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Abstract—In this paper, we use the promising paradigm of
Multiple Kernel Learning (MKL) to challenge the problem of
biomarker evaluation for schizophrenia detection. We use eight
different Regions of Interest (ROIs) extracted from Magnetic
Resonance Images (MRIs). For each region we evaluate both
tissue and geometric properties. We show that with MKL we
not only obtain more accurate classifiers than using single
source support vector machines (SVMs), feature concatenation
and kernel averaging but also we evaluate the relevance of the
brain biomarkers in predicting this disease. On a data set of
50 patients and 50 healthy controls we can achieve an increase
of 7% accuracy compared to standard methods. Moreover,
we are able to quantify the importance of each source of
information by highlighting the synergies between the involved
brain characteristics.
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I. INTRODUCTION

Computational neuroanatomy is a recent and promising
research area aiming at quantifying morphological charac-
teristics of different brains [1]. The final goal is to identify
differences in brain structures between patients and con-
trols. To this aim, advanced computer vision and pattern
recognition techniques may deeply help the understanding of
brain characteristics and functionalities and there are several
studies where these techniques are applied [2], [3]. For
instance, in schizophrenia, structural and functional brain
abnormalities in patients have been demonstrated [4], [5].
For a detailed overview of MR for psychiatric disorders, we
recommend the readers to refer to [6].
In this paper, we propose a new approach to integrate

effectively different sources of information for Schizophre-
nia detection. We start from a wide set of brain scans ac-
quired by 3D Morphological MRI (SMRI), which highlights
morphological properties. For each brain, a set of Regions
of Interest (ROIs) are available in order to concentrate the
analysis only on brain subparts which are known to have
structural abnormalities in people having the disease [7],
[8]. In particular, in each ROI we compute both tissue and
geometric properties. To integrate and select the contribution
from different parts and different features of the brain we
propose the Multiple Kernel Learning (MKL) approach.
MKL algorithms learn a weighted combination of different

kernel functions and are able to benefit from information
coming from multiple sources. MKL methods have been re-
cently proposed in the medical imaging community to detect
Alzheimer’s disease [9]–[11]. Here, we use this approach by
focusing on Schizophrenia. Several kernels are computed
for each ROI and feature, and the contributions of these
kernels are combined using MKL. We observe that MKL
algorithms have better accuracy then single SVMs, feature
concatenation and kernel averaging. Moreover, differently
from [9]–[11], we deeply evaluate the weights computed
by the method in order to highlight the importance of each
brain part and feature in the detection of the disease and
their collaborative contribution.
In the following, Section II describes the Multiple Kernel

Learning strategy. We describe the selected data set in
Sect. III and the experimental set-up in Sect. IV with the
results. Finally, last remarks are discussed in Sect. V.

II. MULTIPLE KERNEL LEARNING

The assumption behind kernel methods is to transform
linearly inseparable data into a higher dimensional (possibly
with infinite dimension) space where it’s possible to separate
the classes linearly [12]. The SVM classifier in this sense
converts the discriminant function into f(�x) = 〈�w, Φ(�x)〉+b,
where �w and b are the parameters of the hyperplane which
separates two classes, and Φ(·) is the mapping function.
With the so called “kernel trick”, instead of defining the
mapping function, the discriminant becomes

f(�x) =
N∑

i=1

αiyik(�xi, �x) + b , (1)

where k(�xi, �xj) = 〈Φ(�xi), Φ(�xj)〉 is the kernel function and
for the linear case k(�xi, �xj) = 〈�xi, �xj〉. In this setup, there is
only one kernel and one parameter set. MKL methods [13],
[14], instead, learn a combination kη of multiple kernels
which allows one to do the selection/combination of dif-
ferent kernels or data sources automatically. The difference
between most MKL algorithms is the optimization method
which is applied to estimate the weights or the combination
rule used [13]–[15] where the formulation for the linear case
with P kernels is:
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kη(�xi, �xj ; �η) =

P∑
m=1

ηmkm(�xm
i , �xm

j ) , (2)

with ηm ∈ R. The simplest approach is to use voting
(mean-rule) which corresponds to ηm = 1/P . Generally, the
weights ηm are automatically estimated from the data and
to this aim, in the training phase, both MKL weights and
SVM parameters are simultaneously estimated within the
same optimization problem. In this paper, we apply RBMKL,
GLMKL and SMKL where RBMKL is the rule-based MKL
algorithm that trains an SVM with the mean of the combined
kernels [16], GLMKL denotes the group Lasso based MKL
algorithms [17], and SMKL is the iterative algorithm of [18]
that uses projected gradient updates and trains single-kernel
SVMs at each iteration.

