
39

Access-time aware cache algorithms

GIOVANNI NEGLIA, Université Côte d’Azur, Inria
DAMIANO CARRA, Università di Verona
MINGDONG FENG, Akamai Technologies
VAISHNAV JANARDHAN, Akamai Technologies
PIETRO MICHIARDI, Eurecom
DIMITRA TSIGKARI, Université Côte d’Azur, Inria

Most of the caching algorithms are oblivious to requests’ timescale, but caching systems are capacity con-
strained and, in practical cases, the hit rate may be limited by the cache’s impossibility to serve requests fast
enough. In particular, the hard-disk access time can be the key factor capping cache performance. In this pa-
per, we present a new cache replacement policy that takes advantage of a hierarchical caching architecture,
and in particular of access-time difference between memory and disk. Our policy is optimal when requests
follow the independent reference model, and significantly reduces the hard-disk load, as shown also by our
realistic, trace-driven evaluation. Moreover, we show that our policy can be considered in a more general
context, since it can be easily adapted to minimize any retrieval cost, as far as costs add over cache misses.

CCS Concepts: rNetworks → Network performance analysis; rTheory of computation → Caching
and paging algorithms;

Additional Key Words and Phrases: Cache, Cache replacement policy, Caching architecture, Content Deliv-
ery Network (CDN), Hard disk access time, Knapsack problem

ACM Reference Format:
Giovanni Neglia, Damiano Carra, Mingdong Feng, Vaishnav Janardhan, Pietro Michiardi, and Dimitra
Tsigkari, 2016. Access-time aware cache algorithms. ACM Trans. Model. Perform. Eval. Comput. Syst. 9,
4, Article 39 (March 2010), 30 pages.
DOI: 0000001.0000001

1. INTRODUCTION
The hit probability is a well-known key metric for caching systems: this is the prob-
ability that a generic request for a given content will be served by the cache. Most of
the existing literature implicitly assumes that a hit occurs if the content is stored in
the cache at the moment of the request. In practice, however, in real caching systems
the hit rate is often limited by the speed at which the cache can serve requests. In
particular, Hard-Disk Drive (HDD) access times can be the key factor capping cache
performance.

As an illustrative example, Figure 1 shows the percentage of CPU and HDD utiliza-
tion, as reported by the operating system, over two days in the life of a generic caching
server. As the amount of requests varies during the day, the resource utilization of
the caching server varies as well: during peak hours, HDD utilization can exceed 95%.

Dimitra Tsigkari’s internship at Inria was funded by Bodossaki Foundation, Greece.
Author’s addresses: G. Neglia, Inria Sophia-Antipolis Méditerranée, France; D. Carra, Computer Science De-
partment, Università di Verona, Italy; M. Feng, Akamai Technologies, Cambridge, MA, USA; V. Janardhan,
Akamai Technologies, San Francisco, CA, USA; P. Michiardi, Eurecom, France; D. Tsigkari, Inria Sophia-
Antipolis Méditerranée, France.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2010 ACM. 2376-3639/2010/03-ART39 $15.00
DOI: 0000001.0000001

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2 G. Neglia et al.

Such loads may cause the inability to serve a request even if the content is actually
cached in the HDD, generating what we call “spurious misses.” In case of a pool of
cache servers, a solution based on dynamic load balancing may alleviate this prob-
lem by offloading the requests to another server. Nevertheless, this solution has its
own drawbacks, because the rerouted queries are likely to generate misses at the new
cache.

In this paper, we study if and how the RAM can be used to alleviate the HDD load,
so that the cache can serve a higher rate of requests before query-rerouting becomes
necessary.

The idea to take advantage of the RAM is not groundbreaking. Modern cache servers
usually operate as hierarchical caches, where the most recently requested contents are
stored also in the RAM: upon arrival of a new request, content is first looked up in the
RAM; if not found, the lookup mechanism targets the HDD. Hence, the RAM “shields”
the HDD from most of the requests. This RAM cache is often also called the “Hot Object
Cache” using Squid web proxy terminology.

Fig. 1. Graph showing the CPU and HDD utilization percentage of a generic caching server.

The question we ask in this paper is: what is the optimal way to use the RAM? I.e.,
which content should be duplicated in the RAM to minimize the load on the HDD?
We show that, if content popularities are known, the problem can be formulated as
a knapsack problem. More importantly, we design a new dynamic replacement policy
that, without requiring popularity information to be known, can implicitly solve our
minimization problem. Our policy is a variant of q-LRU [Garetto et al. 2016]: in q-LRU,
after a cache miss, the content is stored in the cache with probability q and, if space is
needed, the least recently used contents are evicted. We call our policy qi-LRU, because
we use a different probability qi for each content i. The value qi depends on the content
size and takes into account the time needed to retrieve the content from the HDD.
Simulation results on real content request traces from the Akamai’s Content Delivery
Network (CDN) [Nygren et al. 2010] show that our policy achieves more than 80% load
reduction on the HDD with an improvement between 10% and 20% in comparison to
standard LRU.

While our paper is motivated by the specific problem to reduce the load on the HDD
to avoid spurious misses, we observe that similar issues arise in any hierarchical stor-
age system, where we want to use efficiently the fastest storage layers to minimize
the overall retrieval time. In this sense, the possible future replacement of HDD by

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

Access-time aware cache algorithms 39:3

Solid State Drives (SSD)1 would not make our study obsolete. Moreover, our results do
not depend on the specific function we are trying to minimize, but any retrieval cost
represents a valid choice, as long as it is additive over different misses. For example,
our policy qi-LRU could be adapted to minimize the cache miss ratio, the traffic from
upstream caches, etc.

The paper is organized as follows. In Section 2 we formalize the problem and illus-
trate the underlying assumptions. In Section 3 we present the policy qi-LRU and prove
its asymptotic optimality. We evaluate its performance under real-world traces in Sec-
tion 4, and we show preliminary test results in Section 5. In Section 6 we discuss how
qi-LRU can be adapted to solve a variety of different cost minimization problems by
simply changing the expression of the probabilities qi. Related works are discussed in
Section 7.

This article extends the previous conference version [Neglia et al. 2016] in several
respects: (i) all the proofs are included in appendices A, B, C, (ii) additional experimen-
tal results validate our model in Section 4, and (iii) additional results has been added
in Section 5, (iv) the applicability of qi-LRU to the general retrieval cost minimization
problem is shown in Section 6, and (v) the related work section has been extended.

2. MODEL
2.1. Hard Disk Service Time
Our study relies on some assumptions about the load imposed on the HDD by a set
of requests. Consider a single file-read request for content i of size si. We call service
time the time the HDD works just to provide content i to the operating system. Our
first assumption is that the service time is a function only of content size si. We denote
it as T (si).2 The second assumption is that service times are additive, i.e. let A be a
set of contents, the total time the HDD works to provide the contents in A is equal
to
∑
i∈A T (si), independently of the specific time instants at which the requests are

issued. Note that we are not assuming any specific service discipline for this set of
requests: they could be served sequentially (e.g. in a FIFO or LIFO way) or in parallel
(e.g. according to a generalized processor sharing).3 What we require is that concurrent
object requests do not interfere by increasing (or reducing) the total HDD service time.
Our experiments in Section 4 show that this assumption is a reasonable one and the
model predicts very well the HDD load.

The analytical results we provide in Section 3, which is the main contribution of our
work, do not depend on a particular structure of the function T (si). Here, we describe
a specific form based on past research on HDD I/O throughput [Barve et al. 1999][Ng
1998], and on our performance study of disk access time observed in caching servers.
We will refer to this specific form later to clarify some properties of the optimal policy.
Furthermore, we will use it in our experiments in Section 4.

Considering the mechanical structure of the HDD, every time a new read needs to
be done, we have to wait for the reading arm to move across the cylinders, and for the
platter to rotate on its axis. We call these two contributions the average seek time and
average rotation time, and we denote them by σ and ρ respectively. Each file is divided
into blocks, whose size b is a configuration parameter. If we read a file whose size is
bigger than a block, then we need to wait for the average seek time and the average
rotation time for each block.

1Note that, SSDs are not going to completely replace HDDs in the near future for large caches, because of
their higher cost and the limited number of rewrites they can tolerate.
2If the service time is affected by significant random effects, then T (si) can be interpreted as the expected
service time for a content of size si.
3The specific service discipline would clearly have an effect on the time needed to retrieve a specific content.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:4 G. Neglia et al.

Table I. Summary of the variables used for T (si)

Variable Meaning Typical Value
si Size of object i -
σ Average seek time 3.7·10−3 s
ρ Average rotation time 3.0·10−3 s
b Block size 2.0 MB
σr Seek time for read 3.14·10−9 s/MB
µ Transfer bandwidth 157 MB/s
φ Controller Overhead 0.5·10−3 s

Once the reading head has reached the beginning of a block, the time it takes to read
the data depends on the transfer speed µ. Moreover, while reading a file, the reading
arm needs to move across tracks and cylinders, so we need to add a contribution due
to the seek time for read, σr, which depends on the size of the file. A last contribution
is due to the controller overhead, φ, that introduces a constant delay.

Overall, the function that estimates the cost of reading a file from the hard disk is
given by the following equation (see Table I for a summary of the variables used):

T (si) = (σ + ρ)

⌈
si
b

⌉
+

(
1

µ
+ σr

)
si + φ. (1)

Based on our experience on real-life production systems, the last column of Table I
shows the values of the different variables for a 10’000 RPM hard drive.

