Introduction to Reinforcement Learning

Reinforcement learning – LM Artificial lintelligence (2022-23)

Alberto Castellini University of Verona

Summary

- What is Reinforcement Learning
- Examples and Applications of Reinforcement Learning
- Elements of Reinforcement Learning
- An extended example: Tic-Tac-Toe
- History of Reinforcement Learning

What is Reinforcement Learning

From traditional computer science to machine learning

• **Traditional computer science:** computers are programmed for every task they have to perform (notice: a program is a function)

• Machine learning paradigm: examples are provided to machines and machines learn to perform tasks based on examples (notice: a model is a function)

The nature of learning

- Nature of learning: we learn by interacting with our environment
- Infants have no explicit teacher but direct sensorimotor connection to the environment

- Exercising this connection produces information about
 - cause-effect relationships (consequences of actions)
 - what to do to achieve goals

Learning from interaction

Learning to drive a car

Learning to hold a conversation

- We are **aware** of **how our environment responds** to what we do and we seek to **influence what happens** through our **behaviour**
- Learning from interaction: foundational idea underlying nearly all theories of learning and intelligence

We explore **Reinforcement Learning** a computational approach to **learning from interaction**

- We evaluate the effectiveness of various **learning methods**
- We adopt the perspective of **artificial intelligence**
- We explore **designs for machines** that are effective in solving learning problems

Reinforcement learning: definitions and features

Reinforcement learning:

- Learning what to do so as to maximize a numerical reward signal
- Learn how to map situations to actions

Two most important features of RL:

1) Trial-and-error search

The learner is **not** told which **action** to take in each **situation** (as in **supervised learning**)

but

it must **discover** which action yields the **most reward by trying** them

2) Delayed reward:

Actions may affect not only the immediate reward

but

also the next situation and, through that, all subsequent rewards

RL is simultaneously:

- a problem
- a class of solution methods
- a **research field** that studies this problem and its solution methods
- It is important to **distinguish** the three to avoid confusion

Problem of reinforcement learning. Ideas from:

- Dynamical systems theory
- Optimal control of incompletely-known Markov Decision Processes

Reinforcement learning problem: main ingredients

All these elements are present in Markov Decision Processes (MDP) which we introduce in the next lectures

An example: learning to drive

In this experiment, we are going to demonstrate a reinforcement learning algorithm learning to drive a car.

0:03 / 2:

https://youtu.be/eRwTbRtnT1I

Reinforcement Learning vs Supervised Learning

Reinforcement Learning is different from Supervised Learning

- Supervised learning: learning from a training set of labeled samples (external supervisor)
- Each **sample**:

situation \rightarrow correct action (label/category)

• **Object** of supervised learning:

To generate an agent able to **generalize** its **responses** to act correctly in **situations not present** in the **training set**

- Not adequate for learning from interactions
- In interactive problems it is impractical to get informative training sets. The agent should learn from its own experience

Reinforcement Learning vs Unsupervised Learning

Reinforcement Learning is different from Unsupervised Learning

- **Unsupervised learning:** finding structure hidden in collections of unlabelled data
- **Reinforcement learning** tries to **maximize a reward** signal instead of trying to find a hidden structure in the dataset
- Discovering a **structure** in an agent's experience is **useful** but it does **not** address the problem of **maximizing reward signal**

Reinforcement learning is a third machine learning paradigm alongside supervised learning and unsupervised learning

Exploration-exploitation trade-off in RL

- A **key challenge in RL** (not present in other kinds of learning): optimization of the **trade-off** between **exploration** and **exploitation**
- **Exploration:** select **actions never tried** to a situation to learn what happens (i.e., how much reward they provide)
 - Risky in terms of reward acquisition
 - Informative about environment dynamics and reward acquisition
- Exploitation: select actions already tried in the past and found to be effective in producing reward
 - Safe in terms of reward acquisition
 - Not informative

- Exploration-exploitation dilemma: should I explore or exploit?
- The agent must **try** a variety of actions and progressively **favour** those that appears to be the best
- On **stochasic tasks** each action must be tried **many times** to gain a reliable estimate of its expected reward
- The exploration-exploitation dilemma is still **unsolved**
- The exploration-exploitation dilemma is not present in supervised and unsupervised learning

RL agents as components of larger systems

- An RL agent can be also a component of a larger system (e.g., agent that monitors the charge level of robot's battery)
- In this case the agent's environment is the rest of the robot together with the robot's environment

https://youtu.be/fn3KWM1kuAw

https://youtu.be/tF4DML7FIWk

Interaction between RL and other disciplines

- RL has substantive and fruitful **interactions** with other **scientific and engineering disciplines**
- Some examples

• A master **check** player makes a move (IBM's Deep Blue vs Kasparov - 1997)

 AlphaGo reached superhuman performance in the game of Go (2016)

• Game playing (Atari, Backgammon, Blackjack, Tic-tac-toe,...)

Situations? Actions? Rewards?