III. DATA SET

In this work, we used a data set of 50 patients (30 male,
20 female) who were being treated for schizophrenia and 50
controls (30 male, 20 female) with no DSM-IV axis I dis-
orders and had no psychiatric disorders among first-degree
relatives. Diagnoses for schizophrenia were corroborated by
the clinical consensus of two psychiatrists. Structural MRI
scans were acquired with a 1.5 Tesla machine.

A. Tissue distribution

After the images were acquired, bias correction was ap-
plied using the SPM software [19]1. After this step, images
were segmented into specific brain regions called Regions
of Interest (ROIs) manually by experts following a specific
protocol for each ROI [20]. In this work, we use four ROIs
from the two hemispheres of the brain summing up to a
total of eight different brain regions: Amygdala (lamyg and
ramyg), Entorhinal Cortex (lec and rec), Superior Temporal
Gyrus (lstg and rstg), and Thalamus (lthal and rthal) which
are found to be impaired in schizophrenic patients [8].
From these ROIs, we extract tissue distribution by com-

puting histograms from intra-ROI MRI values, after MRI
scale standardization based on landmark matching [21].
These histograms (119 bins) represent the first descriptor
of the classification system (will be referred to as SMRI

throughout the text).

B. Geometric shape descriptors

From the set of 2D ROIs of the shapes (slices) the 3D
surface is computed as triangle mesh using marching cubes.
A minimal smoothing operation is applied to remove noise
and voxelization effect. We encode geometric properties of
the surface using i) Shape Index, and ii) Curvedness [22].
Shape index is defined as:

si = −
2

π
arctan

(
k1 + k2

k1 − k2

)
,

1We thank Dr. Denis Peruzzo for the introduction to the SPM software

where k1 > k2 are the principal curvatures of a generic
surface point. The Shape Index varies in [−1, 1] and provides
a local categorization of the shape into primitive forms such
as spherical cap and cup, rut, ridge, trough, or saddle; is pose
and scale invariant [22] and it has already been successfully
employed in biomedical domain [23].
Similarly, the Curvedness is defined as:

curv =
2

π
log

√
k2

1
+ k2

2

2
,

and it measures the size of curvature in a local area.
Both shape index and curvedness are computed at each

vertex of the extracted mesh. Then, all the values are
quantized and a histogram of occurrences is computed for
both kinds of geometric properties. These histograms (150
bins each) represent the geometric descriptors of a given
subject (will be referred as SHI and CURV respectively).

Figure 1. Geometric feature extraction: 3D surface of the thalamus
(left), the surface colored according with Shape Index values (center), and
Curvedness (right).

Fig. 1 shows the 3D surface of the left-Thalamus (left), the
surface colored according with Shape Index values (center),
and Curvedness (right).

IV. METHODOLOGY AND RESULTS

To assess the performance of the proposed methodology,
we use a Leave One Out (LOO) cross validation strategy.
For every subject �x in the data set, we train all classifiers
using all subjects but �x and test the respective classifier on
�x. We record if the classifier is able to detect if the subject
is a patient or control, and calculate the overall accuracy
on all subjects. We compare our results with single kernel
SVM for every feature-ROI pair (will be called SVM) and
an SVM on the concatenation of ROIs for every feature
set (will be called CONCAT). The accuracy and the Area
Under the Curve (AUC) values with the Receiver Operating
Characteristic (ROC) curves clearly show the superiority
of the MKL algorithms. To estimate fewer parameters, we
applied linear kernels for all classifiers. The C values for the
kernels and the regularization parameters of the GLMKL are
selected using cross validation on the training set. For the
MKL algorithms, all kernels are normalized to unit trace.
In Table I, we can see the accuracies of single kernel

classification using the SMRI, SHI and CURV feature sets.
We can see from the table that the best result obtained using
single SVMs is 77.00 % when we use SMRI with lamyg. The
closest accuracy to this value is again when we use SMRI,
but this time with rthal. We can see from the table that tissue
information always outperforms shape information.