We have validated Equation (1) through an extensive measurement campaign for
two different hard disk drives (10’000 RPM and 7’200 RPM). The results are shown
in Figure 2. In the figure, we actually plot the quantity T (si)/si: in Section 3, we will
illustrate the key role played by this ratio. The estimated value of T (si)/si has dis-
continuity points at the multiples of the block size b: in fact, as soon as the size of an
object exceeds one of such values, the service time increases by an additional average
seek time and an additional average rotation time. The points in the figures represent
the output of our measurement campaign for a representative subset of sizes (in par-
ticular, for sizes close to the multiples of block size b, where the discontinuities occur).
Each point is the average value for a given size over multiple reads. From the experi-
ments, we conclude that the function T (si) shown in Equation (1) is able to accurately
estimate the cost of reading a file from the HDD. Moreover, in Section 4 we compare
the HDD load over time, measured as

∑
i∈A T (si) over intervals of 30 seconds, with the

actual load recorded by a real server (the details about the experimental setup and the
traces are in Section 4): the results show a very good match between the load derived
from the model and the actual load (see Fig. 8).

2.2. Query Request Process
Let N = {1, 2, . . . N} denote the set of contents. For mathematical tractability, as done
in most of the works in the literature (see Section 7), we assume that the requests fol-
low the popular Independent Reference Model (IRM), where contents requests are in-
dependently drawn according to constant probabilities (see for example [Coffman and
Denning 1973]). In particular, we consider the time-continuous version of the IRM:
requests for content i ∈ N arrive according to a Poisson process with rate λi and the
Poisson processes for different contents are independent. While the optimality results
for our policy qi-LRU are derived under such assumption, significant performance im-
provements are obtained also considering real request traces (see Section 4).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

Access-time aware cache algorithms 39:5

 0

 0.01

 0.02

 0.03

 0.04

 0 1 2 3 4 5

10’000 RPM

T
(s

i)
/s

i
(s

/M
B

)

Size (MB)

Estimated
Measured

 0 1 2 3 4 5

7’200 RPM

Size (MB)

Estimated
Measured

Fig. 2. Graph of the function T (si)/si.

2.3. Problem Formulation
In general, the optimal operation of a hierarchical cache system would require to
jointly manage the different storage units, and in particular to avoid to duplicate con-
tents across multiple units. On the contrary, in the case of a RAM-HDD system, the
problem is usually decoupled: the HDD caching policy is selected in order to maximize
the main cache performance metric (e.g. hit ratio/rate), while a subset of the contents
stored in the HDD can be duplicated in the RAM to optimize some other performance
metric (e.g. the response time). The reason for duplicating contents in the RAM is
twofold. First, contents present only in the RAM would be lost if the caching server is
rebooted. Second, the global cache hit ratio/rate would not be significantly improved
because the RAM accounts for a small percentage of the total storage available at the
server. A consequence of such decoupling is that, at any time, the RAM stores a subset
of the contents stored in the HDD, denoted byMR andMH respectively.4 In our work,
we consider the same decoupling principle. As a consequence, our policy is agnostic to
the replacement policy implemented at the HDD (LRU, FIFO, Random, . . .).

We now look at how the RAM reduces the HDD load. An incoming request can be for
a content not present in the HDD (nor in the RAM because we considerMR ⊂ MH).
In this case, the content will be retrieved by some other server in the CDN or by the
authoritative content provider, and then stored or not in the HDD depending on the
specific HDD cache policy. Note that the choice of the contents to be duplicated in the
RAM plays no role here. Read/write operations can occur (e.g. to store the new content
in the HDD), but they are not affected by the RAM replacement policy, that is the focus
of this paper. We ignore then the corresponding costs. On the contrary, if an incoming
request is for a content present in the HDD, the expected HDD service time depends
on the set of contentsMR stored in the RAM. It is indeed equal to∑

i∈MH\MR

λi∑
j∈N λj

T (si) =
∑
i∈MH

λi∑
j∈N λj

T (si)−
∑
i∈MR

λi∑
j∈N λj

T (si), (2)

4Although it is theoretically possible that a content stored in the RAM and in the HDD may be evicted by
the HDD earlier than by the RAM, these events can be neglected in practical settings. For example in the
scenario considered in Section 4 typical cache eviction times are a few minutes for the RAM and a few days
for the HDD for all the cache policies considered.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 G. Neglia et al.

because, under IRM, λi/
∑
j∈N λj is the probability that the next request is for content

i, and the request will be served by the HDD only if content i is not duplicated in the
RAM, i.e. only if i /∈MR.

Our purpose is to minimize the HDD service time under the constraint on the RAM
size. This is equivalent to maximize the second term in Equation (2). By removing the
constant

∑
j∈N λj , we obtain then that the optimal possible choice for the subsetMR

in a a RAM of capacity C is the solution of the following maximization problem:

maximize
MR⊂N

∑
i∈MR

λiT (si)

subject to
∑
i∈MR

si ≤ C.
(3)

This is a knapsack problem, where λiT (si) is the value of content/item i and si its
weight. The knapsack problem is NP-hard. A natural, and historically the first, relax-
ation of the knapsack problem is the fractional knapsack problem (also called contin-
uous knapsack problem). In this case, we accept fractional amounts of the contents to
be stored in the RAM. Let hi ∈ [0, 1] be the fraction of content i to be put in the RAM,
the fractional problem corresponding to problem (3) is:

maximize
h1,...hN

N∑
i=1

λihiT (si)

subject to
N∑
i=1

hisi = C.

(4)

From an algorithmic point of view, the following greedy algorithm is optimal for
the fractional knapsack problem. Assume that all the items are sorted in decreasing
order with respect to the profit per unit of size (i.e. λiT (si)/si ≥ λjT (sj)/sj for i ≤ j).
The algorithm finds the biggest index c for which the sum

∑c
i=1 si does not exceed

the memory capacity. Finally, it stores the first c contents in the knapsack (in the
RAM) as well as a fractional part of the content c + 1 so that the RAM is filled up to
its capacity. A simple variant of this greedy algorithm guarantees a 1

2 -approximation
factor for the original knapsack problem [Kellerer et al. 2004, Theorem 2.5.4], but the
greedy algorithm itself is a very good approximation algorithm for common instances
of knapsack problems, as it can be justified by its good expected performance under
random inputs [Kellerer et al. 2004, Section 14.4].

From a networking point of view, if we interpret hi as the probability that content i
is in the RAM,5 then we recognize that the constraint in problem (4) corresponds to the
usual constraint considered under the cache characteristic time approximation (CTA),
first proposed in [Fagin 1977] and later rediscovered in [Che et al. 2002]. Under CTA,
the effect of the finite cache size is taken into account by imposing the expected cache
occupancy for an unbounded TTL-cache [Fofack et al. 2014] to have the form:

N∑
i=1

hisi = C. (5)

5Since the PASTA property holds under the IRM model, the occupancy probability of content i (i.e. the
fraction of time during which content i is in the cache) and its hit probability (i.e. the probability that a
request for content i finds the content in the cache) are equal.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

Access-time aware cache algorithms 39:7

The last remark connects our problem to the recent work in [Dehghan et al. 2016],
where the authors use CTA to find optimal cache policies to solve the following prob-
lem:

maximize
h1,...hN

N∑
i=1

Ui(hi)

subject to
N∑
i=1

hisi = C,

(6)

where each Ui(hi) quantifies the utility of a cache hit for content i.6 Results in [De-
hghan et al. 2016] do not help us solve our problem (4) because their approach requires
the functions Ui(hi) to be (i) known and (ii) strictly concave in hi. On the contrary, in
our case, content popularities (λi) are unknown7 and, even if they were known, the
functions Ui(hi) would be λihiT (si) and then linear in hi. Besides, deriving the cache
policy that solves a given optimization problem, [Dehghan et al. 2016] also “reverse-
engineers” existing policies (like LRU) to find which optimization problem they are
implicitly solving. In Section 3, we use a similar approach to study our policy.

After this general analysis of the problem, we are ready to introduce in the next
section a new caching policy qi-LRU that aims to solve problem (4), i.e. to store in the
RAM the contents with the largest values λiT (si)/si without the knowledge of content
popularities λi, for i = 1, . . . N .

3. THE QI -LRU POLICY
We start introducing our policy as a heuristic justified by an analogy with LRU.

Under IRM and the characteristic time approximation, if popularities λi are known,
minimizing the miss throughput at a cache of capacity C corresponds to solving the
following linear problem:

maximize
h1,...hN

N∑
i=1

λihisi

subject to
N∑
i=1

hisi = C

(7)

The optimal solution is analogous to what discussed for problem (4): set hit probabil-
ities to one for the k most popular contents, a hit probability smaller than one for the
(k+ 1)-th most popular content, and hit probabilities to zero for all the other contents.
The value of k is determined by the RAM size.

Now, it is well known that, from a practical perspective, the traditional LRU policy
behaves extremely well, despite content popularity dynamics. LRU is a good heuristic
for problem (7): it implicitly selects and stores in the cache the contents with the largest
values of λi, even when popularities λi are actually unknown.

Recall that our purpose is to store the contents with the largest values λiT (si)/si:
then, the analogy between the two problems suggests us to bias LRU in order to store

6The work in [Dehghan et al. 2016] actually assumes that all the contents have the same size, but their
analysis can be easily extended to heterogenous sizes, as we do in Section 3.2.
7For this case the authors of [Dehghan et al. 2016] suggest to simply replace the unknown request rates
with online estimates, but popularity estimation for dynamic contents is still an open research topic (see
e.g. [Leconte et al. 2016; Li et al. 2016]) and in Sec. V of [Neglia et al. 2017] we show that it can be tricky
even under the stationary IRM.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8 G. Neglia et al.

more often the contents with the largest values of T (si)/si. A possible way is the fol-
lowing: upon a cache miss, the newly requested content i is cached with probability qi,
which is an increasing function in T (si)/si. Specifically, we define qi as follows:

qi = e
−β si

T (si) , i ∈ N , (8)
where β > 0 is a constant parameter.8 In practical cases, as discussed in Section 4, we
set β such that qi ≥ qmin for every i ∈ N , so that any content is likely to be stored in
the cache after 1/qmin queries on average.

