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    Introduction

 Goal: solve the control problem with parametric approximation of 
the action-value function

   where                 is a finite dimensional weight vector.

 We first restict our attention on the on-policy and episodic case

 We feature the semi-gradient Sarsa algorithm, the natural 
extension of semi-gradient TD(0) to 

 action values 
 on-policy control
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    Episodic Semi-gradient Control

 The extension of state-value function approximators              to 
action-value function approximators                   is straightforward

 State-value functions: training examples in the form
 Action-value functions: training examples in the form

 The update target       can be any approximation of                   
including the usual backed-up values, such as

 The full Monte Carlo return
 The Sarsa return  



    Episodic Semi-gradient Control

 The general gradient-descent update for action-value prediction is

 For the one-step Sarsa method it is

 We call this method episodic semi-gradient one-step Sarsa

 For a constant policy it converges as TD(0) and with the same error 
bound (see previous lecture) 



    Episodic Semi-gradient Control

Control methods: we need to couple 
 Methods for action-value prediction 
 Methods for policy improvement and action selection

 If the action set is discrete and not too large then we can use 
techniques developed in the previous lecture

Idea: 
 For each action a of the current state S

t
 we compute 

 Then we find the greedy action
 Policy improvement is then performed by changing the estimation 

policy to a soft-approximation of the greedy policy, e.g., the               
  -greedy policy 
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    Example: Mountain Car

 Actions: full throttle forward (+1), full throttle 
   reverse (-1), zero throttle (0)

 Reward: -1 at each step (until the car reaches 
the goal and the episode terminates)

 Simplified physics:

   with bound operator

 Episodes start in a random position                               with zero 
velocity



      Example: Mountain Car

 The two continuous state variables are converted to binary features 
 using grid tiling (8 tilings, each tile covers 1/8th of the bounded 
distance in each dimension and asymmetrical offset as described in 
Section 9.5.4 of SutBut)

 The feature vectors created by tile coding are then combined 
linearly to approximate the action-value function

   for each pair of state s and action a



    Example: Mountain Car

Cost-to-go function                                   learned during one run

 Initial action values were all zero (optimistic, true values are negative) 
causing extensive exploration even with null    



      Example: Mountain Car

Learning curves for semi-gradient Sarsa with tile-coding function 
approximation and    -greedy action selection
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    ANNs for value function approximation in RL

 Multi-layer ANNs have been used for function approximation in RL 
since 1986, when the backpropagation algorithm became popular as 
a method for learning internal representations (Rummelhart et al, 1986)

 Striking results have been obtained by coupling RL and 
backpropagation by Tesauro and colleagues with TD-Gammon and 
WATSON (Tesauro et al., 1994; Tesauro et al., 2012)

 In 2013, Mnih and colleagues of Google DeepMind developed the 
first RL agent, called Deep Q Network (DQN) merging Q-learning 
and deep convolutional ANNs achieving human level performance 
in Atari games

 As TD-Gammon, DQN uses a semi-gradient form of a TD algorithm 
with gradients computed by backpropagation but DQN uses              
Q-learning instead of TD(   ) 



    Deep Q Networks

 Basic idea: to use deep neural networks as a non-linear function 
approximator for the action value function in a semi-gradient 
form of Q-learning 

 We parametrize an approximate value function q(s,a,w
t
) using a deep 

convolutional neural network in which w
t
 are the parameters 

(weights) at iteration t.

 The neural network approximator is said Q network (e.g., see Fig. 1 of 
Mnih et al., 2015)

 Input of the Q network: raw sensor signals (current state). Deep NN 
can perform feature construction “automatically”, i.e., generating 
meaningful hierarchical abstractions in their layers

 Output of the Q network: estimated optimal action values for the 
input state (i.e., one value for each action)



    Deep Q Networks
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    Deep Q Networks

 The semi-gradient form of Q-learning used by DQN to update the 
network’s weight is

   where w
t
 is the vector of network weights, A

t
 is the action selected at   

step t, and S
t
 and S

t+1
 are the states at time t and t+1 (i.e., network 

inputs)

 The gradient                            can be computed by backpropagation

Target value Action value



    Deep Q Networks: problems and improvements

 Problem: RL is unstable or even deverges with nonlinear function 
approximators (e.g., ANNs) of the action-value function (Minh et al., 
2015)

 Causes: 
 C1: correlations in the sequences of observations (states/features); 
 C2: small updates to q may significantly change the policy and 

change data distribution
 C3: correlation between action-values                        and target 

values  

 Solutions (Minh et al., 2015):

1) A biologically inspired mechanism for experience replay

2) The usage of two separate networks to estimate action values in 
the Q-network and the target value



    Deep Q Networks: experience replay

 Idea: Store agent experience in a replay memory then used to perform 
weight updates

 After each step a tuple (S
t
, A

t
, R

t+1
, S

t+1
) is added to the replay memory. 

This experience is accumulated over many episodes

 At each step multiple Q-learning updates (a mini-batch) are 
performed based on experience sampled uniformly at random from 
the replay memory

 Q-learning is off-policy, it can be applied along unconnected 
trajectories

 Advantages:
 Reduced variance of weight update (reduces cause C2) 
 The correlation in the sequences of observations is eliminated 

→one source instability is removed (reduces cause C1) 



    Deep Q Networks: double DQN

 Two networks are used. One for estimating action values, another 
for estimating target values

 The new update rule is 

 After C updates of the weights w of the action-value network (ANN 1) 
these weights are copied to the second network (ANN 2) used to 
compute the target values

Advantages:
 This improves stability reducing cause C3

ANN 1ANN 2



    Deep Q Network: Algorithm (Minh et al., 2015)

 See Algorithm 1 in (Minh et al., 2015)



    Deep Q Networks: experimental settings

 In the popular works where DQN was first presented (Minh et al. 2013; 
Minh et al. 2015) the approach was evaluated on 49 Atari games

 Input: 210x160 pixel image frames, 128 colors, 60Hz
 Preprocessing: images reduced to 84x84 arrays of luminecence
 Stacked images: the four most recent images were provided at each 

step to the agent → actual input had dimension 84x84x4
 Network architecture: 

 3 hidden convolutional layers (rectifier nonlinearities act. function)

           → 32 20x20 feature maps

           → 64 9x9 feature maps

           → 64 7x7 feature maps
 1 fully connected hidden layer (512 neurons)
 Output layer (18 neurons)

 Reward: +1 (increased game score), -1 (decreased game score), 0



    Deep Q Networks: experimental setting

    -greedy policy with     decreasing linearly over the first million 
frames, low value afterwards (50M frames in total, i.e., 38 days) 

 Input, output, ANN architecture and parameters (e.g., step size, 
discount factor, etc.) were selected to perform well on a small 
selection of games, then kept fixed for all games (generalization)

 Learning was performed independently for each game (i.e., 
different parameters were learned for each game)



    Deep Q Networks: results

 Evaluations performed on 30 sessions of each game, each lasting 
up to 5 minutes and beginning in a random initial state

 DQN performed (Minh et al. 2015)  
 better than state-of-the-art algorithm (linear function 

approximation with hand-crafted features (Bellemare et al., 
2013)) in 43 games

 at a level comparable to professional humans in 29 games
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