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ABSTRACT

In this work we present a cost-based memory partitioning
and management mechanism for Memcached, an in-memory
key-value store used as Web cache, that is able to dynam-
ically adapt to user requests and manage the memory ac-
cording to both object sizes and costs. We then present
a comparative analysis of the vanilla memory management
scheme of Memcached and our approach, using real traces
from a major content delivery network operator. Our results
indicate that our scheme achieves near-optimal performance,
striking a good balance between the performance perceived
by end-users and the pressure imposed on back-end servers.
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1. INTRODUCTION

Modern Web sites and applications attract very large num-
bers of end-users, which expect services to be responsive at
all times: indeed, latency plays a crucial role in the perceived
Quality of Experience (QoE), which determines to a large
extent the popularity and success of competing services.

Today’s web pages have a complex structure, as they are
composed by tens of objects, often served by a pool of back-
end servers. In addition, objects usually do not have the
same relevance: central panels, side panels or advertisements
may have different values for end-users as well as content
providers. To serve Web pages composed by such heteroge-
neous objects efficiently, modern web architectures make use
of fast, in-memory storage systems that work as web caches.

In this context, Memcached [3] is a widely-used caching
layer: it is a key-value store that exposes a simple API to
store and serve data from the RAM. Thanks to its simplicity
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and efficiency, Memcached has been adopted by many suc-
cessful services and companies, such as Wikipedia, Flickr,
Digg, WordPress, Craigslist, and, with additional customiza-
tions, Facebook and Twitter.

In-memory cache systems keep replicas of the contents
stored permanently in the back-end databases. Such objects
not only have different sizes — from few bytes corresponding
to the text of a web page, to tens or hundreds of kilobytes for
pictures, up to few megabytes for multimedia content — but
they might have different retrieving costs. In the literature,
there are a number of mechanisms [26, 10, 7] which consider
object cost to be related to the complexity of the database
query to generate an object, which may not be correlated
with the size of the object itself. In such a scenario, the
traditional hit ratio (number of hits divided by the number
of requests) may be not sufficient to capture the “pressure”
on the back-end. A metric based on the objects cost, such
as the cost hit ratio (sum of the cost of the hits divided by
the sum of the cost of the requests), is thus truly desirable.

Many works, such as Cao et. al. in [10], have proposed
simple and elegant solutions that take into account the cost
when managing objects in a cache. Nevertheless, these so-
lutions can not be directly applied to Memcached: for effi-
ciency reasons, Memcached has a specific memory manage-
ment scheme. By design, Memcached partitions the memory
dedicated to store data objects into different classes; each
class is dedicated to objects with a progressively increas-
ing size. When a new object has to be stored, Memcached
checks if there is available space in the appropriate class, and
stores it. If there is no space, Memcached evicts a previously
stored object in that class in favor of the new one.

In this paper we implement a cost-based memory man-
agement scheme for class-based, in-memory storage systems
such as Memcached. A cost-based solution introduces a
number of challenges that are not immediately clear when
approaching the problem. How can the memory be divided
among different classes in an on-line fashion, i.e., while the
system is running? What happens if the cost associated to
objects in a class changes over time? How often should the
system re-evaluate the decisions made?

Our contributions: We design and implement a new API
for Memcached, in which it is possible to associate the cost
of an object to their requests. The API is an extension of
the Set operation, where, along with the key and the value,
a numeric entry corresponding to the cost can be added.
Along with the API, we have implemented an on-line scheme
that takes into account the cost of the objects stored in



the different classes to decide how to partition the memory
among them. The basic idea used in our scheme is to balance
the number of misses, weighted by the cost of the objects,
among different classes.

To validate our memory management scheme, we use an
experimental approach, and conduct a series of experiments
on a testbed which is representative of the typical blueprint
of modern web architectures. In our experimental campaign,
we use input traces (i.e., events corresponding to storing or
fetching objects) that are both real — collected from a van-
tage point inside a major content delivery network (CDN)
— and synthetic, based on statistics from traces in the liter-
ature.

