
On Some Fundamental Properties
of P2P Push/Pull Protocols

(Invited Paper)

Renato Lo Cigno, Alessandro Russo
DISI – Univ. of Trento

Trento, Italy
{locigno,russo}@disi.unitn.it

Damiano Carra
Institut EURECOM

Sophia Antipolis, France
carra@eurecom.fr

Abstract—The peer-to-peer communication paradigm is chang-
ing the way the Internet works, and the perspective network
and service providers are looking at the telecommunication
business. P2P applications and networks are taking foot by
the day, and new systems are proposed continuously with ever
novel features and better performances. In spite of attention and
success, however, there is still a lack of fundamental analysis and
understanding of the elementary properties of these systems. In
this paper we consider a class of P2P protocols suitable both
for content delivery (file-based communications) and for high-
bandwidth media streaming like video and TV, and explore its
fundamental properties. The class considered is known as mesh-
based swarming push-pull systems or interleave protocols. They
split the content in pieces and alternate continuously two phases:
One where the peer pushes a piece to another peer to percolate
information in the system, and the other when it pulls a piece
trying to retrieve missing information. We compare synchronous
and asynchronous models and explore the impact of protocols
parameters, such as the dimension of the active neighborhood,
trying to identify the efficiency of these very simple protocols in
different scenarios, gaining insight to design the next protocol
generation with performance and efficiency in mind.

Index Terms—P2P networks; Overlay; Information Exchange;
Streaming; Chunk-Based Distribution; Simulation; Distributed
Systems; Push/Pull Protocols.

I. INTRODUCTION

The rise of Peer-to-Peer (P2P) communication paradigm
seems to be the next big thing in Internet services. After the
initial phase, where legal concerns about illegal exchanged
content hampered the diffusion, the key idea of sharing re-
sources to improve the common benefit of users is gaining
momentum, and service providers are modifying their business
plans and strategies to ride the rising tide.

After the emergence (and often the fall) of early file-sharing
P2P systems like Napster [1], Gnutella [2], Kazaa [3], and
others, different applications were supported by P2P systems,
starting from voice, (Skype being the most famous example) to
content delivery and video. The growth of legal and commer-
cial services on P2P systems is also rising the requirements
for performance, resilience and always new, more appealing
systems. To achieve these requirements, better understanding

This work was supported by the Italian Ministry of University and Research
(MiUR), with the Grant PRIN-2006099023 “Profiles” (disi.unitn.it/profiles)

of existing systems is needed and new methods and algorithms
are called for. In early performance works [4][5][6], we pro-
posed new, semi-analytic techniques to explore fundamental
properties of the topology used by P2P overlays as well as the
the protocols used to build them. In this work we focus instead
on the information exchange process, and use simulations
with different level of abstraction to investigate fundamental
properties that drive the diffusion of the information within a
mesh-based swarming system.

The type of information that is exchanged within the
P2P system normally does not influence its behavior and
performance. There are however a few key points that need
precise definition, and different applications that have different
requirements in transferring the information. Application can
be file-based or stream-based. In file-based applications the
service can be used only when the whole file is transfered:
Average throughput and total transfer delay are the key perfor-
mance parameters. In the stream-based case the service is used
alongside the information transfer: Minimum throughput and
latency from the information generation to its fruition are the
main evaluation variables. Additionally, the information can
be split for transmission in stand-alone, autonomous pieces
normally called pieces or chunks, or can be organized in one
or more fluid-like flows of single packets. In this work we
concentrate on chunk-based transmission, both for file-based
and stream-based systems.

Information diffusion in chunk-based P2P overlays can be
classified into three main classes:

Push: Pieces are passed down from one peer (parent)
to another (child). The parent don’t ask the child
which piece to push, so in presence of multiple
parents and non-structured systems, multiple pieces
can reach the same peer and some others never
arrive, leading to inefficiencies. Push is normally and
naturally associated to structured, tree-based topolo-
gies [8][9][10][11][12][13], in case of long-lasting
neighborhood relations pushing is very efficient.

