but it does
not address the problem of maximizing reward signal

Reinforcement learning is a third machine learning paradigm
alongside supervised learning and unsupervised learning

 Exploration-exploitation trade-off in RL

 A key challenge in RL (not present in other kinds of learning):
optimization of the trade-off between exploration and exploitation

 Exploration: select actions never tried to a situation to learn what
happens (i.e., how much reward they provide)

 Risky in terms of reward acquisition
 Informative about environment dynamics and reward acquisition

 Exploitation: select actions already tried in the past and found to
be effective in producing reward

 Safe in terms of reward acquisition
 Not informative

 Exploration-exploitation dilemma

 Exploration-exploitation dilemma: should I explore or exploit?

 The agent must try a variety of actions and progressively favour
those that appears to be the best

 On stochasic tasks each action must be tried many times to gain a
reliable estimate of its expected reward

 The exploration-exploitation dilemma is still unsolved

 The exploration-exploitation dilemma is not present in supervised and
unsupervised learning

 RL agents as components of larger systems

 An RL agent can be also a component of a larger system (e.g.,
agent that monitors the charge level of robot’s battery)

 In this case the agent’s environment is the rest of the robot together
with the robot’s environment

https://youtu.be/fn3KWM1kuAw

https://youtu.be/tF4DML7FIWk

https://youtu.be/fn3KWM1kuAw
https://youtu.be/tF4DML7FIWk

 Interaction between RL and other disciplines

 RL has substantive and fruitful interactions with other scientific and
engineering disciplines

 Some examples

Artificial Intelligence

Machine learning

Statistics

Optimization

Operations reseach

Control theory

Psycology

Neuroscience

 Examples and applications of RL

 Examples and applications of RL

 A master check player makes a move

(IBM’s Deep Blue vs Kasparov - 1997)

 AlphaGo reached superhuman

performance in the game of Go (2016)

 Game playing (Atari, Backgammon, Blackjack, Tic-tac-toe,...)

Situations? Actions? Rewards?

 Examples and applications of RL

 An adaptive controller adjusts parameters

of a petroleum refinery’s operation

in real time

(control of cyber-physical systems)

 A mobile robot decides whether to enter

a new room in search of more trash

to collect or to move back to a

battery recharging station

Situations? Actions? Rewards?

 Examples and applications of RL

 Robot planning/control in robotic/industial
environments (e.g., Projects @ISLa)

Pick up and delivery with
a Kairos in the ICE lab

Velocity regulation of a Turtlebot

Rocksample with a Turtlebot

 Examples and applications of RL

Before environment adaptation

After environment adaptation

 An autonomous agent controls air quality and
thermal comfort in a smart building
(e.g., Ghotem and Safe Place project @ISLa)

 Examples and applications of RL

 Control of autonomous surface vehicles (UAV)

(e.g., Incatch project @ISLa)

 Autonomous cars

 Helicopter control (UAV)

 Quadcopter control (UAV)

https://youtu.be/w2itwFJCgFQ

https://youtu.be/GYwPNMAgF-Q

https://youtu.be/0JL04JJjocc

Situations? Actions? Rewards?

https://youtu.be/w2itwFJCgFQ
https://youtu.be/GYwPNMAgF-Q
https://youtu.be/0JL04JJjocc

 Examples and applications of RL

 Operations research (pricing, vehicle routing)

 Spoken dialog systems (e.g., chatbot)

 Data center energy optimization

 Self-managing network systems

 Computational finance

Situations? Actions? Rewards?

 Features shared among examples

 Interaction between agent and environment

 The agent has a goal

 Uncertainty about the environment (effects of actions cannot be fully
predicted)

 Actions performed by the agent affect the future state of the
environment

 Presence of indirect and delayed consequences of actions

 The agent can use its experience to improve its performance over
time (adjusting behaviour) → Adaptation

 Elements of RL

 Elements of RL: policy, reward signal, value function, model

1) Policy: defines the agent’s way of behaving at a given time and in a
given situation

Policy Function: state → action

It may be implemented as
 a function
 a lookup table
 a search process

It may be deterministic or stochastic

Its generation is the target of Reinforcement Learning

 Elements of RL: policy, reward signal, value function, model

2) Reward signal: defines the goal of the RL problem

At each step the environment sends to the agent a single number
called reward (i.e., immediate pleasure/pain)

The agent’s objective is to maximize the total reward over long runs

Reward signals may be deterministic or stochastic functions of the
state and the action