We compare our mechanism with an optimal allocation
that we compute off-line, with a variation of the Mattson
stack algorithm [21]. Our results indicate that the memory
allocation in Memcached is far from being optimal, even
when object costs are not taken into account. With our
scheme, we obtain superior hit ratios both when objects have
all the same cost and when they have different costs. In
summary, our scheme achieves near-optimal performance,
striking a good balance between the performance perceived
by end-users and the pressure imposed on back-end servers.

The remainder of the paper is organized as follows. In
Section 2 we provide some background information on Mem-
cached and we discuss the related works. We present our so-
lution in Section 3, along with a method to compute, off-line,
the optimal allocation. Our results are shown in Section 4
and we provide additional observations and discussions in
Section 5. We conclude in Section 6.

2. BACKGROUND AND RELATED WORK
2.1 Memcached

Memcached is a key-value store that keeps data in mem-
ory, i.e.,data is not persistent. Clients communicate with
Memcached through a simple set of APIs: Set, Add, Re-
place to store data, Get or Remove to retrieve or remove
data. Memcached has been designed to simplify memory
management [29] and to be extremely fast: since every op-
eration requires memory locking', data structures must be
simple and their access time should be kept as small as pos-
sible.

In Memcached, the basic unit of memory is called a slab
and has fixed size, set by default to 1 MB. A slab is logically
sliced into chunks that contain data items (objects?) to store.
The size of a chunk in a slab, and consequently the number of
chunks, depends on the class to which the slab is assigned. A
class is defined by the size of the chunks it manages. Sizes are
chosen with a geometric progression: for instance, Twitter
uses common ratio 1.25, and scale factor 76, therefore the
sizes of the chunks in class 1, 2, 3, ..., are 76, 96, 120,
... Bytes respectively. An object is stored in the class that
has chunks with a size sufficiently large to contain it. As
an illustration, using the classes defined at Twitter, objects
with sizes 60 Bytes, 70 Bytes, and 75 Bytes are all assigned
to class 1, while objects with sizes 80 Bytes and 90 Bytes
are assigned to class 2.

'Note that memory locking is necessary even in case of a
Get, since access time statistics need to be updated for the
eviction policy to work properly.

2Throughout the paper we will use the terms “object” and
“item” interchangeably.

The total available memory to Memcached is allocated
to classes in a slab-by-slab way. The assignment process
follows the object request pattern: when a new request for
a particular object arrives, Memcached determines the class
that can store it, checks if there is a slab assigned to this
class, and if the slab has free chunks. If there is no free chunk
(and there is available memory), Memcached assigns a new
slab to the class, it slices the slab into chunks (the size of
which is given by the class the slab belongs to), and it uses
the first free chunk to store the item. When all slabs have
been assigned to the classes, Memcached adopts the Least
Recently Used (LRU) policy for eviction. Note that LRU
is applied on a per-class basis: items in other classes are
stored in chunks of memory with different sizes, and chunks
can not be moved.

Once an appropriate portion of memory has been assigned
to a class, it is permanently associated to such class (unless
the Memcached server is restarted). Recently, it has been
shown that the current memory management policy induces
slab calcification [1, 6], which may have a negative impact
on the system performance.

Even if there have been many attempts to solve slab cal-
cification — examples are the Memcached Automove policy
and the Twitter Twemcache policies [5] — it is still not clear
if the slab assignment process itself is optimal. Moreover,
none of the above polices takes into account the different
costs that can be associated to objects.

2.2 Related Work

The analysis of cache performance has been the subject
of many past studies. In this paper we consider specifically
Memcached, therefore we first focus on the literature about
such system. Even if Memcached is widely used, the study of
its performance has received only little attention. Atikoglu
et. al. provide in [6] a set of measurement results from a
production site — in our experiments we use these statistics
to generate our “synthetic” workload. However, the work
does not analyze eviction policies, and it does not consider
the impact of memory partitioning on the hit ratio.

Gunther et. al. [18] highlight that Memcached has scal-
ability issues, since threads access the same memory, and
locks prevent the exploitation of parallelism. For this rea-
son, a number of works [29, 17] consider the throughput of
Memcached, proposing a set of mechanisms and data struc-
tures to decrease the overall latency. These works do not
consider explicitly the impact of the memory partitioning
on the hit ratio as we do. Nishtala et. al. [23] study scala-
bility problems, i.e., how to manage a multi-server architec-
ture, but they do not study the eviction policies and memory
partitioning.