Our policy has then the same behaviour of the q-LRU policy, but the probability q
is not fixed, it is instead chosen depending on the size of the content as indicated in
Equation (8). For this reason, we denote our policy by qi-LRU.

With reference to Figure 2, the policy qi-LRU would store with higher probability
the smallest contents as well as the contents whose size is slightly larger than a mul-
tiple of the block size b. Note that the policy qi-LRU does not depend on the model
described above for the HDD service time, but it requires the ratio T (s)/s to exhibit
some variability (otherwise we would have the usual q-LRU).

Until now we have provided some intuitive justification for the policy qi-LRU. This
reasoning reflects how we historically conceived it. The reader may now want more the-
oretically grounded support to our claim that qi-LRU is a good heuristic for problem (4).
In what follows we show that qi-LRU is asymptotically optimal when β diverges in two
different ways. We first prove in Section 3.1 that qi-LRU asymptotically stores in a
cache the contents with the largest values λiT (si)/si, as the optimal greedy algorithm
for problem (4) does. This would be sufficient to our purpose, but we find interesting to
establish a connection between qi-LRU and the cache utility maximization problem in-
troduced in [Dehghan et al. 2016]. For this reason, in Section 3.2, we reverse-engineer
the policy qi-LRU and derive the utility function it is implicitly maximizing as a func-
tion of β. We then let again β diverge and show that the utility maximization problem
converges to a problem whose optimal solution corresponds to store the contents with
the largest values λiT (si)/si.

3.1. Asymptotic qi-LRU hit probabilities
In [Garetto et al. 2016] it is proven that, under the assumptions of the IRM traffic
model, the usual q-LRU policy tends to the policy that statically stores in the cache the
most popular contents when q converges to 0. We generalize their approach to study
the qi-LRU policy when β diverges (and then qi converges to 0, for all i). In doing so, we
extend their result to the case when contents have heterogeneous sizes and we address
some technical details that are missing in the proof in [Garetto et al. 2016].9

Let us sort contents in a decreasing order of λiT (si)
si

assuming, in addition, that
λiT (si)
si

6= λjT (sj)
sj

for every i 6= j.

8The reader may wonder why we have chosen this particular relation and not simply qi proportional to
T (si)/si. The choice was originally motivated by the fact that proportionality leads to very small qi values
for some contents. Our analysis below shows that Equation (8) is a sensible choice.
9The proof in [Garetto et al. 2016, Appendix A] does not deal carefully with the cases when the accumulation
points of β/τc(β) coincides with λkT (sk)/sk for some value of k (we are using our notation). In these cases
some indeterminate limit forms arise and the analysis becomes more complex. Moreover, the proof is very
short and its final steps are quite cryptic. We developed our analysis independently from [Garetto et al.
2016], that was not available at the time we submitted the conference version of this paper [Neglia et al.
2016]. The corresponding conference version [Martina et al. 2014] did not actually prove this result, but it
rather proved that there exist two constants k1 and k2 with k1 ≤ k2 such that the most popular k1 contents
are stored with probability one and the least popular N − k2 contents with probability 0. The two constants
were not estimated and it was unknown what is the asymptotic behaviour of the hit probabilities for the
k2 − k1 contents with intermediate popularity.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

Access-time aware cache algorithms 39:9

Note that the hit probability hi associated to the content i for the qi-LRU policy is
given by the following formula (see [Garetto et al. 2016])

hi(β, τc) =
qi(β)(1− e−λiτc)

e−λiτc + qi(β)(1− e−λiτc)
, (9)

where τc is the eviction time that, under CTA [Fagin 1977; Che et al. 2002], is assumed
to be a constant independent of the selected content i.

Now, by exploiting the constraint:

C =
∑
i

sihi(β, τc), (10)

it is possible to express τc as an increasing function of β and prove that limβ→∞ τc(β) =
∞. This result follows [Garetto et al. 2016], but, for the sake of completeness, we
present it extensively in Appendix A.

We can now replace qi = e
−β si

T (si) in Equation (9) and express the hit probability as
a function of β only, as follows:

hi(β) =
1− e−λiτc(β)

e
τc(β)

si
T (si)

(
β

τc(β)
−λi

T (si)

si

)
+ 1− e−λiτc(β)

. (11)

Let us imagine to start filling the cache with contents sorted as defined above. Let
c denote the last content we can put in the cache before the capacity constraint is
violated10 i.e.

c = max

{
k
∣∣∣ k∑
i=1

si ≤ C

}
.

We distinguish two cases: the first c contents fill exactly the cache (i.e.
∑c
i=1 si = C),

or they leave some spare capacity, but not enough to fit the content c + 1. Next, we
prove that qi-LRU is asymptotically optimal in the second case. The first case requires
a more complex machinery that we develop in Appendix B.

Consider then that
∑c
i=1 si < C <

∑c+1
i=1 si. As an intermediate step we are going to

prove by contradiction that

LEMMA 3.1. If
∑c
i=1 si < C <

∑c+1
i=1 si, it holds:

lim
β→∞

β

τc(β)
= λc+1

T (sc+1)

sc+1
. (12)

PROOF. Suppose that this is not the case. Then, there exists a sequence βn that
diverges and a number ε > 0 such that for all n ∈ N

either
βn

τc(βn)
≤
λc+1T (sc+1)

sc+1
− ε (13)

or
βn

τc(βn)
≥
λc+1T (sc+1)

sc+1
+ ε. (14)

If inequality (13) holds, then for all i ≤ c+ 1,

βn
τc(βn)

− λiT (si)

si
≤ βn
τc(βn)

−
λc+1T (sc+1)

sc+1
≤ −ε

10We consider the practical case where s1 < C <
∑N
i=1 si.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 G. Neglia et al.

From Equation (11), it follows immediately that

lim
βn→∞

hi(βn) = 1, ∀i ≤ c+ 1,

but then it would be

lim
n→∞

c+1∑
i=1

hi(βn)si =

c+1∑
i=1

si > C

contradicting the constraint (10). In a similar way, it is possible to show that inequal-
ity (14) leads also to a contradiction and then Equation (12) holds.

Because of the Lemma 3.1 and of Equation (11), we can immediately conclude that,
when β diverges, hi(β) converges to 1, for i ≤ c, and to 0, for i > c + 1. Because of the
constraint (10), it holds that:

lim
β→∞

hc+1(β) =
C − limβ→∞

∑
i 6=c+1 hisi

sc+1
=
C −

∑
i≤c si

sc+1
.

The same asymptotic behavior for the hit probabilities holds when
∑c
i=1 si = C,

as it is proven in Appendix B. In particular, when
∑c
i=1 si = C, hc+1(β) converges to

(C −
∑c
i=1 si)/sc+1 = 0. We can then conclude that:

PROPOSITION 3.2. When the parameter β diverges, the hit probabilities for the qi-
LRU policy converge to the solution of the fractional knapsack problem (4), i.e.

lim
β→∞

hi(β) =

1, for i ≤ c,
(C −

∑c
i=1 si)/sc+1, for i = c+ 1,

0, for i > c+ 1.

Then, the qi-LRU policy asymptotically minimizes the load on the hard-disk.

3.2. Reverse-Engineering qi-LRU
In [Dehghan et al. 2016], the authors show that existing policies can be thought as
implicitly solving the utility maximization problem (6) for a particular choice of the
utility functions Ui(hi). In particular, they show which utility functions correspond to
policies like LRU and FIFO. In what follows, we “reverse-engineer” the qi-LRU pol-
icy and we show in a different way that it solves the fractional knapsack problem.
More specifically, we use the results for strictly convex utilities in [Dehghan et al.
2016] for the limit case of linear utility functions. We proceed similarly to what is done
in [Dehghan et al. 2016], extending their approach to the case where content sizes are
heterogeneous (see Appendix C). We show that the utility function for content i can be
expressed as:11

Ui(hi) = −λisi
∫ 1−hi

0

dx

ln
(
1 + 1−x

qix

) , (15)

that is defined for hi ∈ (0, 1] and qi 6= 0. Each function Ui(.) is increasing and concave.
Moreover, Ui(hi) < 0 for hi ∈ (0, 1), Ui(1) = 0 and limhi→0 Ui(hi) = −∞. Figure 3.2
shows the utility function for different values of qi and λisi = 1.

11As already observed in [Dehghan et al. 2016], the utility function we can derive from an existing policy is
not unique. For example an affine transformation aU() + b with a > 0 of the function in (15) is also a valid
utility function for qi-LRU.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

Access-time aware cache algorithms 39:11

0.0 0.2 0.4 0.6 0.8 1.0

h

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

U
(h
)

q=0.01
q=0.1
q=0.5
q=1.0

Fig. 3. Utility Function of q-LRU when λisi = 1

We are interested now in studying the asymptotic behavior of the utility functions
Ui(hi) when β diverges, and thus qi converges to zero. We say that f(x) is equivalent
to g(x) when x converges to 0 if limx→0 f(x)/g(x) = 1, and we write f(x) ∼ g(x). The
following result holds.

LEMMA 3.3. For hi ∈ (0, 1], when qi converges to 0,

Ui(hi) = −λisi
∫ 1−hi

0

dx

ln
(
1 + 1−x

qix

) ∼ −λisi(1− hi)
ln(1/qi)

.