Pull: Pull is the opposite of push: One peer (child) ask
for one piece to another (parent) without knowing
whether the parent has the piece or not. Duplication
is not a problem, but starvation may occur because
a child cannot find any parent with the piece it is

1-4244-2426-9/08/$20.00 ©2008 IEEE 67

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 16, 2008 at 10:45 from IEEE Xplore. Restrictions apply.

looking for. Pull systems are normally associated
with swarming, unstructured systems, where peers
seek for multiple parents, balancing the starvation
probability with redundant neighborhood searches.
Practical systems actually let nodes to exchange
information about the pieces they have, thus pure
pull systems are used mainly as a reference model.

Status -based: These systems are based on extensive sig-
naling between peers that exchange status tables
(e.g., the bitmap of a video playout buffer: 0 for a
missing chunk, 1 for an available one) describing
the download process. Piece transfers are negotiated
among peers [14][15][16][17].

Push and Pull systems have the appeal of simplicity: No
signaling is required to coordinate peers and thus they became
naturally very resilient to churn and other impairments. Status-
based systems instead seek for performance and efficiency
trading in simplicity and the risk of becoming fragile and prone
to failure in face of heterogeneity in the network and random
behavior of peers.

An interesting approach is represented by the recently pro-
posed Interleave [7]. The scheme combines push and pull with
a particular piece selection policy (for details, see Sect. II), yet
maintaining no exchange of update information about pieces
owned by nodes.

There are few other papers that propose a combination of
pull and push [18][19]. Most of them use the push mechanism
for spreading rapidly the content, and the pull mechanisms
for filling the holes in the received stream or to subscribe
to different trees in case of a multiple-tree structure. In any
case, no proposal considers to interleave the pull and push
mechanisms.

Interleave was designed mainly for P2P file transfer. The
analysis of the scheme made in [7] was done considering that
all the nodes in the network are homogeneous and synchro-
nized, i.e. the download time of a single piece is the same for
all nodes and the time is slotted. Authors of [7] found that the
file dissemination time of Interleave is within a constant factor
of the optimal performance of a fully centralized system. A
major concern is whether the good performance of Interleave
is due to synchronization and bandwidth homogeneity or not.
Also, while [7] speculates that Interleave may be used for live
streaming, it does not further investigate this issue.

In this work we analyze in detail the performance of the
Interleave scheme: In particular we “translate” the scheme into
a fully distributed protocol, where nodes in the network behave
independently, without coordination.

The scheme can be used for file distribution, as well as
for live streaming. In this case, the correct receiving order of
the pieces and the delay of each piece represent the main
challenge. The results show that the protocol we propose
is able to maintain the performance of the synchronized
Interleave scheme in case of file distribution; moreover, it is
able to provide delay bounds in case of live streaming. To
the best of our knowledge it has never been shown that a
scheme as simple as Interleave, which is a combination of

pull and push and it does not maintain information about
the pieces owned by nodes, can already provide such a good
performance.

The remaining part of the paper is organized as follows.
Sect. II describes the fundamental workout of push/pull pro-
tocols, both in a simplified, cycle-based model and in a
more realistic, entirely distributed system. Sect. III discusses
numerical results and fundamental system parameters. Sect. IV
closes the paper with conclusions and future work.

II. INTERLEAVE PROTOCOLS

We consider a system with a single source, where the
content is partitioned into pieces that can be exchanged
independently. Pieces are generated at a constant rate rstr,
which can be the streaming rate or simply a service rate for a
file transfer. Each piece has a sequence number that reflects the
order of creation by the source. Each node alternates between
pull and push mode, and has a finite size neighborhood defined
by its contact list of size k; the neighborhood of P is defined
as the set of peers that can be contacted actively by peer P ,
i.e., P can contact peers only in its contact list, but can be
contacted by peers that are outside its contact list.