Overall, the literature on caching mechanisms is vast: CPU
[9], browser [26], Web [10], and DNS caches [19], as well as
Content Delivery Networks [25] and P2P networks [8, 11,
15, 12, 14, 22] are each characterized by different problems.
Among previous works, CPU caches need to solve similar
problems to ours. In a CPU cache, many processes share
the same memory space, and a single process may “pollute”
the cache with its data [27], which has a negative impact
on performance. Similarly, in Memcached, different classes
share the memory, and the space taken by a class may hurt
the performance of other classes and therefore the overall hit
ratio. The solution adopted for CPU caches [28, 27, 24] are
based on a common idea, in which the memory partition-



ing process tries to balance the number of misses among the
processes. In [13] the authors propose a scheme for dynam-
ically allocating the memory to different classes of objects:
in all these cases the solutions do not consider the impact of
cost in their decisions.

In Web caches, there are a number of examples [26, 10, 7]
which consider object cost to be related to the complexity
of the database query to generate the object, and not their
size. Solutions that are able to handle this situations are
presented by Cao et. al. in [10]. Nevertheless, such ap-
proach can not be directly adapted to the specific memory
partitioning mechanism adopted by Memcached, since, for
performance reasons, objects are divided into classes, and
eviction is done on a per-class basis.

3. COST-BASED MEMORY MANAGEMENT

In this section we present our approach to a cost-based
memory allocation and management scheme for Memcached.
In addition — to obtain a baseline for a comparative analysis
— we discuss an off-line algorithm that computes an optimal
memory allocation.

3.1 Miss-Ratio Curve

The analysis of cache performance has been the subject
of many studies in the last 30 years. Analytical models are
usually based on the Independent Reference Model (IRM),
in which objects, and their access pattern, are modeled by
independent random variables. Unfortunately this model
has some limitation, as it fails to capture the performance
of the storage system when, for instance, request arrivals
are correlated, or objects have different sizes. For these rea-
sons, storage systems are usually studied with trace-driven
numerical analysis: given a trace and an eviction policy, it is
possible to compute the miss-ratio curve, i.e.,the miss ratio
that is obtained for different sizes of the cache.

The calculation of the miss ratio curve can be done with a
single pass of the traces using the Mattson stack algorithm
[21]. A typical output of the analysis of a trace is shown in
Figure 1. Even if the figure shows a specific trace, its concave
shape is representative of most common cases, which exhibit
diminishing returns: the gain that can be obtained with the
first few blocks of allocated memory is usually much higher
than the one that can be obtained by additional allocations.
For instance, it is clear that, if the available memory is suf-
ficient for storing all of the content, adding more memory
will not further decrease the miss ratio of a cache.

The Mattson stack algorithm assumes that all the objects
have the same cost. In order to compute the miss-ratio curve
in the general case where objects have different costs, we
propose a variant: at each requests, we update the stack
distance with the corresponding cost, instead of simply in-
crementing the stack by one. In this way, the vector that
keeps track of the hits for different values of memory sizes,
takes correctly into account the sum of the costs of each
object stored in that position.

The considerations made so far focus on a single-class
cache, where all objects have the same size. What happens
when we have different classes? How can the memory be di-
vided among different classes, so that each class achieves the
best possible miss-ratio? In its on-line version, a solution to
this problem is the main contribution of our work. Here,
for the sake of building a baseline comparison, we consider
the off-line version, i.e., we first execute our variant of the
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Figure 1: Examples of the miss ratio curve for differ-
ent classes. The miss ratio is computed considering
in the denominator the total number of requests for
all classes (this is why it is so high, on a per-class
basis). The composition of all classes yields an over-
all miss ratio which goes, as the memory increases,
below 20%.

Mattson stack algorithm for all the classes, then we opti-
mally assign portions of the memory to the different classes.

Next, we discuss some necessary assumptions to make the
off-line problem tractable. We assume that memory can
be divided into a finite number of blocks (in Memcached,
they are the slabs), and that each class receives and integer
number of blocks. We assume also that the relative decrease
of the miss-ratio, as the memory grows, is monotonically
decreasing: in practice, given a memory size ¢ and the miss
ratio m; for that memory size, then (m; —mi+1) > (Mmiy1 —
mit2), Vi. Both assumptions are reasonable, and the second
has been confirmed by analyzing the real-life traces we use
in this work, as Figure 2 shows.
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Figure 2: Example of the miss ratio difference curve
for different classes. The miss ratio difference is the
decrease in the miss ratio when slabs are added to
the class, one at a time.