PROOF. First, we note that the following inequalities are true for every δ > 0:∫ 1−hi

0

dx

ln
(
1 + 1−x

qix

) ≥ ∫ 1−hi

qδi

dx

ln
(
1 + 1−x

qix

) ≥ ∫ 1−hi

qδi

dx

ln
(
1 +

1−qδi
qδ+1
i

) ≥ 1− hi − qδi
ln
(
1 +

1−qδi
qδ+1
i

) , (16)

where the second inequality follows from the fact that the integrand is an increasing
function of x.12

Similarly, it holds ∫ 1−hi

0

dx

ln
(
1 + 1−x

qix

) ≤ 1− hi
ln
(
1 + hi

qi(1−hi)

) . (17)

Asymptotically, when qi converges to zero, the lower bound in (16) is equivalent to
1−hi

(1+δ) ln(1/qi)
, and the upper bound in (17) is equivalent to 1−hi

ln(1/qi)
for hi > 0. We obtain

the following (asymptotic) inequalities when qi converges to 0

1− hi
(1 + δ) ln(1/qi)

≤
∫ 1−hi

0

dx

ln
(
1 + 1−x

qix

) ≤ 1− hi
ln(1/qi)

, (18)

12Note that the inequalities hold both if qδi ≤ (1− hi)and if qδi > (1− hi).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:12 G. Neglia et al.

for every δ > 0 (when q converges to 0, then qδi < 1− hi asymptotically). Thus, when qi
converges to 0, we get ∫ 1−hi

0

dx

ln
(
1 + 1−x

qix

) ∼ 1− hi
ln(1/qi)

, (19)

since, otherwise, we could find an ε > 0 and a sequence qi,n converging to 0 such that
for large n ∫ 1−hi

0

dx

ln
(
1 + 1−x

qi,nx

) ≤ (1− ε) 1− hi
ln(1/qi,n)

.

But, this would contradict the left-hand inequality in (18) which is valid for every δ > 0.
The thesis follows immediately from the expression of the utility function (15) and

from (19).

We consider qi = e
−β si

T (si) . Lemma 3.3 allows us to conclude that

Ui(hi) ∼ −
λiT (si)(1− hi)

β
, when β →∞,

and then the utility functions are asymptotically linear. Note that the maximization
problem (6) is over the hit probabilities hi and the solution of the problem will be the
same even if the functions Ui(.) are multiplied by a positive constant. We conclude
that, when β diverges, the problem (6) can be formulated as follows

maximize
h1,...hn

N∑
i=1

λihiT (si)

subject to
N∑
i=1

hisi = C

which is exactly the formulation of the fractional knapsack problem.

4. EXPERIMENTS
In this section we evaluate the performance of our qi-LRU policy. Here we take a nu-
merical perspective, and design a trace-driven simulator that can reproduce the be-
havior of several caching policies, which we compare against qi-LRU. We have used
both synthetic traces generated according to the IRM and real traces collected at two
vantage points of the Akamai network [Nygren et al. 2010]. We proved that qi-LRU is
optimal under the IRM and indeed our experiments not only confirm it but also show
significant improvement in comparison to other replacement policies. For this reason,
in this section we focus mainly on the results obtained using real traces. In the fol-
lowing, we describe our experimental methodology, show the characteristics of the real
traces we use, and present the results of our evaluation.

4.1. Methodology and Performance indexes
The comparative analysis of different caching policies requires an environment where
it is possible to reproduce exactly the same conditions for all the different policies. To
do so, we adopt a trace-driven simulation approach, which allows us to control the
initial conditions of the system, explore the parameter space and perform a sensitivity
analysis, for all eviction policies.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

Access-time aware cache algorithms 39:13

Table II. Traces: basic information

30 days 5 days
Number of requests received 2.22 · 109 4.17 · 108

Number of distinct objects 113.15 M 13.27 M
Cumulative size 59.45 TB 2.53 TB
Cumulative size of objects
requested at least twice 20.36 TB 1.50 TB

Our simulator reproduces two memory types: the main memory (RAM) and the hard
disk (HDD). Each object is stored in the HDD according to the LRU policy. For the
RAM we consider 3 different policies: LRU, SIZE and qi-LRU. They all evict the least
recently requested content, if space is needed, but they adopt different criteria to de-
cide if storing a new content after a miss:

— LRU always stores it;
— SIZE stores it if 1) its size is below a given threshold T , or 2) it has been requested

at least N times, including once during the previous M hours;
— qi-LRU stores it with probability qi, as explained in the previous sections.

So, in addition to comparing qi-LRU to the traditional LRU policy, we also consider
the SIZE policy since small objects are the ones that have a bigger impact on the
HDD, in terms of their service time per byte T (si)/si (see also Figure 2). We therefore
prioritize small objects, and we store objects bigger than the threshold T (as the policy
LRU-THOLD in [Abrams et al. 1995]) only after they have been requested for at least
N times.13 The SIZE policy can thus be seen as a first attempt to decrease the impact
of small objects on the HDD, and ultimately reduce the strain on HDD resources. With
the qi-LRU policy, we aim at the same goal, but modulate the probability to store an
object in RAM as a function of its size, and thus service time.

Note that the hit ratio of the whole cache depends only on the size of the HDD and its
replacement policy (LRU). The RAM replacement policy does not affect the global hit
ratio. In what follows we focus rather on the total disk service time: this is the sum
of the T (si) of all the objects served by the HDD. Smaller disk service times indicate
lower pressure on the disk.

We show the results for a system with 4 GB RAM and 3 TB HDD. We have tried
many different values for the RAM size up to 30 GB, and the qualitative results are
similar. For the SIZE policy, we have extensively explored the parameter space (thresh-
old T , number of requests N , and number of hours M) finding similar qualitative re-
sults. As a representative set of results, we show here the case with T = 256 KB, N = 5
and M = 1 hour. For the qi-LRU policy, the default value of the constant β is chosen
such that min

i∈N
qi = 0.1 (see Equation (8)).

4.2. Trace characteristics
We consider two traces with different durations and collected from two different van-
tage points. The first trace has been collected for 30 days in May 2015, while the second
trace for 5 days at the beginning of November 2015. Table II shows the basic charac-
teristics of the traces.

Figure 4 shows the number of requests for each object, sorted by rank (in terms
of popularity), for both traces. For the 30-day trace, there are 25-30 highly requested
objects (almost 25% of the requests are for those few objects), but the cumulative size of
these objects is less than 8 MB. Since they are extremely popular objects, any policy we

13[Maggs and Sitaraman 2015] shows significant increase of the hit ratio as well as decrease of the number
of disk-write operations for N = 2. Similar improvements are observed also in [Shafiq et al. 2016].

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:14 G. Neglia et al.

consider stores them in RAM, so they are not responsible for the different performance
we observe for the different policies.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

N
u
m

b
er

 o
f

re
q
u
es

ts

Object popularity

30 days
5 days

Fig. 4. Number of requests per object (ordered by rank).

Figure 5 shows an alternative version of the information related to the number of
requests. In particular, the left hand side of Fig. 5 provides the CDF of the requests
versus the percentage of the contents (objects are sorted from the most popular to the
least popular). We can see that the 10% (resp. 20%) most popular objects are respon-
sible for 90% (resp. 95%) of the requests. The right hand side of Fig. 5 shows the CDF
of the object aggregate service time, i.e., the time needed to retrieve the content from
the HDD upon all its requests. From the service time viewpoint, we can see that 20%
of the objects are responsible for 90% of HDD load. Given that a fraction of the objects
accounts for most of the load on the HDD, one may wonder if the LRU policy is suffi-
cient to select the best subset of objects such that the load on the HDD is minimal. We
show in Sect. 4.4 that this is not the case.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

C
D

F
 o

f
th

e
re

q
u
es

ts

% of the objects

30 days
5 days

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

C
D

F
 o

f
th

e
se

rv
ic

e
ti

m
e

% of the objects

30 days
5 days

Fig. 5. CDF of the requests for the different objects (left), and the service time for the different objects
(right). In both cases, objects are ranked by popularity.

Next, we study the relation between the size and the number of requests of each
object. In Figure 6, for each object, we plot a point that corresponds to its size (y-axis)
and the number of requests (x-axis). For the 30-day trace, the plot does not include

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

Access-time aware cache algorithms 39:15

the 30 most popular objects. We notice that the 5-day trace contains only a few objects
smaller than 1 kB.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
3

10
4

10
5

10
6

10
7

30 days

O
b
je

ct
 s

iz
e

(b
y
te

s)

Number of requests

10
3

10
4

10
5

10
6

10
7

5 days

Number of requests

Fig. 6. Size vs Number of requests. For ease of representation, we consider the objects with at least 1000
requests (for the 30-day trace, we do not include the 30 most popular objects).

This is also shown in Figure 7, where we plot the empirical Cumulative Distribution
Function (CDF) for the size of the requested objects (without aggregating requests for
the same object). The 30-day trace contains a lot of requests for small objects, while the
5-day trace contains requests for larger objects (e.g., see the 90-th percentile). In the
30-day trace we have then a larger variability of the ratio T (s)/s (see Figure 2) and we
expect qi-LRU to be able to differentiate more among the different contents and then
achieve more significant improvement, as it is confirmed by our results below.

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9

C
D

F
 o

f
th

e
re

q
u
es

ts

Object size (bytes)

30 days
5 days

Fig. 7. Given an object size, the CDF shows the cumulative fraction of the requests up to that object size
(for the 30-day trace, we do not include the 30 most popular objects).

4.3. Simulator validation
The evaluation of our scheme is based on trace-driven simulation so we can have full
control of the experimental settings. One may ask if this approach is sufficiently accu-
rate in reproducing the actual systems. We have already shown that the HDD model
used in our simulator is very accurate (see Sect. 2.1 and in particular Fig. 2). We now
show how the performance indexes captured by our simulator are equivalent to the
ones recorded by a production machine.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:16 G. Neglia et al.