In push mode, a node P randomly selects a neighbor and a
piece to push; if the neighbor does not have the piece and has
available download bandwidth, P uploads the piece, otherwise
the push is aborted.

In pull mode, a node P randomly selects a neighbor and a
piece and sends a pull request to that neighbor. If the neighbor
has the requested piece and it is currently not uploading to any
other node, it accepts the request, otherwise it refuses it.

The piece selection policy represents a delicate part of
the design, especially for streaming systems, where each
piece should be received within a maximum delay. A random
piece selection may work for file distribution, but not for
live streaming. Also, ‘intelligent’ selection procedures, like
rarest-first and similar, cannot be implemented without state
signaling between peers, thus cannot be implemented in a
basic push/pull protocol without state. We adopt the same
piece selection policy proposed in Interleave [7]:

• In push mode, the node pushes the piece with the highest
sequence number among the pieces received via a push
from one of its neighbors.

• In pull mode, the node asks for the piece with the lowest
sequence number it does not possess. This policy aims to
fill the holes within the sequence of pieces.

Interesting features to be explored in the future, include
simple choice-based selection policies (e.g., instead of pushing
the youngest piece, offer a choice or more pieces and let the
destination peer select among them) ad similar strategies that
maintain the system without state, thus highly dynamic and
resistant to churn.

A. A Cycle-based Model

The basic scheme described above was initially proposed
considering a simplified environment, where all the nodes have
the same upload link bandwidth and unlimited download link

68

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 16, 2008 at 10:45 from IEEE Xplore. Restrictions apply.

bandwidth. It is also assumed that the time to upload a single
piece is much bigger than the latency for the exchange of a
single (application level) message. Additionally it is supposed
that the nodes are synchronized and the time slotted. In even
slots all the nodes are in push mode; in odd slots all the nodes
are in pull mode.

If the node is in push (pull) mode and the request is accepted
by the selected neighbor, the piece is pushed (pulled). At the
end of the slot the node switches mode. If the request is refused
by the selected neighbor, the slot is entirely wasted, and the
node waits until the end of the slot before switching mode
(and sending a new request).

The source pushes a new piece in every even slot, and it
replies to pull in odd slots. This means that the streaming rate
is equal to one piece every two cycles and the required upload
bandwidth is 2rstr.

This cycle-based model was used in [7] to find theoretical
bounds for the distribution process, and we use it for compari-
son reasons. In a realistic scenario, upload link bandwidths are
heterogeneous, downlink capacity is not infinite, and imposing
synchronization may be impractical (if at all possible), thus a
better model is required to understand fundamental properties.

B. A Realistic Model

In a real distributed system, the behavior of each node is
independent from all other nodes. Nodes are desynchronized,
because forcing synchronization is costly and can also lead
to high inefficiency (synchronization can be based only on
the least performing peer). A node switches from one mode
to the other (e.g., from push to pull) either after a request is
accepted and the corresponding piece transfer is finished, or
after receiving a maximum number of refusals to requests (at
each try, a new neighbor is randomly selected). This behavior
keeps the system running smoothly and avoid starvation and
blocking.

The time spent in pull or push mode depends on the success
of the requests and on the availability of the bandwidth (both,
the neighbors’ and the node’s bandwidth); thus each push or
pull interval is not fixed and the nodes, even in a homogeneous
case, will be desynchronized.

We stress that this implementation is entirely decentral-
ized and the information exchange among peers is kept to
a minimal level: Keep-alive messages for the contact list
management and push/pull queries and answers. Additionally,
the goal of this work is not building a new system (not yet at
least!), but to gain insight into fundamental parameters like the
contact list size, the efficiency of the distribution system (i.e.,
the ratio between the available bandwidth in upload/download
and the streaming or transfer rate).