Given the above assumptions, a simple heuristic can be
used to compute the optimal assignment (see Algorithm 1).
At each iteration, classes are sorted by the miss-ratio differ-
ence m;  — mj g+1, where j is the class index and k is the
number of blocks assigned to class j so far: a memory block
is assigned to the class with the highest miss-ratio difference.
This procedure (sorting and block assignment) is repeated



for all the available blocks.

Algorithm 1 Optimal Off-line Slab Assignment

. Input: Miss ratio curves for all classes
. Input: Number of available slabs

Sort classes by their miss ratio difference
Assign a slab to the class with the highest difference

1
2
3.
4. repeat
5
6
7. until All slabs are assigned

The output of the procedure represents the optimal as-
signment for a given memory size. This output can be used
as a reference, since it can be computed only off-line, after
a trace has been analyzed. The aim of our work is to find
the on-line counterpart.

3.2 On-line Mechanism

Memcached provides a set of APIs for storing key-value
pairs. To enable cost-based memory management, we ex-
tend the APIs to handle costs when storing or modifying the

data. In particular, we consider the interfaces Set (key,value),

Add (key,value) and Replace(key,value), and introduce

the new siblings Set (key,value,cost), Add (key,value,cost)

and Replace (key,value,cost). For the purpose of our mem-
ory management scheme, we not only store the cost of each
object inside Memcached, but we also keep a set of coun-
ters that summarizes the cumulative cost for each class, and
the counters are updated when objects are added or evicted
from the storage.

Once the costs have been set, the memory management
module periodically evaluates the memory assignment. The
frequency of this evaluation may depend on the the number
of requests or on the number of misses. Since our aim is
to control the number of misses, we have experimentally
observed that using the number of misses produces more
stable results. The length of the period is less relevant, since
it influences only the convergence speed.

At every assignment interval, we maintain a number of
auxiliary counters, that we use for computing slab alloca-
tion. For each class, we maintain the sum of the costs of
the requested objects (that resulted in a hit) and the sum
of the cost of the misses. Memcached does not hold infor-
mation about the cost for requested objects that result in a
miss; therefore we consider the cost of the storage operation
(Set (key,value,cost)), since we expect that, after a miss,
the object is retrieved from the back-end and stored in Mem-
cached. We also distinguish between the misses for objects
that have never been asked before, and misses for objects
that have been evicted. This distinction is important, since
we cannot avoid the misses for objects that have never been
asked before, while knowing the misses for objects that have
been evicted is an indication of potential hits if we increase
the memory for that class.

In order to distinguish between these two types of misses,
we use a technique developed in [20], which uses two Bloom
filters, b1 and b2. When a request to store an object arrives,
the signature of the key is checked in both Bloom filters.
If it is found in either b; or bz, it is registered as a miss
due to eviction. If it is not found, it is stored only in b;.
Periodically, b2 is reset, the content of b; is copied in b2 and
b1 is reset. This approach represent a sort of moving window
Bloom filter, and it is done to avoid the saturation of the

filter.

Next, assume that all auxiliary information described above
— the cost of the misses due to eviction per class m, the cost
of the requests per class r, and the number of slabs allocated
to each class s — is available. Our memory management
scheme uses a slab allocation algorithm that we label SAs.
The algorithm, outlined in Algorithm 2, evaluates a single
slab movement, from the class with the lower risk of increas-
ing the number of misses to the one that has registered the
largest number of misses.

For a given class i, we define its risk as the ratio between
the cost of the misses due to eviction and the number of
slabs allocated to the class, m;/(ris;): in other words, “mov-
ing” one slab from one class to another, increases the num-
ber of misses, as a first approximation, by a value equal to
m;/(ris;). This is equivalent to assuming that the miss ratio
difference is proportional to 1/s;. While more sophisticated
measures can be used to estimate the variation in the num-
ber of misses when slabs are removed, our measurements
have shown that the approach we propose is fairly accurate.
If the class with the lowest risk has more than one slab, the
slab reassignment follows a Least Recently Accessed (LRA)
approach within the class, i.e., we select the slab that has
not been accessed for the longest time. Once slab allocation
completes, LRU-based eviction within each class ensures an
efficient memory utilization, until the next round.