 An adaptive controller adjusts parameters of a petroleum refinery's operation in real time (control of cyber-physical systems)

 A mobile robot decides whether to enter a new room in search of more trash to collect or to move back to a battery recharging station

• Robot planning/control in robotic/industial environments (e.g., Projects @ISLa)

Rocksample with a Turtlebot

Velocity regulation of a Turtlebot

Pick up and delivery with a Kairos in the ICE lab

 An autonomous agent controls air quality and thermal comfort in a smart building (e.g., Ghotem and Safe Place project @ISLa)

After environment adaptation

Control of autonomous surface vehicles (UAV)
(e.g., Incatch project @ISLa) ISLa

Autonomous cars

• Helicopter control (UAV)

• Quadcopter control (UAV)

https://youtu.be/GYwPNMAgF-Q

https://youtu.be/0JL04JJjocc

https://youtu.be/w2itwFJCgFQ

• Operations research (pricing, vehicle routing)

• Spoken dialog systems (e.g., chatbot)

• Data center energy optimization

• Self-managing network systems

• Computational finance

Situations? Actions? Rewards?

Features shared among examples

- Interaction between agent and environment
- The agent has a **goal**
- **Uncertainty** about the environment (effects of actions cannot be fully predicted)
- Actions performed by the agent affect the **future** state of the environment
- Presence of indirect and **delayed consequences** of actions
- The agent can use its experience to improve its performance over time (adjusting behaviour) → Adaptation

Elements of RL

1) Policy: defines the agent's way of behaving at a given time and in a given situation

Policy Function: state \rightarrow action

It may be implemented as

- a function
- a lookup table
- a search process

It may be **deterministic** or **stochastic**

Its generation is the target of Reinforcement Learning

2) Reward signal: defines the goal of the RL problem

At each step the environment sends to the agent a single number called reward (i.e., **immediate pleasure/pain**)

The agent's objective is to maximize the total reward over long runs

Reward signals may be **deterministic** or **stochastic** functions of the **state** and the **action**

Reward Function: state, action \rightarrow reward

3) Value function: specifies **what is good in the long run** (while the reward focuses on what is good **immediately**)

The **value** of a **state** is the **total amount of reward** an agent can expect to accumulate over the future, starting from that state

State Value Function: state \rightarrow value

The **value** of a **state-action** pair is the **total amount of reward** an agent can expect to accumulate over the future, performing the action from that state

State-Action Value Function: state, action \rightarrow value

It is much harder to determine values than rewards. Hence, **methods** for efficiently estimating values are key elements of RL algorithms

4) Model of the environment: is a mathematical model that mimics the behaviour of the environment and allows to infer it

Environment model: state, action \rightarrow next state/reward

Models are used for **planning**, i.e., chosing immediate actions considering possible future situations

- **Model-based RL methods:** use an explicit representation of the model of the environment to select the best actions
- Model-free RL methods: do not use the model of the environment but are explicit trial-and-error learners

- Assume to play against an **imperfect player**
- We want to **construct a player** that **finds the imperfections** in its opponent and learns how to **maximize** its **chances of winning**

- Problem: classical techniques
 - **minimax** solutions from game theory
 - classical optimization methods (e.g., **dynamic programming**) need a complete specification of the opponent to work
- This information can be estimated from experience, by playing many games against the opponent
- Idea: **learn the model of the opponent's behaviour** from experience, then apply **dynamic programming** to compute an optimal solution (not that different from what RL does)

Evolutionary methods would search the space of all possible policies.

- For each policy considered in the population: winning probability is computed by playing some games against the opponent
- Better policies are selected during the evolution
- Hill-climbing in policy space

This method could find the best policy but it is often inefficient

A method using value function

- We set up a **table** with a number (value) **for each state**
- The number is the latest estimate of the probability of winning from that state (0 if state=loss, 1 if state=win, 0.5 otherwise)

- We play many games against the opponent
- To **select** our **moves** we examine the states that would result from each possible move and **look up** their current value in the table

- While playing we **change the values of states** in which we find ourselves making them more accurate
- To this aim, we back up the value of the state after each greedy move (red arrows in the slide before)
- Value update rule: The current value of the earlier state is updated to be closer to the value of the later state. In particular, we move the earlier state's value a fraction on the way toward the value of the later state
- Let S_t be the state before the greedy move, S_{t+1} the state after the greedy move, $V(S_t)$ the value of state S_t and α a small fraction (*step size*), then the update rule is:

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[V(S_{t+1}) - V(S_t) \Big]$$

Example of temporal-difference learning rule

- This method performs well
- If the step-size parameter is reduced properly over time this method converges, for any fixed opponent, to the true probabilities of winning from each state given optimal play by our player
- Namely, the method **converges to an optimal policy** for playing against the **specific opponent**
- If the step-size parameter is not reduced to zero over time the policy can play well also against opponents that slowly change
- Notice: the tic-tac-toe player is **model-free**

Both evolutionary and value function methods search the space of policies but:

- Evolutionary methods use a fixed policy for several games to evaluate it in an unbiased way. What happens during the games is ignored
- Value function methods, in contrast, allow individual states to be evaluated, hence they take advantage of information available during the course of play