Algorithm 1 summarizes the basic operations of a single
node related to sending out requests1; Algorithm 2 summarizes
the basic operations related to replying to requests. We do

1For clarity we have not reported here the full algorithm, where we consider
also the case when a neighbor does not reply to a request (we use a timeout
mechanism to manage these situations).

not report the pseudo-code for building and maintaining the
contact list for the sake of brevity.

Notice that these simple algorithms generate asynchronous
behaviors even within the same node. Indeed, a node controls
its own alternating between push and pull in sending out
requests, but has no control on the requests he receives,
thus a node can be in one of four states, depending on its
active/passive status (not considering periods of idle behavior
during the signaling related to requests’ negotiation): Push-
ing/pulled, pulling/pushed, pushing/pushed and pulling/pulled.
We use the desinence -ing to identify the active status con-
sequent to sending out a request, and the desinence -ed to
identify the passive status of answering a request. Notice
that in the two states pushing/pulled and pulling/pushed, the
two coexisting transmissions compete for the same uplink
(downlink respectively) resources.

Algorithm 1: Pseudo-Code of Interleave: Sending Out Requests
Input: Maximum number of push and pull attempts:

max push attempts, max pull attempts)

if (status == PULL) then
while (pull attempt < max pull attempts) AND (download
bandwidth available) do

Select a neighbor and the lowest pieceID not owned;
Send PULL message;
Wait for reply;
if (reply == ACCEPT PULL) then

if (download bandwidth available) then
Send READY message;
startPullingPiece;
break; /* exit from the while cycle */

else
Send BUSY message;

end
end
pull attempt++;

end
status = PUSH;
pull attempt = 0;

end
if (status == PUSH) then

while (push attempt < max push attempts) AND (upload
bandwidth available) do

Select a neighbor and the highest pieceID owned;
Send PUSH message;
Wait for reply;
if (reply == ACCEPT PUSH) then

if (upload bandwidth available) then
Send READY message;
startPushingPiece;
break; /* exit from the while cycle */

else
Send BUSY message;

end
end
push attempt++;

end
status = PULL;
push attempt = 0;

end

III. NUMERICAL RESULTS

We have implemented both the cycle-based and the more
realistic, asynchronous and distributed model in a simula-
tion environment, to explore some fundamental parameters.
The cycle-based implementation works in the same ideal
hypotheses of the theoretical analysis in [7] as summarized in

69

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 16, 2008 at 10:45 from IEEE Xplore. Restrictions apply.

Algorithm 2: Pseudo-Code of Interleave: Replying to Requests

if (message == PULL) then
if (pieceID available) AND (upload bandwidth available) then

send ACCEPT PULL message;
wait for reply;
if (reply == READY) then

startPieceUploading;
end

else
send REFUSE PULL message;

end
end
if (message == PUSH) then

if (pieceID missing) AND (download bandwidth available) then
send ACCEPT PUSH) message;
wait reply;
if (reply == READY) then

startPieceDownloading;
end

else
send REFUSE PUSH message;

end
end

Sect. II-A. The asynchronous model is based on the protocol
described in Sect. II-B, along with Algorithms 1 and 2. It
includes the signaling for pieces exchange and some simple
models of the underlying information transport network. The
actual transmission of pieces, e.g., with TCP/IP, is not im-
plemented since is would slow down simulation and make
the results so complex as to make their interpretation almost
impossible.

A. The PeerSim Environment

PeerSim is a Java based simulator that consists of many
configurable components: It has two types of engines, cycle-
based and event-based, and different modules that manage the
overlay building process and the transport characteristics. In
the cycle-based engine, all nodes are synchronized, making it
a perfect tool for the implementation of the simple cycle-based
model. In each cycle each node is activated sequentially and
executes a protocol: There is no concurrency among nodes nor
competition for resources. In the event-based engine, all nodes
are independent and run concurrently (they are independent
instances of the same class). They can add events in the event
list of the simulator, so nodes can compete for resources.