Algorithm 2 Slab Allocation Scheme (SAS)

1. Input: s // vector of slabs allocated to each class

Input: r // vector of requests in each class

3. Input: m // vector of misses due to eviction in each
class

N

. Every M misses do

i TiSi

4
5

. .My
6. idiake < argmin ;
7. idgive — argmaxms;
8

MoveOneSlab(idgake, idgive);

Note that SAS considers the cost of the misses per class and
per slab: SAS aims at finding a working point where a change
in the memory partitioning does not increase the miss ra-
tio. In summary, SAS can be thought of as a mechanism
that caters to a high hit ratio by adapting how memory is
partitioned to mirror object popularity dynamics (as mem-
ory allocation is continuously re-evaluated) and variations
in object size distribution and cost.

4. COMPARATIVE ANALYSIS

We now present our experimental results, where we com-
pare the performance of vanilla Memcached to that of a
Memcached server that uses our memory partitioning man-
agement scheme. First, we discuss our experimental setup,
then present our comparative analysis. In what follows, we
focus on results obtained using real traces. We also have run
experiments with synthetic traces, which we omit for clar-
ity of the presentation, since we find similar quantitative
behavior to what we obtain with real traces.

4.1 Experimental Setup

Typically, in scale-out Web applications, a series of Mem-
cached servers are configured in a shared-nothing setup,



Table 1: Information about the traces.

Number of requests received | 9.67 - 10°
Number of distinct objects 5.62 - 10°
Cumulative size of the

requested objects 8.07 GiB

whereby each server takes care of a subset of data objects us-
ing consistent hashing [6] or variations thereof. This means
that each Memcached server receives requests for objects

that have approximately the same statistical properties. There-

fore, to study memory management, it is sufficient to mea-
sure the performance of a single Memcached server. As for
the request arrival to the server, Memcached locks the mem-
ory at each operation: even if requests are managed by many
threads (used to maintain open connections, process the re-
quests and prepare the responses), from the memory view-
point, these requests are processed in series; hence, generat-
ing the requests from a single, or from multiple clients, has
little or no impact on memory management.

Following the above observations, in our experiments we
deploy a simple, yet representative, Web architecture: an
application server is connected to a database and to a Mem-
cached server (the cache size is set to 1 GB). A client is-
sues requests for objects that are permanently stored in the
database. The application server checks if the requested ob-
ject is in the cache; if Memcached returns the object, the
application server serves the client; otherwise, it retrieves
the object from the database, serves the client and stores
the object in Memcached.

The database is populated with objects extracted from
real traces collected at a vantage point of a major CDN.
The traces we use include the cost necessary to retrieve each
object: for simplicity, we store such costs in an efficient data
structure within the application server, so that each client
request for an object is associated to its cost. Hence, the
application server can use the new Memcached API we have
developed and specify object costs along with requests®. The
client issues object requests by replaying the real traces.

4.2 CDN Traces

In this section we describe the traces used in the exper-
iments. The traces have been collected from one of the
servers of a major CDN operator. As shown in Tablel,
the traces contains almost 10 million requests for more than
5 million objects. Overall, the sizes of the objects sum up
to approximately 8 GiB. The traces cover a period of time
of roughly 48 hours of request traffic.

Next, we focus on object popularity. We compute the num-
ber of requests received by each object, sort objects accord-
ing to this value and plot the empirical cumulative distribu-
tion function (CDF) of object popularity in Figure3. It is
interesting to note that, while the tail of the distribution fol-
lows a Zipf-like distribution, the popularity of the top 1’000
objects follows a different pattern. This, along with the het-
erogeneous object size, limits the applicability of theoretical
models available in the literature to analyze the performance
of the cache, and justifies the experimental approach we take

3In a real deployment, cost-information is usually provided
by back-end services.
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Figure 3: Number of requests for each object, or-
dered by objects rank, from the most popular to
the least popular.
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Figure 4: Empirical cumulative distribution func-
tion of the object sizes.

in this work.