This makes value function methods **more efficient** in several cases

- RL methods work also in problems with **no external opponent** (game against the nature/**environment**)
- RL methods are applicable also to **non-episodic** problems
- RL methods are applicable also to **continuous time** problems
- RL methods can be used also in problems with very large or infinite state spaces (e.g., backgammon, 10²⁰ states (Tesauro, 1992) using RL with artificial neural networks → next semester)
- **Prior knowledge** can be incorporated into RL
- RL can be used also in problems in which the state is **partially observable**

Hystory of RL

Three main threads of RL in its early history:

1) Optimal control with value functions and dynamic programming

2) Learning by trial-and-error: psycology of animal learning

 \rightarrow Brought to some of the earliest works in artificial intelligence

3) Temporal-difference methods

The three came together in the late **1980s** producing the modern **field** of Reinforcement Learning

Hystory of RL: Optimal control thread

- **1950:** the term **optimal control** came into use to describe the problem of designing a controller to minimize or maximize a measure of a dynamical system's behaviour over time
- Mid-1950s: Richard Bellman developed an approach based on value functions for this problem extending the nineteenth century theory of Hamilton and Jacobi (Bellman Equation)
 - **Dynamic programming** (1957)
 - Markov Decision Processes (MDPs)
- **1960:** Ronald Howard devised the **policy iteration** method for MDPs
- **Connections** between **optimal control** based on dynamic programming and **learning** were slow to be recognized, possibly because of the nature of dynamic programming (it procees backwards, it needs complete knowledge of the dynamics)

Hystory of RL: Optimal control thread

- **1977: Ian Witten**'s work combines learning and dynamicprogramming ideas
- 1989: Chris Watkins' work on Q-learning represents the first full integration of dynamic programming and online learning
- Since then, these relationships have been extensively developed by many researchers
- **1996: Dimitri Bertsekas** and **John Tsitsiklis** combined dynamic programming and **artificial neural networks** (neurodynamic programming, approximate dynamic programming)

Hystory of RL: Optimal control thread

- **Optimal control** is part of **reinforcement learning** althought dynamic programming (DP) needs complete knowledge of the environment
- Like learning methods **DP algorithm** gradually **synthesize** the **policy** through **successive approximations**
- Similarities are very strong
- The theories and solution methods for complete and incomplete knowledge are so closely related that they can be considered as part of the same subject matter

- Late 1800s: Alexander Bain and Conway Morgan first used the idea of trial-and-error learning in studies of animal behaviour
- **1927:** Edward Thorndike used the term "reinforcement" in the context of animal learning
- 1948: Alan Turing described a "pleasure-pain system" representing the first idea to implement trial-and-error learning in a computer (artificial intelligence)
- Many electro-mechanical machines were constructed that demonstrated trial-and-error learning (see <u>http://cyberneticzoo.com/cybernetic-time-line/</u>)

- **1961: Marvin Minsky**'s paper "Step towards Artificial Intelligence" discussed issues relevant to trial-and-error learning:
 - prediction
 - expectation
 - Basic **credit-assignment problem** for complex reinforcement learning systems: how do you distribute credit for success among many decisions that may have been involved in producing it?

 \rightarrow All methods discussed in this course are directed toward solving this problem

• **1961-1963: Donald Michie** described a simple trial-and-error learning system for learning how to play tic-tac-toe (MENACE: Matchbox Educable Naughts and Crosses Engine)

https://youtu.be/G-di38Fpgdw

 1968: Michie and Chambers described another tic-tac-toe reinforcement learner called GLEE and a reinforcement learning controller called BOXES. BOXES was applied to balance a pole hinged to a movable cart

- 1973: Widrow, Gupta and Maitra modified the Least-Mean-Square (LMS) algorithm to produce a reinforcement learning rule that could learn from success/failure signals instead of training examples (selective bootstrap adaptation, learning with a critic)
 - \rightarrow It can learn to play **blackjack**

 1960s: Research on learning automata directly influenced the trialand-error thread. Methods for solving a nonassociative, purely selectional learning problem: k-armed bandit (analogy with a slot machine)

- 1970s: Statistical learning theories developed in psycology were adopted in economics, leading to a thread in that field devoted to RL
 - → Reinforcement learning in the context of game theory (John Nash)

• 1975: John Holland work on trial and error with evolutionary methods

Hystory of RL: Temporal difference thread

- **1950s:** origin of temporal-difference learning in animal learning psycology (secondary reinforcers)
- 1959: Arthur Samuel first implemented a learning method based on temporal-difference ideas, as part of his checkers-playing program

 \rightarrow Inspiration from **Claude Shannon's (1950)** sugestion that

"a computer can be programmed to use an evaluation function to play chess, and it might be able to improve its play by modifying the function online"

- **1972. Klopf** brought **trial-and-error** learning together with **temporal-difference** learning to scale learning to large systems
- **1981: Sutton** and **Barto** developed the **actor-critic architecture**, which combines temporal-difference trial-and-error learning
- 1988: Sutton separated temporal-difference learning from control

References

• R. S. Sutton, A. G. Barto. Reinforcement learning, An Introduction. Second edition. Chapter 1