Along with the 5-day trace, we have a machine performance trace where, every 30
seconds, two main performance indexes are recorded by the machine that has received
the requests: the machine disk load and the amount of data served. The machine where
these indexes have been collected used a LRU policy. We then have instructed our
simulator to produce, given the 5-day trace as input, a performance trace as output
to be compared with the machine performance trace: every 30 seconds, the simulator
writes (i) the sum of the T (si) of the objects served from the HDD, which can be used as
an indication of the disk load, and (ii) the bytes served (RAM and HDD) – both indexes
are computed in each 30-second interval, we do not take averages from the beginning.

The comparison of the two performance traces, generated by the simulator and by
the machine, when we consider the bytes served, is straightforward, since the byte
served are given by the request arrival pattern that are recorded on the request trace,
and they are necessarily the same. The comparison is instead extremely interesting
when we consider the load on the HDD since (i) it further confirms the model of the
HDD we used and (ii) it validates the design of the simulator, where we have focused
on the basic behavior of the cache, without modeling the complex operations of the
Operating System (OS). In other words, even if the cache run on a machine managed
by an OS, the impact of the OS management is not significant.

Figure 8 shows that indeed our simulator is able to reproduce the same disk utiliza-
tion over time as recorded on the real machine. Note that we recorded the sum of the
T (si), so, in order to be able to compare with the output of the real machine, we need
to normalize the values: in particular, we use the highest value observed in the output.
We performed this normalization for the output of the real machine as well. In this
way, the range of both outputs is between 0 and 1. The figure shows a small portion of
the trace, but both traces overlap for the whole duration.

 0

 0.2

 0.4

 0.6

 0.8

 1

 66 68 70 72 74

N
o
rm

a
li

z
e
d
 d

is
k
 u

ti
li

z
a
ti

o
n

Time (hours)

simulation
measurements

Fig. 8. Machine normalized disk load: comparison between the output recorded by the real machine and
the output produced by our simulator.

4.4. Comparative analysis of the eviction policies
Tables III and IV summarize the aggregate results for the two traces we consider in our
study. For the hit ratio, we see that the qi-LRU policy can serve more requests from the
RAM. On the other hand, the overall number of bytes served by RAM is smaller: this
means that the RAM is biased towards storing small, very popular objects, as expected.
The last column shows the gain, in percentage, in disk service time between each policy
and LRU, which we take as a de-facto reference (e.g., -10% for policy “x” means that its

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

Access-time aware cache algorithms 39:17

disk service time is 10% smaller than for LRU). This is the main performance metric
we are interested in. For the 30-day trace, the qi-LRU policy improves by 23% the disk
service time, over the LRU policy. For the 5-day trace, the improvement of qi-LRU over
LRU is smaller, topping at a bit more than 7%. The reason behind this result relates to
the object size distribution in the trace: as shown in Figure 7, the trace contains objects
starting from 1 kB, while, for the 30-day trace, 20% of the requests are for objects
smaller than 1 kB. The impact of these objects on the overall T (si) is significant.

Table III. Results for the 30-day trace with 4 GB RAM.

bytes service ∆ (%)
% reqs served time w.r.t. LRU

LRU RAM 73.06 509 TB 4907 h -
HDD 26.94 157 TB 1663 h -

SIZE RAM 76.38 512 TB 5055 h + 3.02%
HDD 23.62 154 TB 1515 h -8.90%

qi-LRU RAM 84.27 489 TB 5294 h +7.89%
HDD 15.73 177 TB 1276 h -23.27%

Table IV. Results for the 5-day trace with 4 GB RAM.

bytes service ∆ (%)
% reqs served time w.r.t. LRU

LRU RAM 79.61 159 TB 1058 h -
HDD 20.39 23 TB 219 h -

SIZE RAM 80.31 160 TB 1064 h + 0.57%
HDD 19.69 22 TB 213 h -2.74%

qi-LRU RAM 84.72 149 TB 1074 h +1.51%
HDD 15.28 33 TB 203 h -7.31%

Next, we take a closer look at our policy, qi-LRU, in comparison to the reference
LRU policy. We now consider the contribution to the overall hit ratio of each object,
to understand their importance to cache performance. For the 30-day trace, we sorted
the objects according to their rank (in terms of popularity) and their size, and plot
the difference between LRU hit ratio and qi-LRU hit ratio. Figure 9 shows that both
policies store the same 1000 most popular objects; then, the qi-LRU policy gains in hit
ratio for medium-popular objects. Switching now to object size, both policies store the
same set of small objects, while qi-LRU gains hit ratio with the medium-size objects.

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

H
it

 r
at

io
 (

d
if

fe
re

n
ce

)

Obj popularity

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

10
1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9

H
it

 r
at

io
 (

d
if

fe
re

n
ce

)

Obj size (bytes)

Fig. 9. Difference between hit ratios when objects are ordered by popularity (left) and by size (right) for the
30-day trace.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:18 G. Neglia et al.

Figure 10 considers the contribution to the disk service time of each object (ordered
by rank or by size) and shows the difference between qi-LRU and LRU. Clearly, medium
popular objects and medium size objects contribute the most to the savings in the
service time that our policy achieves.

-400

-350

-300

-250

-200

-150

-100

-50

 0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

S
er

v
ic

e
ti

m
e

d
if

fe
re

n
ce

 (
h
o
u
rs

)

Obj popularity

-400

-350

-300

-250

-200

-150

-100

-50

 0

10
1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9

S
er

v
ic

e
ti

m
e

d
if

fe
re

n
ce

 (
h
o
u
rs

)

Obj size (bytes)

Fig. 10. Difference between service time (served by the RAM) when objects are ordered by rank (left) and
by size (right) for the 30-day trace.

These results have been obtained using the two traces from Akamai network. In
order to explore the effect of popularity skewness on the qi-LRU performance, we resort
to IRM synthetic traces. In particular we generate objects with sizes drawn from a
Pareto distribution with shape equal to 0.4 (roughly fitting the empirical distribution
found in the 30-day traces). The catalogue is 10 million objects, and we have 2 billion
requests (2× 109). The objects are requested according to their popularities, which are
independently distributed according to a Zipf distribution with different typical values
of the parameter α = 0.6 . . . 1.2 (see [Fricker et al. 2012b]).

We considered a 3TB HDD and different values for the RAM (10 GB, 20 GB and 30
GB), but the results are similar. We observe that the global hit rate of the cache is
the same under LRU and under qi-LRU for any size of HDD and RAM, because the
contents stored in both cases in the HDD are exactly the same. Table V summarizes
the performance of the RAM cache for the 10 GB case.

Table V. Results with different skewness using Zipf distribution for the
popularity of the objects.

LRU: % reqs qi-LRU: % reqs % service time
Alpha served by RAM served by RAM saved from HDD

0.6 2.52 57.51 14.38
0.8 17.22 65.88 20.39
1.0 54.85 84.19 29.27
1.2 87.19 96.30 37.57

Smaller values of α correspond to more homogeneous popularities (heavier distribu-
tion tails). In this situation LRU fails to store the most popular contents achieving a
very low hit rate and consequently a high load on the HDD. qi-LRU performs much
better in terms of the hit rate (more than 10 times larger than what LRU achieves
for α = 0.6), and it reduces correspondingly the HDD service time, even if the relative
improvement is only 14% because the reference point is the large HDD load for LRU.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

Access-time aware cache algorithms 39:19

As the distribution tail becomes lighter (i.e., α increases) the RAM serves more con-
tents for both policies. While the hit rate gap reduces, the relative service time saving
increases, because now savings are compared with a smaller reference point.

4.5. Sensitivity analysis
Next, we study the behavior of qi-LRU as a function of the parameter β, but we plot the
results for the parameter qmin = min

i∈N
qi, that is easier to interpret, being the minimum

probability according to which a content is stored in the RAM.
Figure 11 provides two different views. On the left-hand side, it shows the percent-

age of HDD service time offloaded to the RAM by qi-LRU, both under the 30-day trace
and a synthetic IRM trace generated using the same empirical distributions for object
size and popularity as in the 30-day trace. As expected, under IRM, the improvement
from qi-LRU increases as qmin decreases, i.e. as β increases. Interestingly, the HDD
benefits even more under the 30-day trace, with more than 80% of the service offloaded
to the RAM. This is due to the temporal locality effect (see e.g. [Traverso et al. 2013]),
i.e. to the fact that requests typically occur in bursts and then the RAM is more likely
to be able to serve the content for a new request than it would be under the IRM model.
We observe also that the performance of qi-LRU are not very sensitive to the parame-
ter qmin (and then to β), a feature very desirable for practical purposes. The right-hand
side of Figure 11 shows the relative improvement of qi-LRU in comparison to LRU (cal-
culated as difference of the HDD service time under LRU and under qi-LRU, divided
by the HDD service time under LRU). While qi-LRU performs better and better as
qmin decreases with the IRM request pattern, the gain reduces when qmin approaches
0 (β diverges) with the 30-day trace. This is due also to temporal locality: when the
probabilities qi are very small, many contents with limited lifetime have no chance to
be stored in the RAM by qi-LRU and they need to be served by the HDD. Despite this
effect, qi-LRU policy still outperforms LRU over a large set of parameter values and
obtain improvements larger than 20% for 0.02 < qmin < 0.4.

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4

% saved from the HDD

p
er

ce
n
ta

g
e

q min

traces
IRM

 0 0.1 0.2 0.3 0.4

% improvement over LRU

q min

traces
IRM

Fig. 11. Sensitivity analysis to the value of qmin.

5. AKAMAI: PRELIMINARY RESULTS
In this section we evaluate the performance of our qi-LRU policy in deployed infras-
tructure. The evaluation of a new scheme in such a scenario is not simple, since the de-

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:20 G. Neglia et al.

ployed infrastructure is much more complex than an isolated machine fed with a trace,
and the performance comparison with or without the qi-LRU policy is not straightfor-
ward.

