
On-Policy Control with Approximation
and

Deep Q Networks (DQN)

Reinforcement learning – LM Artificial Iintelligence
(2022-23)

Alberto Castellini
University of Verona

 Summary

 Introduction

 Episodic Semi-Gradient Control

 Deep Q-Networks

 Introduction

 Introduction

 Goal: solve the control problem with parametric approximation of
the action-value function

 where is a finite dimensional weight vector.

 We first restict our attention on the on-policy and episodic case

 We feature the semi-gradient Sarsa algorithm, the natural
extension of semi-gradient TD(0) to

 action values
 on-policy control

 Episodic Semi-Gradient Control

 Episodic Semi-gradient Control

 The extension of state-value function approximators to
action-value function approximators is straightforward

 State-value functions: training examples in the form
 Action-value functions: training examples in the form

 The update target can be any approximation of
including the usual backed-up values, such as

 The full Monte Carlo return
 The Sarsa return

 Episodic Semi-gradient Control

 The general gradient-descent update for action-value prediction is

 For the one-step Sarsa method it is

 We call this method episodic semi-gradient one-step Sarsa

 For a constant policy it converges as TD(0) and with the same error
bound (see previous lecture)

 Episodic Semi-gradient Control

Control methods: we need to couple
 Methods for action-value prediction
 Methods for policy improvement and action selection

 If the action set is discrete and not too large then we can use
techniques developed in the previous lecture

Idea:
 For each action a of the current state S

t
 we compute

 Then we find the greedy action
 Policy improvement is then performed by changing the estimation

policy to a soft-approximation of the greedy policy, e.g., the
 -greedy policy

 Episodic Semi-gradient Control

 Example: Mountain Car

 Actions: full throttle forward (+1), full throttle
 reverse (-1), zero throttle (0)

 Reward: -1 at each step (until the car reaches
the goal and the episode terminates)

 Simplified physics:

 with bound operator

 Episodes start in a random position with zero
velocity

 Example: Mountain Car

 The two continuous state variables are converted to binary features
 using grid tiling (8 tilings, each tile covers 1/8th of the bounded
distance in each dimension and asymmetrical offset as described in
Section 9.5.4 of SutBut)

 The feature vectors created by tile coding are then combined
linearly to approximate the action-value function

 for each pair of state s and action a

 Example: Mountain Car

Cost-to-go function learned during one run

 Initial action values were all zero (optimistic, true values are negative)
causing extensive exploration even with null

 Example: Mountain Car

Learning curves for semi-gradient Sarsa with tile-coding function
approximation and -greedy action selection

 References

 R. S. Sutton, A. G. Barto. Reinforcement learning, An Introduction.
Second edition. Chapter 10

 Deep Q Networks

 ANNs for value function approximation in RL

 Multi-layer ANNs have been used for function approximation in RL
since 1986, when the backpropagation algorithm became popular as
a method for learning internal representations (Rummelhart et al, 1986)

 Striking results have been obtained by coupling RL and
backpropagation by Tesauro and colleagues with TD-Gammon and
WATSON (Tesauro et al., 1994; Tesauro et al., 2012)

 In 2013, Mnih and colleagues of Google DeepMind developed the
first RL agent, called Deep Q Network (DQN) merging Q-learning
and deep convolutional ANNs achieving human level performance
in Atari games

 As TD-Gammon, DQN uses a semi-gradient form of a TD algorithm
with gradients computed by backpropagation but DQN uses
Q-learning instead of TD()

 Deep Q Networks

 Basic idea: to use deep neural networks as a non-linear function
approximator for the action value function in a semi-gradient
form of Q-learning

 We parametrize an approximate value function q(s,a,w
t
) using a deep

convolutional neural network in which w
t
 are the parameters

(weights) at iteration t.