With PeerSim it is possible to build different network
overlays; the models for some of them (e.g., random graph)
are present in the simulator. It is also possible to specify if the
edges of the overlay graph are directed or not. With random
graphs, the degree of each node is random, because it depends
on how many incoming edges have been created. We create a
model with constant-degree, where all the nodes has the same
number of edges (and neighbors). This overlay is similar in
spirit to the one built by BitTorrent.

The simulator contains a transport layer for sending mes-
sages from a source to a destination: The layer adds a delay
uniformly distributed between a minimum and a maximum
value an it can also drop messages with a probability p.

For a detailed description of PeerSim simulator the inter-
ested reader is referred to [20].

B. Parameters under Study and Settings

The theoretical analysis of the basic Interleave scheme in [7]
is done considering a directed random graph with degree k.
Each peer selects its own k neighbors independently from any
other peers and without constraints. Each peer has a contact
list of exactly k neighbors, and the probability of being in the
contact list of other nodes is binomially distributed with mean
k. We refer to this overlay as asymmetric.

We also define and test another overlay model, where the the
edges are not directed: In this case we use a constant-degree
graph with degree k. Building it is somewhat more complex,
since the choice of neighbors to build the contact list, requires
signaling and coordination and can be difficult if the contact
list is large and the number of peers small. We refer to this
overlay as symmetric.

The streaming rate of the source, rstr, is set to one piece per
second. In the cycle-based model this implies that each cycle
is equal to 0.5 s. In the event-based case, we set the piece
size to 15.625 kbytes (125 kbit). So, the minimum bandwidth
assumed for the uplink (128 kbit/s) is sufficient to leave some
capacity for maintenance and piece request messaging.

We start considering a homogeneous case, where all nodes
have the same bandwidth, and we test three different homoge-
neous bandwidths: 256 kbit/s and 512 kbit/s. Note that, with a
bandwidth of 256 kbit/s, the source can serve the each piece
twice, because the streaming rate is one piece per second.
Thus this case corresponds to the cycle-based case, where a
new piece is generated every even cycle and served again in
odd cycle. If not otherwise stated, each node has a limited
download bandwidth equal to four times the upload bandwidth.

We analyzed many scenarios with different network sizes
and number of pieces. In particular, the number of nodes N
can be equal to 100, 500 and 1000. The number of pieces C
can be equal to 103, 5 · 103 and 104.

In order to evaluate the performance of different models
with different parameter settings, we consider three main
performance indexes:

• Completion Time: In case of file distribution, the main
performance metric is the time at which all nodes receive
all pieces.

• Maximum Delay: In case of live streaming, the delay of
each piece represent the performance index of primary
interest. We compute it considering all the nodes and
all the pieces. Piece are numbered 0, . . . , C. Piece c is
produced at time tc, and it reaches the node P at time
tc,P . The maximum delay, dmax, is the maximum over all
pieces and over all nodes:

dmax = max
c,P

(tc,P − tc) .

• Number of Operations: Since each node alternates
between push and pull, it is important to understand how
much efficient are these two mechanisms; we compute
the number of pieces retrieved via pull and the number
of pieces received via push.

70

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 16, 2008 at 10:45 from IEEE Xplore. Restrictions apply.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
D

F

Cycles (after last piece was pushed by the source)

#pieces / ContactList size
1000 / 8
5000 / 8

1000 / 12
5000 / 12
1000 / 16
5000 / 16

(a) Asymmetric contact list

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
D

F

Cycles (after last piece was pushed by the source)

#pieces / ContactList size
1000 / 8
5000 / 8

1000 / 12
5000 / 12
1000 / 16
5000 / 16

(b) Symmetric contact list

Fig. 1. CDF of the overall download time with N = 1000 nodes.

For the different scenarios, we perform 20 independent
realizations and we compute the Empirical Cumulative Dis-
tribution Function (ECDF or simply CDF) by combining the
realizations.

C. Fundamental Cycle-Based Properties

In this section we present the result for the cycle-based
system. The purpose of this section is twofold: We validate
our implementation against the results presented in [7] and
we show other performance measures, in order to gain more
insight into the operations.