5.1. Experimental settings
Akamai network consists of hundreds of thousands machines for scalability reasons.
The Akamai Mapping system directs the user request to a specific machine, based on
factors including locality, load changes, machine failures etc [Nygren et al. 2010]. The
traffic on any two machines are not exactly the same at any time. For this reason, the
comparison between two machines, one with the qi-LRU policy enabled, and the other
with the default Akamai policy, is not simple.

In our case, we decide to consider a set of machines in two different periods, first
with a reference caching policy, and then with the qi-LRU policy enabled.

As for performance comparison, the data that is possible to collect from a production
machine do not include the more granular metrics that we used to evaluate our solu-
tion in Sect. 4. In particular, when a request is served by the RAM, the system does not
record what might have been the HDD service time, i.e., the time that it would take if
the request were served by the HDD. Instead, the system records the load on the HDD,
the requests served, the total bytes served by the RAM and by the HDD.

The preliminary results we show consider a set of servers in USA. Due to the com-
plexity of introducing a new policy in a deployed infrastructure, we defer to an ex-
tended version of this work the definition of a more accurate measurement campaign,
to further substantiate the intuition we obtain with our preliminary deployment re-
sults.

5.2. Results
Figure 12 shows two aggregated performance indexes recorded at machines, when the
qi-LRU policy is not enabled and when it is enabled. To avoid effects due to weekly
patterns, the observation period was one week, and here we show the first significant
four days.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80 90

N
o
rm

al
iz

ed
 d

is
k
 u

ti
li

za
ti

o
n

Time (hours)

qi-LRU not enabled
qi-LRU enabled

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

R
eq

u
es

ts
 s

er
v
ed

 b
y
 R

A
M

 (
%

)

Time (hours)

qi-LRU not enabled
qi-LRU enabled

Fig. 12. Results from deployed infrastructure: Normalized disk utilization (left) and percentage of requests
served by the RAM (right).

The left-hand side of the figure shows the normalized disk utilization - the normal-
ization factor is the highest value observed during the whole observation period. As
we noted in Sect 4.3, the service time and the disk utilization are highly correlated,

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

Access-time aware cache algorithms 39:21

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Normalized disk utilization

qi-LRU not enabled
qi-LRU enabled

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Requests served by RAM (%)

qi-LRU not enabled
qi-LRU enabled

Fig. 13. Results from deployed infrastructure: CDF of the normalized disk load (left) and the percentage of
requests served by the RAM (right), when qi-LRU policy is enabled and not enabled.

therefore we can take such a measure as an indication of the service time. The fig-
ure shows that the disk utilization is equivalent when the qi-LRU policy is enabled or
not. This is also confirmed in Figure 13 (left-hand side) that shows the corresponding
CDF. The result is due to the fact that such a metric is used by the Akamai Mapping
system to decide when rebalancing the load. In other words, our policy does have an
impact on the disk load, but the Mapping system compensates the diminished load by
rebalancing the requests.

The benefits of the qi-LRU policy, therefore, can be seen if we consider the requests
served by the RAM. The right-hand side of Figure 12 compares time evolution of the
percentage of requests served by RAM when the qi-LRU policy is not enabled and
when it is enabled. The right-hand side of Figure 13 shows the corresponding CDF.
On average, when the qi-LRU policy is enabled, machines are able to serve 10% more
of the requests from the RAM, which is a desirable effect we have observed also in
the simulation results. The two peaks occurring after 35 and 53 hours depend on the
specific traffic patterns that take place when the disk load is not high, and therefore
they are not representative of the average behaviour.

In summary, the preliminary results indicates that our qi-LRU policy is indeed able
to alleviate the stress on the disk by exploiting in a more efficient way the RAM.

6. EXTENSION TO OTHER PERFORMANCE METRICS
We designed our policy qi-LRU to solve the following specific problem: minimize the
expected HDD load to reduce the number of spurious misses. To this purpose, we have
considered that a miss for content i generates a cost ci for the HDD equal to the time
the HDD needs to retrieve content i, ci = T (si). We observe that our theoretical results
in Sections 3 do not depend on the specific structure of the function T (si). It follows
that if we choose

qi = e
−β sici , ∀i ∈ N , (20)

the policy qi-LRU is solving—in the sense explained in the Section 3—the following
general problem:

maximize
M⊂N

∑
i∈M

λici

subject to
∑
i∈M

si ≤ C.
(21)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:22 G. Neglia et al.

The policy stores in the cache the set of contents M∗, solution of problem (21). By
reverting the reasoning in Section 2.3, we can conclude that this set also minimizes
the expression ∑

i∈N\M

λi∑
j∈N λj

ci =
∑
i∈M

λi∑
j∈N λj

ci −
∑
i∈M

λi∑
j∈N λj

ci,

i.e. the expected cost generated by a miss.
Hence, the policy qi-LRU is able to minimize any retrieval cost as far as i) the cost is

additive over different misses, ii) the cost ci of a miss is known by the cache, so that it
is possible to compute the probabilities qi, according to Equation (20).

We provide a few examples of meaningful performance metrics qi-LRU could opti-
mize. If ci = 1, the goal is to minimize the cache miss ratio. If ci = si, the goal is to
minimize the traffic from upstream servers/caches. In these cases, the computation of
the probabilities qi does not pose any problem. It is also possible to minimize the ex-
pected retrieval time if the cost of an object is indeed its retrieval time from the server.
In this case, ci may not be immediately available to the cache, but the cache can main-
tain some estimates for the retrieval times of the most requested objects or use some
approximate function for such costs (e.g. on the basis of the url). Similar considerations
hold for other metrics like ISP/AS operational costs, or damage to flash memories in
hierarchical caches, whose minimization is the aim of the caching policies proposed re-
spectively in [Araldo et al. 2016; Pacifici and Dán 2016]) and in [Shukla and Abouzeid
2016].

7. RELATED WORK
Cache replacement policies have been the subject of many studies, both theoretical
and experimental. We focus here on the more analytical studies, which are closer to
our contribution. Moreover, our policy is explicitly designed to mitigate the burden
on the HDD, a goal not considered in most previous experimental works, despite its
practical importance.

Most of the theoretical work in the past has focused on the characterization
of the performance of LRU, RANDOM, and FIFO [Che et al. 2002][Fricker et al.
2012a][Martina et al. 2014][Bianchi et al. 2013]. All these works do not assume dif-
ferent levels of caches, where one level replicates the content stored in the other level
to decrease the overall response delay. Moreover, they do not aim to design optimal
caching policies.

Some papers have proposed heuristic cache policies with different optimization
goals, like minimizing the ISP/AS operational costs [Araldo et al. 2016; Pacifici and
Dán 2016] or the damage to flash memories in hierarchical caches [Shukla and
Abouzeid 2016]. Their solutions are tailored to the specific problem considered and
do not apply to reducing the HDD load. The qi-LRU policy, instead, can be applied to
different problems as shown in Section 6.

Closer to our application is [Rossini et al. 2014], that considers a 2-level hierarchy,
with the content stored in the SSD and DRAM. The authors design a policy which
decreases the response time by pre-fetching the content from SSD to DRAM. To this
aim, they focus on a specific type of content, videos divided into chunks, for which
the requests are strongly correlated, and a request for a chunk can be used to foresee
future requests for other chunks of the same content. In our work, instead, we provide
a model for the qi-LRU policy which does not assume any correlation on the requests
arrivals, but prioritize the content that imposes a high burden on the HDD.

The problem of minimizing the time-average retrieval cost has been studied under
the name of File Caching problem [Young 2008], when the sequence of content requests

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

Access-time aware cache algorithms 39:23

is unpredictable. In this case no algorithm can provide absolute worst-case guarantees
and it is then standard to perform a competitive analysis of cache policies [Fiat et al.
1991; Buchbinder and Naor 2005; Cao and Irani 1997]. Our work considers instead
that the request sequence exhibits some regularity and in particular contents have
different popularities.

The idea to probabilistically differentiate content management according to the ratio
ci/si had already been considered in [Starobinski and Tse 2001], where, upon a hit,
content i is moved to the front of the queue with some probability q̃i. The authors of
[Jelenkovic and Radovanovic 2004] prove that, under Zipf ’s law for popularities, the
asymptotic hit ratio is optimized when the probabilities q̃i are chosen to be inversely
proportional to document sizes. More recently, the use of size-aware policies to optimize
the hit ratio has also been advocated by [Berger et al. 2017].

The most related work to ours is the cache optimization framework in [Dehghan
et al. 2016], that we have widely discussed through the paper. We stress again here
the two main differences: we do not assume content popularities to be known (nor to
be explicitly estimated) and the utility functions are linear.

In [Neglia et al. 2017] a subset of the authors study the general framework of caching
policies maximizing linear utilities. That paper builds on a few elements presented
here: i) finding the optimal set of contents is a knapsack problem and ii) the idea to
use a biased version of q-LRU. The paper focuses on time-variant policies, that can
converge with probability one to the optimal set of contents. It proposes DynqLRU, a
dynamic version of qi-LRU, and discusses how such policy can be adapted to a scenario
where popularities may vary over time.

8. CONCLUSION
Caches represent a crucial component of the Internet architecture: decreasing the re-
sponse time is one of the primary objectives of the providers operating such caches.
This objective can be pursued by exploiting the RAM of the cache server, while keep-
ing most of the contents in the HDD.

In this paper, we presented a new cache replacement policy that takes advantage
of the access-time difference in the RAM and in the HDD to reduce the load on the
HDD, so that to improve the overall cache efficiency for a capacity constrained storage
systems. Our policy, called qi-LRU, is a variant of q-LRU, where we assign a different
probability qi to each content based on its size.

We proved that qi-LRU is asymptotically optimal, and we provided an extensive
trace-driven evaluation that showed between 10% and 20% reduction on the load of the
HDD with respect to the LRU policy. Moreover, the preliminary results from Akamai
production environment shows that our policy is able to increase the percentage of
requests served by the RAM (for a given disk load).