 The neural network approximator is said Q network (e.g., see Fig. 1 of
Mnih et al., 2015)

 Input of the Q network: raw sensor signals (current state). Deep NN
can perform feature construction “automatically”, i.e., generating
meaningful hierarchical abstractions in their layers

 Output of the Q network: estimated optimal action values for the
input state (i.e., one value for each action)

 Deep Q Networks

x
1
(s)

x
2
(s)

...

x
d
(s)

S
ta

te
 s

q(s,a
1
,w

t
)

q(s,a
2
,w

t
)

Weights w
t

 Deep Q Networks

 The semi-gradient form of Q-learning used by DQN to update the
network’s weight is

 where w
t
 is the vector of network weights, A

t
 is the action selected at

step t, and S
t
 and S

t+1
 are the states at time t and t+1 (i.e., network

inputs)

 The gradient can be computed by backpropagation

Target value Action value

 Deep Q Networks: problems and improvements

 Problem: RL is unstable or even deverges with nonlinear function
approximators (e.g., ANNs) of the action-value function (Minh et al.,
2015)

 Causes:
 C1: correlations in the sequences of observations (states/features);
 C2: small updates to q may significantly change the policy and

change data distribution
 C3: correlation between action-values and target

values

 Solutions (Minh et al., 2015):

1) A biologically inspired mechanism for experience replay

2) The usage of two separate networks to estimate action values in
the Q-network and the target value

 Deep Q Networks: experience replay

 Idea: Store agent experience in a replay memory then used to perform
weight updates

 After each step a tuple (S
t
, A

t
, R

t+1
, S

t+1
) is added to the replay memory.

This experience is accumulated over many episodes

 At each step multiple Q-learning updates (a mini-batch) are
performed based on experience sampled uniformly at random from
the replay memory

 Q-learning is off-policy, it can be applied along unconnected
trajectories

 Advantages:
 Reduced variance of weight update (reduces cause C2)
 The correlation in the sequences of observations is eliminated

→one source instability is removed (reduces cause C1)

 Deep Q Networks: double DQN

 Two networks are used. One for estimating action values, another
for estimating target values

 The new update rule is

 After C updates of the weights w of the action-value network (ANN 1)
these weights are copied to the second network (ANN 2) used to
compute the target values

Advantages:
 This improves stability reducing cause C3

ANN 1ANN 2

 Deep Q Network: Algorithm (Minh et al., 2015)

 See Algorithm 1 in (Minh et al., 2015)

 Deep Q Networks: experimental settings

 In the popular works where DQN was first presented (Minh et al. 2013;
Minh et al. 2015) the approach was evaluated on 49 Atari games

 Input: 210x160 pixel image frames, 128 colors, 60Hz
 Preprocessing: images reduced to 84x84 arrays of luminecence
 Stacked images: the four most recent images were provided at each

step to the agent → actual input had dimension 84x84x4
 Network architecture:

 3 hidden convolutional layers (rectifier nonlinearities act. function)

 → 32 20x20 feature maps

 → 64 9x9 feature maps

 → 64 7x7 feature maps
 1 fully connected hidden layer (512 neurons)
 Output layer (18 neurons)

 Reward: +1 (increased game score), -1 (decreased game score), 0

 Deep Q Networks: experimental setting

 -greedy policy with decreasing linearly over the first million
frames, low value afterwards (50M frames in total, i.e., 38 days)

 Input, output, ANN architecture and parameters (e.g., step size,
discount factor, etc.) were selected to perform well on a small
selection of games, then kept fixed for all games (generalization)

 Learning was performed independently for each game (i.e.,
different parameters were learned for each game)

 Deep Q Networks: results

 Evaluations performed on 30 sessions of each game, each lasting
up to 5 minutes and beginning in a random initial state

 DQN performed (Minh et al. 2015)
 better than state-of-the-art algorithm (linear function

approximation with hand-crafted features (Bellemare et al.,
2013)) in 43 games

 at a level comparable to professional humans in 29 games

 References

 R. S. Sutton, A. G. Barto. Reinforcement learning, An Introduction.
Second edition. Chapter 16.5

 Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., Riedmiller, M. (2013). Playing atari with deep
reinforcement learning. ArXiv:1312.5602.

 Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I.,
King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D. (2015).
Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