For the validation, we consider the asymmetric overlay with
various degree k. The results presented in [7] focused on
the completion time and they showed that, for k > 8, it
reaches a stable value approximately equal to 2C + 2 log N .
In Fig. 1(a) we show the full CDF of the completion time
for different values of the contact list size (degree) k and
for different values of number of pieces C. In order to be
able to compare the results for different C, we show the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
D

F

Cycles

#nodes / #pieces
500 / 1000

1000 / 1000
500 / 5000

1000 / 5000
500 / 10000

1000 / 10000

Fig. 2. CDF if the maximum delay (symmetric contact list; k = 16).

completion time as the number cycles after the source has
pushed the last piece. We observe that the completion time
becomes stable for k > 12 (the upper group of curves; lower
curves refer to k = 8), a value that is slightly higher than
the one presented in [7]. Since there are not many details in
the simulation methodology used in [7], we are not able to
investigate the reason of these differences. In any case, the
qualitative behavior —that the contact list can be kept small
without jeopardizing the results— remains the same.

The performances in case of too small contact list size k are
due do the difference in the number of incoming edges. The
nodes responsible for the tail of the CDF are the ones that are
poorly connected. In fact, in a random graph with mean degree
k = 8 there is a non-negligible probability that nodes are only
in one or two contact lists, or even in none, so that most pieces
must be pulled actively, since the probability of being pushed
is small. This problem is reduced if we increase the mean
number of contacts. We found similar results for different
overlay network sizes (not shown here for space constraints).

In case of symmetric overlay, each node has a constant num-
ber of contacts and the problem observed in the asymmetric
case disappears. Figure 1(b) shows the CDF of the download
time in case of symmetric contact list.

Comparing the CDF of the completion times in the different
scenarios, we observe that the performances are almost equiv-
alent, independently from the type of overlay (symmetric and
asymmetric, provided that the degree is greater than 12), or
from the number of pieces. This is valid for any performance
measure we consider. For this reason hereinafter we will show
only results where the contact list is symmetric and the degree
equal to 16.

The evaluation in [7] focused on the completion time, since
Interleave was proposed for file distribution. Nevertheless, the
piece selection policy used by the scheme takes into account
the order of creation of the pieces. For this reason it is
interesting to study if the protocol can be used for distributing
a stream. Figure 2 shows the CDF of dmax, the maximum delay.

71

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 16, 2008 at 10:45 from IEEE Xplore. Restrictions apply.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

fraction of PUSH operations

symmetric
asymmetric

Fig. 3. CDF of the Push operations (symmetric contact list; k = 16; N =
1000; C = 104).

The maximum delay is slightly influenced by the number of
pieces C, especially the maximum value of the CDF. This
means that, by properly setting the initial delay, the streaming
can be received at the application level without interruption.

An interesting future work will address the analysis of
delay percentiles. Using Forward Error Correction or Network
Coding techniques, it is sufficient to receive a percentage f
of the information to reconstruct the whole flow. Analyzing
the delay behavior as a function of the f -th percentile will
give indications on the design of the multi-coding technique
to be used, as well as on the amount of redundancy needed to
support a streaming with a given maximum delay.

We notice that the maximum delay is expressed in number
of cycles, thus finding efficient ways to reduce the piece size,
and consequently the cycle duration, is an efficient way of
supporting live streaming. Reducing the piece size to a single
video frame (25 ms) will reduce the maximum delay to less
than 2 s which is already a good value for streaming purposes.

Finally, in Fig. 3 we show the number of pieces received by
push for different overlay types, asymmetric and symmetric.
In both cases more pieces are received by push then by pull.
In case of asymmetric overlay, the distribution has greater
variance, since the overlay connectivity distribution has greater
variance. The symmetric case shows instead almost perfect
balance over all nodes, with slightly more pieces received via
push.