Finally, the policy qi-LRU can be adapted to solve any retrieval cost minimization
problem, when the retrieval costs are additive over different misses.

APPENDIX
A. PROOF OF LIMβ→∞ τC(β) = ∞
We define the function f as follows:

f(τC , β) =

N∑
i=1

sihi =

N∑
i=1

si(e
λiτC − 1)

e
β

si
T (si) + eλiτC − 1

. (22)

As we discussed in Section 3.1, CTA implies that f(τC , β) = C.
We will prove that limβ→∞ τC = +∞. We differentiate the formula (22) with respect

to β and τC and we obtain

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:24 G. Neglia et al.

∂f

∂τC
=
∑
i

siλie
λiτC+β

si
T (si)

(e
β

si
T (si) + eλiτC − 1)2

∂f

∂β
=
∑
i

−s2i e
β

si
T (si) (eλiτC − 1)

T (si)(e
β

si
T (si) + eλiτC − 1)2

.

The first partial derivative is strictly positive while the second is negative for all the
values β > 0 and τC > 0 and, therefore, by the implicit function theorem, τC can be
expressed locally as a C1 function of β and

∂τC
∂β

= − ∂f/∂β

∂f/∂τC
> 0.

This is true in some open set (whose existence is assured by the theorem) containing
the points (τC , β) that verify f(τC , β) = C. So, τC is an increasing function with respect
to β and the limit limβ→∞ τC(β) exists.

We prove by contradiction that the limit is equal to +∞. Suppose that
limβ→∞ τC(β) <∞, then, by (22), we get limβ→∞ f(τC(β), β) = 0. This would contradict
the fact that f(τC , β) = C and therefore we conclude that limβ→∞ τC = +∞.

B. WHEN CONTENTS FILL EXACTLY THE CACHE
In this section, we study the case where

∑c
i=1 si = C. Note that the results up to

Lemma B.4 (included) are general, i.e, they do not make any assumption on
∑c
i=1 si,

while the rest of the section focuses on the case where
∑c
i=1 si = C.

We start introducing some additional notation. Remember that contents are labeled
according to the reverse order of the values λi T (si)

si
. Given a point y, we denote by r(y)

the largest index such that λi T (si)
si

is larger than y (or 0 if all the values are smaller),
and by l(y) the smallest index i such that λi T (si)

si
is smaller than y (or N + 1 if all the

values are larger), i.e. we have

r(y) = max

({
0
}
∪
{
k = 1, . . . N

∣∣∣λk T (sk)
sk

> y

})
,

l(y) = min

({
N + 1

}
∪
{
k = 1, . . . N

∣∣∣λk T (sk)
sk

< y

})
.

We recall here the definition of a cluster value [Thomson et al. 2001, Exercise
5.10.11], that allows us to express more synthetically some of the following results.14

Definition B.1. Given a function f : A → R, where A ⊂ R, and x0 ∈ [−∞,+∞] an
accumulation point of A, we say that y∗ ∈ R is a cluster value of f(x) at x0 if it exists a
sequence xn ∈ A− {x0} such that limn→∞ xn = x0 and limn→∞ f(xn) = y∗. We also say
that f(x) has a cluster value y∗ at x0.

In what follows we only consider cluster values at +∞. For the sake of conciseness, we
will omit to specify “at +∞.”

We start establishing some connections between the asymptotic behaviour of β
τc(β)

and hi(β) in terms of their cluster values.

14It is also referred to as a cluster point or a limit point (in analogy to the corresponding concept for a
sequence).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

Access-time aware cache algorithms 39:25

LEMMA B.2. If y∗ is a cluster value of β
τc(β)

, then it exists a diverging sequence βn
such that, for all i ≤ r(y∗), hi(βn) converges to 1 and, for all j ≥ l(y∗), hj(βn) converges
to 0.

PROOF. From the definition of a cluster value, it exists a diverging sequence βn such
that limn→∞ βn/τc(βn) = y∗. For each i ≤ r(y∗), it holds

lim
n→∞

(
βn

τc(βn)
− λi

T (si)

si

)
= y∗ − λi

T (si)

si
< 0.

Since limβ→∞ τc(β) =∞, it holds

lim
n→∞

τc(βn)

(
βn

τc(βn)
− λi

T (si)

si

)
= −∞.

From Equation (11), it follows that
lim
n→∞

hi(βn) = 1.

The reasoning for j ≥ l(y∗) is analogous.

A consequence of Lemma B.2 is that if y∗ is a cluster value of β/τc(β), then 1 is a
cluster value of hj(β) for all j ≤ r(y∗) and 0 is a cluster value of hj(β) for all j ≥ l(y∗).

We can derive results about the convergence of the hit probabilities if we know
bounds for the cluster values of β/τc(β).

LEMMA B.3. If the set of cluster values of β/τc(β) is a subset of the interval [a, b],
then, when β diverges, hi(β) converges to 1, for i < r(b), and to 0, for i > l(a).

PROOF. For all ε > 0, it exists a βε such that, for all β > βε,
β

τc(β)
< b+ ε

and
β

τc(β)
− λi

T (si)

si
< b− λi

T (si)

si
+ ε.

For i < r(b), it is λiT (si)/si > b and we can choose ε sufficiently small so that the left
term is bounded away from 0 by a negative constant for large β

β

τc(β)
− λi

T (si)

si
< −δ < 0.

From Equation (11), it follows that, for large β,

1 ≥ hi(β) ≥
1− e−λiτc(β)

e
−τc(β)

si
T (si)

δ
+ 1− e−λiτc(β)

and then hi(β) converges to 1 when β diverges.
The other result can be proven following a similar reasoning.

The constraint on the expected cache’s occupancy under the Che’s model leads to the
following result:

LEMMA B.4. If y∗ is a cluster value of β
τc(β)

, then

r(y∗)∑
i=1

si ≤ C ≤
l(y∗)−1∑
i=1

si.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:26 G. Neglia et al.

PROOF. Consider the following inequalities that are true for any value of β:
r(y∗)∑
i=1

hisi ≤
N∑
i=1

hisi ≤
l(y∗)−1∑
i=1

si +

N∑
i=l(y∗)

hisi.

Because of Equation (5), the middle term is equal to C for all β, then:
r(y∗)∑
i=1

hisi ≤ C ≤
l(y∗)−1∑
i=1

si +

N∑
i=l(y∗)

hisi.

Finally, Lemma B.2 leads to conclude that the terms hi in the left (resp. right) sum can
be made simultaneously arbitrarily close to 1 (resp. 0).

From now on we consider that
∑c
i=1 si = C. Bounds for the cluster values of β/τc(β)

easily follow from Lemma B.4.

LEMMA B.5. All the cluster values of β
τc(β)

are in the interval[
λc+1

T (sc+1)

sc+1
, λc

T (sc)

sc

]
.

PROOF. We prove it by contradiction. Let y∗ be a cluster value of β
τc(β)

and assume
that y∗ < λc+1T (sc+1)/sc+1. Then, it would be r(y∗) ≥ c+ 1, leading to

C <

c+1∑
i=1

si ≤
r(y∗)∑
i=1

si ≤ C,

where the first inequality follows from the definition of c and the second inequality
from Lemma B.4.

If we assume that y∗ > λcT (sc)/sc we arrive also to a contradiction.

PROPOSITION B.6. If
∑c
i=1 si = C, then

lim
β→∞

hi(β) =

{
1, for i ≤ c,
0, for i > c+ 1.

PROOF. We first observe that, from Lemma B.3 and Lemma B.5, it immediately
follows that hi(β) converges to 1 for i < c and to 0 for i > c + 1. We need to consider
only i = c and i = c+ 1.

We prove that hc+1(β) converges to 0. Let us assume that it is not the case, then
hc+1(β) has a cluster value h∗ > 0. Because of Lemmas B.3 and B.5 this implies that
β/τc(β) has a cluster value in λc+1T (sc+1)/sc+1. But from Lemma B.2 it follows that
it exists a diverging sequence βn such that limn→∞ hi(βn) = 1, for all i ≤ c. Then, for
each ε > 0, it exists an nε, such that for n ≥ nε,

C =

N∑
i=1

hi(βn)si ≥
c+1∑
i=1

hi(βn)si ≥ C + h∗sc+1 − ε,

leading to a contradiction.
We have shown that hc+1(β) converges to 0. Because

∑N
i=1 hisi = C, it follows that

hc(β) =
C −

∑
i6=c hi(β)si

sc

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

Access-time aware cache algorithms 39:27

converges to 1.

C. THE LANGRANGE METHOD FOR THE UTILITY MAXIMIZATION PROBLEM
In this appendix, we study qi-LRU in the cache utility maximization framework in-
troduced in [Dehghan et al. 2016]. We derive the corresponding utility functions that
appear in the maximization problem (6).

We look for increasing, continuously differentiable, and strictly concave functions
Ui(.). Moreover, we look for the following functional dependency

Ui(hi) = λisiU0(hi, qi),

where U0 is increasing and concave in hi. In what follows we will consider si, λi and qi
to be constant parameters, so that Ui and U0(hi, qi) are only functions of hi.

The Lagrange function associated to problem (6) is

L(h, α) =
N∑
i=1

(
Ui(hi)− αhisi

)
+ αC,

where h is the vector of the hit probabilities and α is the Lagrange multiplier associ-
ated to the constraint.

Under qi-LRU (for finite β > 0) the hit probabilities hi are in (0, 1), because every
content has some chance to be stored and no content is guaranteed to be stored. Then,
if the hit probabilities of qi-LRU are the solutions of problem (6) for a given choice of
the functions Ui(.), they belong to the interior part of the definition set of the concave
problem (6). The hit probabilities can then be obtained by equating to 0 the Lagrangian
derivatives:

∂L
∂hi

=
dUi
dhi
− αsi = 0.