Reward Function: state, action → reward

 Elements of RL: policy, reward signal, value function, model

3) Value function: specifies what is good in the long run (while the
reward focuses on what is good immediately)

The value of a state is the total amount of reward an agent can
expect to accumulate over the future, starting from that state

State Value Function: state → value

The value of a state-action pair is the total amount of reward an
agent can expect to accumulate over the future, performing the action
from that state

 State-Action Value Function: state, action → value

It is much harder to determine values than rewards. Hence, methods
for efficiently estimating values are key elements of RL algorithms

 Elements of RL: policy, reward signal, value function, model

4) Model of the environment: is a mathematical model that mimics the
behaviour of the environment and allows to infer it

Environment model: state, action → next state/reward

Models are used for planning, i.e., chosing immediate actions
considering possible future situations

 Model-based RL methods: use an explicit representation of the
model of the environment to select the best actions

 Model-free RL methods: do not use the model of the environment
but are explicit trial-and-error learners

 An extended example: Tic-Tac-Toe

 An extended example: Tic-Tac-Toe

 Assume to play against an imperfect player

 We want to construct a player that finds the imperfections in its
opponent and learns how to maximize its chances of winning

 An extended example: Tic-Tac-Toe

 Problem: classical techniques
 minimax solutions from game theory
 classical optimization methods (e.g., dynamic programming)

 need a complete specification of the opponent to work

 This information can be estimated from experience, by playing
many games against the opponent

 Idea: learn the model of the opponent’s behaviour from
experience, then apply dynamic programming to compute an
optimal solution (not that different from what RL does)

 An extended example: Tic-Tac-Toe

Evolutionary methods would search the space of all possible policies.

 For each policy considered in the population: winning probability is
computed by playing some games against the opponent

 Better policies are selected during the evolution

 Hill-climbing in policy space

This method could find the best policy but it is often inefficient

 An extended example: Tic-Tac-Toe

A method using value function

 We set up a table with a number (value) for each state

 The number is the latest estimate of the probability of winning from
that state (0 if state=loss, 1 if state=win, 0.5 otherwise)

0 0.5 1 0.5 1 1

X

O X

O

O

O

X O

X

X

Initial
value function

 An extended example: Tic-Tac-Toe

 We play many games against the opponent

 To select our moves we examine the states that would result from
each possible move and look up their current value in the table

Most of the time
we move greedly

Occasionally
we select randomly
(exploratory moves)

 An extended example: Tic-Tac-Toe

 While playing we change the values of states in which we find
ourselves making them more accurate

 To this aim, we back up the value of the state after each greedy
move (red arrows in the slide before)

 Value update rule: The current value of the earlier state is
updated to be closer to the value of the later state. In particular,
we move the earlier state’s value a fraction on the way toward
the value of the later state

 Let S
t
 be the state before the greedy move, S

t+1
 the state after the

greedy move, V(S
t
) the value of state S

t
 and a small fraction (step

size), then the update rule is:

Example of temporal-difference learning rule

 An extended example: Tic-Tac-Toe

 This method performs well

 If the step-size parameter is reduced properly over time this
method converges, for any fixed opponent, to the true
probabilities of winning from each state given optimal play by
our player

 Namely, the method converges to an optimal policy for playing
against the specific opponent

 If the step-size parameter is not reduced to zero over time the policy
can play well also against opponents that slowly change

 Notice: the tic-tac-toe player is model-free

 An extended example: Tic-Tac-Toe

Both evolutionary and value function methods search the space of
policies but:
 Evolutionary methods use a fixed policy for several games to

evaluate it in an unbiased way. What happens during the games is
ignored

 Value function methods, in contrast, allow individual states to be
evaluated, hence they take advantage of information available
during the course of play

This makes value function methods more efficient in several cases

 General Applicability of RL

 RL methods work also in problems with no external opponent (game
against the nature/environment)

 RL methods are applicable also to non-episodic problems

 RL methods are applicable also to continuous time problems

 RL methods can be used also in problems with very large or infinite
state spaces (e.g., backgammon, 1020 states (Tesauro, 1992) using
RL with artificial neural networks → next semester)

 Prior knowledge can be incorporated into RL

 RL can be used also in problems in which the state is partially
observable

 Hystory of RL

 Hystory of RL: a summary

Three main threads of RL in its early history:

1) Optimal control with value functions and dynamic programming

2) Learning by trial-and-error: psycology of animal learning

→ Brought to some of the earliest works in artificial intelligence

3) Temporal-difference methods

The three came together in the late 1980s producing the modern field
of Reinforcement Learning