D. Impact of the Realistic Model

While the cycle-based is interesting as a first step in the
analysis, the realistic model is able to show if the scheme
still maintains the good performances in a scenario with
no synchronization (and possibly heterogeneous). We start
comparing the completion time obtained from the cycle-based
model with the results obtained with the realistic model. To
this aim, in the cycle-based model we set the duration of the
cycle equal to 0.5 s, while in the realistic model we set the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

C
D

F

Time after last piece was pushed by the source (s)

sim. type / #nodes
event / 500

event / 1000
cycle / 500

cycle / 1000

Fig. 4. CDF of the overall download time (symmetric contact list; k = 16;
C = 5 · 103; upload bandwidth: 256 kbit/s).

upload bandwidth equal to 256 kbit/s.

Fig. 4 shows the CDF of the completion time with the
two models: Not only the realistic model protocol is able
to work without synchronization, but it obtains also better
performances in term of download time. For the realistic
model, we consider also different scenarios: Also in this
case, the overlay connectivity type (asymmetric or symmetric)
has no influence if the degree is greater than 12. Moreover,
different number of pieces C and number of nodes N give
similar results.

The factor that mainly influences the performance here is
the upload bandwidth of the nodes (including the source). We
considered the case with upload bandwidth close to rstr, the
rate of the streaming (i.e., 128 kbit/s): In this case the system
is unstable and it is not possible to reach convergence.

Fig. 5 shows the CDF of the maximum delay for two
different upload bandwidths. The impact of number of nodes
on the CDF, especially with an upload bandwidth equal to
256 kbit/s, is mainly due to the greater number of hops that
pieces have to do to reach all the nodes. An interesting result
is represented by the decrease of the maximum delay as the
upload bandwidth increases. The initial delay for a streaming
application that uses the Interleave protocol is only few pieces.

Analyzing the delay, it is interesting to investigate the
scalability in terms of number of pieces and number of nodes.
To this aim, we consider the maximum value of the CDF of
the maximum delay, and we compare different scenarios. Fig. 6
shows how the delay varies as the number of pieces increases.
Especially when the bandwidth is equal to twice the streaming
rate, there is a non negligible increase in the maximum delay.
This means that the scheme may not be able to sustain long
streaming and different mechanisms that are able to maintain
the delay bounded are necessary.

72

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 16, 2008 at 10:45 from IEEE Xplore. Restrictions apply.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
D

F

Max Delay (s)

#nodes / upl. bw
500 / 256

1000 / 256
500 / 512

1000 / 512

Fig. 5. CDF if the maximum delay (symmetric contact list; k = 16; C =
5 · 103).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000

M
ax

 D
el

ay
 (

s)

Number of pieces

upl bw / #nodes
256 / 100
256 / 500

256 / 1000
512 / 100
512 / 500

512 / 1000

Fig. 6. Maximum value of the maximum delay (symmetric contact list;
k = 16).

IV. CONCLUSIONS AND FUTURE WORK

In this paper we considered a class of protocols suitable
for supporting both file-based and stream-based communi-
cations in P2P overlay networks. We focused our attention
on the information exchange process, considering protocols
that alternate (of interleave) push and pull phases, i.e., a
node alternates between helping some other node (pushing) to
receive fresh information it just received itself, and filling its
own information gaps by pulling information from neighboring
nodes.

The advantage of the protocol we analyze is that it can
work without making any assumption on the node behavior:
The interaction between two nodes is limited to the exchange
of a single piece, making it suitable to situations with high
churn. We evaluate the performance of this basic scheme,
considering that it provides a lower bound on the performance
achievable by any system, since adding other mechanisms —

like for instance spreading the information about pieces the
nodes own— should normally improve the performance.

We think that these results will help to better understand
content distribution systems and also make a contribution to
the debate about the relative merits of basic, stateless schemes
and status-based schemes.