Next we focus on the object size distribution. The size of
the objects spans from few bytes up to 1 MiB, with most
of the objects having size between 100 bytes and 10 kiB.
Figure 4 shows the empirical CDF of object sizes.

Along with each object, the traces report an additional
parameter called retrieval time, which is the time need to
fetch the object either from the original server, the cache hi-
erarchy, the disk or memory, along with the necessary com-
putation (e.g., unzipping or encoding the content). Consid-
ering the objects retrieved from the original server and the
cache hierarchy, their retrieval times are an effective mea-
sure of the pressure on back-end servers each object impose,
as computed by the CDN management system. Thus, in our
experiments, we use the retrieval time as the cost associated
to the object. Due to internal CDN operator confidentiality
policies, this cost has been re-normalized to an integer be-
tween 1 and 10°000. Figure5 shows the empirical CDF of
the object costs.

It is important to note that the retrieval time is not nec-
essarily correlated object sizes: Figure 6 shows the relation
between the object size and its cost (each point represents
an object). We have also computed the correlation coeffi-
cient between the size and the cost, obtaining a value equal
to 0.013, which indicates no correlation.

The fact that objects may have different costs represents
an important information that should be used when man-
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Figure 5: Empirical cumulative distribution func-
tion of the object costs.
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Figure 6: Relation between object size and cost.
Each point represents an object.

aging the storage system. In the following, we study the
performance of Memcached using a variety of cost metrics,
as determined by different memory management policies.

4.3 Results

The main performance metric we consider in this work is
the cost hit ratio, which is given by the sum of the costs of
the hits divided by the sum of the costs of all the requests.
This metric is computed from the application server that
receives the requests from the client.

Our traces can be used to perform a variety of experi-
ments, by changing the cost used to characterize the object.
For instance, if we set all the costs equal to 1, we obtain
the basic cache behavior, and the cost hit ratio becomes the
traditional hit ratio, where each hit contributes equally. Al-
ternatively, we can use the size of the objects as cost: in this
case the performance metric indicates the so-called byte hit
ratio. Finally, we can use the retrieval time to understand
the impact of such costs on the performance.

In all the three cases outlined above, we use our variant
of the Mattson stack algorithm, along with Algorithm 1 pre-
sented in Section 3, to compute — in an off-line manner — the
optimal cost hit ratio. In the results we present, we take as
a reference this optimal solution, and we show the cost hit
ratio with respect to that optimum. For instance, a cost hit
ratio of 90% means that the on-line version of a memory
management scheme is able to obtain 90% of the hit ratio
that the optimal off-line algorithm could obtain. Next, we

present our results in terms of the cost hit ratio as a func-
tion of the number of requests received by the application
server: hence, the z-axis of our figures is only loosely related
to time.
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Figure 7: Hit ratio obtained when all the objects
have the same cost.

Figure 7 shows the hit ratio when all the objects have the
same cost. It is interesting to note that the basic Mem-
cached policy is far from optimal: the slab assignment based
on object request arrival is not able to exploit correctly the
available memory. With SAs, instead, the hit ratio converges
towards the optimum, as more and more requests are pro-
cessed.
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Figure 8: Byte hit ratio obtained when the objects
have a cost equal to their sizes.

In Figure8 we consider the case where the objects have
cost equal to their sizes. The byte hit ratio obtained by
Memcached is close to optimal: the vanilla Memcached slab
assignment works well when focusing on the sizes of the ob-
jects. Nevertheless, the assignment is static, therefore any
change in the statistical properties of the objects may lead
to sub-optimal performance (see Section 5 for a brief discus-
sion about a phenomenon called calcification). As for the
SAS scheme, also in this case, its dynamic adaptation is able
to slightly improve over Memcached.

In our final experiment, we assign object costs to be equal
to their retrieval time, which constitutes a more representa-
tive cost value than object sizes. In this case, our scheme
strives at reorganizing memory based on both user request
patterns and the pressure on the back-end each request im-
poses. As the number of requests increases, SAS achieves
near-optimal performance. Instead, the static memory man-
agement of vanilla Memcached, provides a sub-optimal cost
hit ratio, which translates into eviction of objects that need
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Figure 9: Cost hit ratio obtained with retrieval
times as objects costs.

to be retrieved again from the back-end, with high costs.