 Hystory of RL: Optimal control thread

 1950: the term optimal control came into use to describe the
problem of designing a controller to minimize or maximize a measure
of a dynamical system’s behaviour over time

 Mid-1950s: Richard Bellman developed an approach based on
value functions for this problem extending the nineteenth century
theory of Hamilton and Jacobi (Bellman Equation)

 Dynamic programming (1957)
 Markov Decision Processes (MDPs)

 1960: Ronald Howard devised the policy iteration method for MDPs

 Connections between optimal control based on dynamic
programming and learning were slow to be recognized, possibly
because of the nature of dynamic programming (it procees
backwards, it needs complete knowledge of the dynamics)

 Hystory of RL: Optimal control thread

 1977: Ian Witten’s work combines learning and dynamic-
programming ideas

 1989: Chris Watkins’ work on Q-learning represents the first full
integration of dynamic programming and online learning

 Since then, these relationships have been extensively developed by
many researchers

 1996: Dimitri Bertsekas and John Tsitsiklis combined dynamic
programming and artificial neural networks (neurodynamic
programming, approximate dynamic programming)

 Hystory of RL: Optimal control thread

 Optimal control is part of reinforcement learning althought
dynamic programming (DP) needs complete knowledge of the
environment

 Like learning methods DP algorithm gradually synthesize the policy
through successive approximations

 Similarities are very strong

 The theories and solution methods for complete and incomplete
knowledge are so closely related that they can be considered as part
of the same subject matter

 Hystory of RL: Trial-and-error learning thread

 Late 1800s: Alexander Bain and Conway Morgan first used the idea
of trial-and-error learning in studies of animal behaviour

 1927: Edward Thorndike used the term “reinforcement” in the context
of animal learning

 1948: Alan Turing described a “pleasure-pain system”

representing the first idea to implement trial-and-error

learning in a computer (artificial intelligence)

 Many electro-mechanical machines were constructed

that demonstrated trial-and-error learning

(see http://cyberneticzoo.com/cybernetic-time-line/)

http://cyberneticzoo.com/cybernetic-time-line/

 Hystory of RL: Trial-and-error learning thread

 1961: Marvin Minsky’s paper “Step towards Artificial Intelligence”
discussed issues relevant to trial-and-error learning:

 prediction
 expectation
 Basic credit-assignment problem for complex reinforcement

learning systems: how do you distribute credit for success among
many decisions that may have been involved in producing it?

→ All methods discussed in this course are directed toward
solving this problem

 1961-1963: Donald Michie described a simple trial-and-error learning
system for learning how to play tic-tac-toe (MENACE: Matchbox
Educable Naughts and Crosses Engine)

https://youtu.be/G-di38Fpgdw

https://youtu.be/G-di38Fpgdw

 Hystory of RL: Trial-and-error learning thread

 1968: Michie and Chambers described another tic-tac-toe
reinforcement learner called GLEE and a reinforcement learning
controller called BOXES. BOXES was applied to balance a pole
hinged to a movable cart

 1973: Widrow, Gupta and Maitra modified the

Least-Mean-Square (LMS) algorithm to produce a

reinforcement learning rule that could learn from

success/failure signals instead of training examples

(selective bootstrap adaptation, learning with a critic)

→ It can learn to play blackjack

 Hystory of RL: Trial-and-error learning thread

 1960s: Research on learning automata directly influenced the trial-
and-error thread. Methods for solving a nonassociative, purely
selectional learning problem: k-armed bandit (analogy with a slot
machine)

 1970s: Statistical learning theories developed in

psycology were adopted in economics, leading to a

thread in that field devoted to RL

→ Reinforcement learning in the context of game theory

 (John Nash)

 1975: John Holland work on trial and error with evolutionary
methods

 Hystory of RL: Temporal difference thread

 1950s: origin of temporal-difference learning in animal learning
psycology (secondary reinforcers)

 1959: Arthur Samuel first implemented a learning

method based on temporal-difference ideas,

as part of his checkers-playing program

→ Inspiration from Claude Shannon’s (1950) sugestion that

“a computer can be programmed to use an evaluation function to play
chess, and it might be able to improve its play by modifying the
function online”

 1972. Klopf brought trial-and-error learning together with temporal-
difference learning to scale learning to large systems

 1981: Sutton and Barto developed the actor-critic architecture,
which combines temporal-difference trial-and-error learning

 1988: Sutton separated temporal-difference learning from control

 References

 R. S. Sutton, A. G. Barto. Reinforcement learning, An Introduction.
Second edition. Chapter 1

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