Future research will focus on non-homogeneous systems,
dynamic overlays with churn, and also multiple descriptions
to sustain live-streaming over simple, entirely decentralized
systems.

ACKNOWLEDGMENTS

The authors wish to thank Ernst Biersack from Institut
EURECOM for all the useful discussions and ideas about P2P
streaming and distribution systems.

REFERENCES

[1] Napster, http://www.napster.com
[2] T. Klingberg, and R. Manfredi, “The Gnutella Protocol Specification,”

http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
[3] The Kazaa Network, http://www.kazaa.com/
[4] D. Carra, R. Lo Cigno, and E.W. Biersack, “Stochastic Graph Processes

for Performance Evaluation of Content Delivery Applications in Overlay
Networks,” in IEEE Transactions on Parallel and Distributed Systems,
Vol. 19, No. 2, pp. 247-261, Feb. 2008.

[5] D. Carra, R. Lo Cigno, and E.W. Biersack, “Graph Based Analysis of
Mesh Overlay Streaming Systems,” in IEEE Journal on Selected Area
in Communications, Vol. 25, No. 9, pp. 1667-1677, Dec. 2007.

[6] E.W. Biersack, D. Carra, R. Lo Cigno, P. Rodriguez, and P. Felber,
“Overlay Architectures for File Distribution: Fundamental Performance
Analysis for Homogeneous and Heterogeneous Cases,” in Computer
networks, Volume 51, No. 3, pp. 901-917, February 2007.

[7] S. Sanghavi, B. Hajek, and L. Massoulie, “Gossiping with multiple
messages,” IEEE Transactions on Information Theory, Dec. 2007.

[8] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, “ALMI: An
Application Level Multicast Infrastructure,” in Proc. USITS, Mar. 2001.

[9] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable Applica-
tion Layer Multicast,” in Proc. SIGCOMM, Aug. 2002.

[10] AD. A. Tran, K. A. Hua, and T. T. Do, “A Peer-to-Peer Architecture for
Media Streaming,” in IEEE JSAC: Special Issue on Advances in Overlay
Networks, Vol.22, N.1, Jan. 2004.

[11] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: Highbandwidth Multicast in a Cooperative
Environment,” in Proc. ACM SOSP, Oct. 2003.

[12] V. Venkataraman, and P. Francis, “Chunkyspread: Multi-tree Unstruc-
tured Peer-To-Peer Multicast,” in Proc. IPTPS, Feb. 2006.

[13] Y. Sung, M. Bishop, and S. Rao, “Enabling Contribution Awareness in
an Overlay Broadcasting System,” in Proc. SIGCOMM, Sept. 2006.

[14] Y.-H. Chu, S. G. Rao, and H. Zang, “A Case for End System Multicast,”
in Proc. SIGMETRICS, June 2000.

[15] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. Mohr,
“Chainsaw: Eliminating Trees from Overlay Multicast,” in Proc. IPTPS,
Feb. 2005.

[16] X. Zhang, J. Liu, B. Li, and T. S. P. Yum, “DONet/CoolStreaming:
A Data-driven Overlay Network for Live Media Streaming,” in Proc.
INFOCOM, Mar. 2005.

[17] F. Pianese, J. Keller, and E. W. Biersack, “PULSE, a Flexible P2P Live
Streaming System,” in Proc. 9th IEEE Global Internet Symposium, Apr.
2006.

[18] M. Zhang, Q. Zhang, and S. Yang, “Understanding the Power of
Pull-based Streaming Protocol: Can We Do Better?” IEEE Journal on
Selected Areas in Communications, Dec. 2007.

[19] T. Locher, R. Meier, S. Schmid, and R. Wattenhofer, “Push-to-Pull Peer-
to-Peer Live Streaming,” in Proc. DISC, Sept. 2007.

[20] PeerSim: A Peer-to-Peer Simulator,
http://peersim.sourceforge.net/

73

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on October 16, 2008 at 10:45 from IEEE Xplore. Restrictions apply.