90



Table I
SINGLE-KERNEL SVM ACCURACIES.

SMRI SHI CURV

lamyg 77 51 58
ramyg 64 57 53
lec 74 57 56
rec 74 56 49
lstg 65 54 59
rstg 65 53 55
lthal 64 56 53
rthal 76 55 64

We then use MKL to combine different sources of infor-
mation by combining multiple ROIs for each feature set. In
Table II (columns 2-4), we see the accuracies of combining
ROIs for each descriptor. We can see that MKL methods are
better than single kernel SVMs and when we use the mean
kernel, the accuracy may decrease which shows us that we
need to do some kind of weighing or selection.

Table II
MKL RESULTS. COLUMNS 2-4: COMBINING ALL ROIS ON SEPARATE

FEATURE SETS, COLUMN 5: COMBINING ALL FEATURE SETS AND ROIS.

SMRI SHI CURV ALL

SVM 77 57 64 N/A
CONCAT 79 60 55 76
RBMKL 79 56 59 80
SMKL 81 65 61 84
GLMKL 81 64 64 84

We can see the weights (average of LOO) of both MKL
methods for combining multiple ROIs in the top part of
Fig. 2 (We show weights from both algorithms to emphasize
the consistency of different MKL methods). The figure
shows how each ROI behaves when we combine all ROIs
for each feature. When we analyze this figure we observe
that the most important ROI for SMRI is rec. When we look
at the shape based descriptors, we see that thalamus is the
most important one and has the highest contribution to the
MKL weights. These tables and figures show us that rec
carries most of the information in the tissues whereas the
shape of thalamus is the most important factor. Although
MKL results using shape features alone are not promising,
we will see that when we combine all information coming
from all sources, we have the highest accuracy.
In Table II (last column), we can see the results com-

bining all the 24 kernels (called ALL). We can see that we
achieve the best classification accuracy when we combine
everything. In this case, we have a 7% increase in accuracy
compared to the best single feature SVM result. This shows
us the importance of combining different ROIs and we can
achieve better results when we use multiple descriptors.
When we check the weights of combining all kernels in
Fig. 2 (bottom), we see that really the shape information
of thalamus and the tissue information of entorhinal cortex
are important factors in classifying schizophrenia from MRI
images and give the most accurate classification result. We
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Figure 2. Weights of different descriptor-ROI combination i) top: when
we combine ROIs for each descriptor and, ii) bottom: when we combine
all descriptors and ROIs.

see that by combining multiple sources of information, we
can achieve better accuracy than using a single source.
We can also observe the advantages of using MKL in

Fig. 3 which shows the ROC curves for the best two MKLs
which combine all 24 kernels (SMKL and GLMKL), the
best MKL result for combining all ROIs using only one
description (SMKL on SMRI) and the best single SVM (SMRI-
lamyg). We can see a clear increase in AUC and True
Positive Rate (TPR) when we use MKL.
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Figure 3. ROC curves of different methods. Values in parentheses show
the accuracy and AUC respectively.

V. CONCLUSIONS

We have applied the Multiple Kernel Learning (MKL)
paradigm to the combination of different sources of informa-
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tion for schizophrenia detection using different Regions of
Interest (ROIs) and feature descriptors. We have shown that
MKL represents a natural and intuitive tool to evaluate the
contributions of different sources of information. We have
seen that the most important ROIs in the detection of this
disease are Entorhinal Cortex and the Thalamus. Combining
the tissue information of ec and shape information of thal
gives us the most accurate discriminant. This analysis also
reveals another structural information. Although by itself,
lstg is not a good discriminant, when combined with struc-
tural differences in rec and shape differences in thal, the
accuracy of detecting Schizophrenia increases. This shows
us that there is an underlying relation between these ROIs
for identifying the disease and one of them alone is not
enough to get a good detection.
As a future work, we want to apply this paradigm to other

modalities such as fMRI and DTI to achieve better classi-
fication accuracy and extract information on the functional
aspects of Schizophrenia.
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