To better illustrate the process of slab assignment made
by sAsS, we take a snapshot of the system approximately af-
ter half of the requests has been processed. This snapshot
is shown in Figure 10, which describes how slabs are parti-
tioned across object size classes. As a reference, we show
the optimal slab assignment. The SAS scheme starts with
an initial slab assignment similar to the one used by Mem-
cached, since slabs are allocated on a per-request basis. As
soon as all the available slabs are assigned, SAS periodically
reorganizes memory allocation to decrease the cost due to
the misses. The profile of the assignment gradually shifts
from the one that characterizes Memcached, to the optimal
one.
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Figure 10: Slab assigned to the different classes. The
snapshot has been taken after half of all the requests
has been processed.

In summary, our proposed scheme is able to dynamically
adapt to user requests and manage the memory according
to both object sizes and costs.

S. DISCUSSION

We now discuss additional details of the SAS policy.

Parameter settings: The proposed scheme has a single
parameter that needs to be set: how often the slab assign-
ment should take place. If the interval is too short, then
the variability of the statistics (sum of the cost of the re-
quests and misses) may negatively impact the assignment.
If the interval is too long, the scheme converges slowly to the

optimum. We have experimentally checked that the sensi-
tivity of the results to this parameter is actually not signifi-
cant. We tested different cases with interval between 10’000
and 100’000 misses, and observed that any value within this
range provide similar results.

Calcification: Another aspect that we have not considered
is the variation of the statistical properties of the requested
objects: what happens if the characteristics of the objects
(average size, or cost) change over time, e.g., due to tech-
nological reasons? Examples are an update of the back-end
architecture that translates into different costs, or a change
in the resolution of the images stored on the web site that pe-
riodically increases. Memcached is not able to handle prop-
erly these situations [13], a problem known as calcification
[1]. Our solution does not suffer from calcification since it
continuously adapts the slab assignment to the current trace
statistics.

Synthetic traces: The experiments we discussed in Sec-
tion 4 consider a single trace. We have tested SAS on other
internal traces, as well as on synthetic traces based on data
reported by Atikoglu et. al. in [6]. In all the cases we have
obtained similar results, not reported here for the sake of
simplicity of the exposition.

Computation of misses due to eviction: In our scheme
we distinguish between misses due to objects that have never
been requested before, and misses due to objects previously
evicted. This distinction is made possible thanks to the
use of two Bloom filters. This technique is patented [20]
and cannot be directly used in a open source software such
as Memcached (note that we have used it for the sake of
experiments, not in a production site). As a future work,
we will investigate alternative techniques that can be used
and released as open software (e.g., based on counting Bloom
filters).

6. CONCLUSION AND PERSPECTIVES

Web-scale companies invest many resources and make con-
siderable efforts to improve the performance of their web ap-
plications and the perceived Quality of Experience by end-
users. Focusing on the hit ratio alone does not account for
the pressure on the back-end correctly, since such a metric
disregards the cost necessary to obtain the data. The cost
hit ratio represents a metric that summarizes both the work
done in the back-end and the performance perceived by the
end users.

In this work, we proposed a cost-based memory manage-
ment mechanism for Memcached — a widely adopted in-
memory storage system used as a fundamental building block
in many modern web architectures — that is able to dynam-
ically provide a cost-based hit ratio close to optimal. Our
scheme works on-line and is able to adapt to the character-
istics of the objects that are requested, while other solutions
statically allocate the memory to the different classes, thus
obtaining sub-optimal performance.

As a future work, we intend to investigate alternative in-
memory storage systems, such as Redis [4], that adopt a
different approach for memory allocation than that of Mem-
cached. In particular, we plan to analyze the performance
of memory allocation schemes specifically designed to avoid
fragmentation, such as jemalloc [16], developed by Jason



Evans for FreeBSD, and Google’s TCmalloc [2]. With these
allocators, the in-memory storage system does not need to
take care of object classes, and can perform memory man-

agement with a single LRU queue.

A comparison among

such systems and Memcached may reveal interesting trade-
offs and limits of modern memory management schemes.
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