Therefore, from the above equation we get15

hi = U
′−1
i (αsi).

Taking into account the specific functional dependency in Equation (C), it holds:

hi = U
′−1
0

(
α

λi
, qi

)
.

We equate the expression above to that in Equation (9) and we obtain

1− e−λiτC
1
qi
e−λiτC + 1− e−λiτC

= U
′−1
0

(
α

λi
, qi

)
.

The expressions on the LHS and the RHS depend on λi respectively through the prod-
ucts λiτC and λi/α. It follows that we should consider α proportional to 1/τC , in partic-
ular we choose:

α =
1

τC
.

By substituting the above equation into the formula of hi (as given in (9)), we obtain

hi =
qi(1− e−

λi
α)

e−
λi
α + qi(1− e−

λi
α)
. (23)

15The existence of the inverse functions of U ′i(·) follows from the assumption that Ui(·) are strictly concave.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:28 G. Neglia et al.

Next, we solve (23) with respect to α and we get

α =
λi

ln
(
1 + hi

qi(1−hi)

) .
Finally, by replacing this expression for α in the equationU ′i(hi) = αsi

U ′i(hi) =
λisi

ln
(
1 + hi

qi(1−hi)

) . (24)

By integrating (24) we obtain, for hi ∈ (0, 1],

Ui(hi) = −λisi
∫ 1

hi

dx

ln
(
1 + x

qi(1−x)

) = −λisi
∫ 1−hi

0

dx

ln
(
1 + 1−x

qix

) .
The function is well defined for hi ∈ (0, 1], since∫ 1

hi

dx

ln
(
1 + x

qi(1−x)

) ≤ ∫ 1

hi

dx

ln
(
1 + x

qi

) ≤ qi ∫ 1+ 1
qi

1+
hi
qi

dy

ln y
<∞.

For hi → 0+, the integral diverges.

ACKNOWLEDGMENTS

This work was partially supported by the Italian National Group for Scientific Computation (GNCS-
INDAM).

REFERENCES
Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, Stephen Williams, and Edward A. Fox. 1995. Caching

Proxies: Limitations and Potentials. In Proceedings of the Fourth International WWW Conference.
Boston,MA.

Andrea Araldo, Dario Rossi, and Fabio Martignon. 2016. Cost-Aware Caching: Caching More (Costly Items)
for Less (ISPs Operational Expenditures). IEEE Transactions on Parallel and Distributed Systems 27,
5 (May 2016), 1316–1330. DOI:http://dx.doi.org/10.1109/TPDS.2015.2433296

Rakesh Barve, Elizabeth Shriver, Phillip B. Gibbons, Bruce K. Hillyer, Yossi Matias, and Jeffrey Scott Vit-
ter. 1999. Modeling and Optimizing I/O Throughput of Multiple Disks on a Bus. In Proceedings of the
1999 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS ’99). ACM, New York, NY, USA, 83–92. DOI:http://dx.doi.org/10.1145/301453.301482

Daniel S. Berger, Ramesh K. Sitaraman, and Mor Harchol-Balter. 2017. AdaptSize: Orchestrating the Hot
Object Memory Cache in a Content Delivery Network. In 14th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI’17.

Giuseppe Bianchi, Andrea Detti, Alberto Caponi, and Nicola Blefari Melazzi. 2013. Check before storing:
What is the performance price of content integrity verification in LRU caching? ACM SIGCOMM Com-
puter Communication Review 43, 3 (2013), 59–67.

Niv Buchbinder and Joseph Naor. 2005. Online Primal-Dual Algorithms for Covering and Packing Problems.
Springer Berlin Heidelberg, Berlin, Heidelberg, 689–701. DOI:http://dx.doi.org/10.1007/11561071 61

Pei Cao and Sandy Irani. 1997. Cost-aware WWW Proxy Caching Algorithms. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems on USENIX Symposium on Internet Technologies and
Systems (USITS’97). USENIX Association, Berkeley, CA, USA, 18–18. http://dl.acm.org/citation.cfm?id=
1267279.1267297

Hao Che, Ye Tung, and Z. Wang. 2002. Hierarchical Web caching systems: modeling, design and exper-
imental results. Selected Areas in Communications, IEEE Journal on 20, 7 (Sep 2002), 1305–1314.
DOI:http://dx.doi.org/10.1109/JSAC.2002.801752

Edward Grady Coffman and Peter J. Denning. 1973. Operating systems theory. Prentice-Hall, Englewood
Cliffs. http://opac.inria.fr/record=b1079172

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

Access-time aware cache algorithms 39:29

Mostafa Dehghan, Laurent Massoulié, Don Towsley, Dan Menasche, and Y. C. Tay. 2016. A utility optimiza-
tion approach to network cache design. In IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications. 1–9. DOI:http://dx.doi.org/10.1109/INFOCOM.2016.7524445

Ronald Fagin. 1977. Asymptotic miss ratios over independent references. J. Comput. System Sci. 14, 2 (1977),
222 – 250. DOI:http://dx.doi.org/10.1016/S0022-0000(77)80014-7

Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator, and Neal E. Young.
1991. Competitive Paging Algorithms. Journal of Algorithms 12 (1991), 685–699.

Nicaise Choungmo Fofack, Philippe Nain, Giovanni Neglia, and Don Towsley. 2014. Performance
evaluation of hierarchical TTL-based cache networks. Computer Networks 65 (2014), 212 – 231.
DOI:http://dx.doi.org/10.1016/j.comnet.2014.03.006

Christine Fricker, Philippe Robert, and James Roberts. 2012a. A Versatile and Accurate Approximation for
LRU Cache Performance. In Proceedings of the 24th International Teletraffic Congress (ITC ’12). Inter-
national Teletraffic Congress, Article 8, 8 pages. http://dl.acm.org/citation.cfm?id=2414276.2414286

Christing Fricker, Philippe Robert, Jim Roberts, and Nada Sbihi. 2012b. Impact of Traffic Mix on Caching
Performance in a Content-Centric Network. In Proc. of IEEE INFOCOM 2012.

Michele Garetto, Emilio Leonardi, and Valentina Martina. 2016. A Unified Approach to the Performance
Analysis of Caching Systems. ACM Trans. Model. Perform. Eval. Comput. Syst. 1, 3, Article 12 (May
2016), 28 pages. DOI:http://dx.doi.org/10.1145/2896380

Predrag R. Jelenkovic and Ana Radovanovic. 2004. Optimizing LRU Caching for Vari-
able Document Sizes. Comb. Probab. Comput. 13, 4-5 (July 2004), 627–643.
DOI:http://dx.doi.org/10.1017/S096354830400625X

Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2004. Knapsack problems. Springer, Berlin Heidelberg.
I–XX, 1–546 pages.

Mathieu Leconte, Georgios Paschos, Lazaros Gkatzikis, Moez Draief, Spyridon Vassilaras, and Symeon
Chouvardas. 2016. Placing Dynamic Content in Caches with Small Population. In Proc. of IEEE IN-
FOCOM 2016.

Suoheng Li, Jie Xu, Mihaela van der Schaar, and Weiping Li. 2016. Popularity-Driven Content Caching. In
Proc. of IEEE INFOCOM 2016.

Bruce M. Maggs and Ramesh K. Sitaraman. 2015. Algorithmic Nuggets in Content Delivery. SIGCOMM
Comput. Commun. Rev. 45, 3 (July 2015), 52–66. DOI:http://dx.doi.org/10.1145/2805789.2805800

Valentina Martina, Michele Garetto, and Emilio Leonardi. 2014. A unified approach to the performance
analysis of caching systems. In IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.
2040–2048. DOI:http://dx.doi.org/10.1109/INFOCOM.2014.6848145

Giovanni Neglia, Damiano Carra, Ming Dong Feng, Vaishnav Janardhan, Pietro Michiardi, and Dimitra
Tsigkari. 2016. Access-time aware cache algorithms. In Proc. of ITC-28.

Giovanni Neglia, Damiano Carra, and Pietro Michiardi. 2017. Cache Policies for Linear Utility Maximiza-
tion. In Proc. of the IEEE International Conference on Computer Communications (INFOCOM 2017).

Spencer W. Ng. 1998. Advances in Disk Technology: Performance Issues. IEEE Computer 31 (1998), 75–81.
Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. 2010. The Akamai Network: A Platform

for High-performance Internet Applications. SIGOPS Oper. Syst. Rev. 44, 3 (Aug. 2010), 2–19.
DOI:http://dx.doi.org/10.1145/1842733.1842736

Valentino Pacifici and Gyorgy Dán. 2016. Coordinated Selfish Distributed Caching for Peer-
ing Content-Centric Networks. IEEE/ACM Transactions on Networking PP, 99 (2016), 1–12.
DOI:http://dx.doi.org/10.1109/TNET.2016.2541320

Giuseppe Rossini, Davide Rossi, Michele Garetto, and Emilio Leonardi. 2014. Multi-Terabyte and multi-
Gbps information centric routers. In INFOCOM, 2014 Proceedings IEEE. 181–189.

M. Zubair Shafiq, Amir R. Khakpour, and Alex X. Liu. 2016. Characterizing caching workload of a large
commercial content delivery network. In Computer Communications, IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on. IEEE, 1–9.

Samta Shukla and Alhussein A. Abouzeid. 2016. On designing optimal memory damage aware
caching policies for content-centric networks. In 14th International Symposium on Model-
ing and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt 2016. 163–170.
DOI:http://dx.doi.org/10.1109/WIOPT.2016.7492918

David Starobinski and David Tse. 2001. Probabilistic methods for web caching. Performance Evaluation 46,
2-3 (2001), 125–137.

Brian S. Thomson, Judith B. Bruckner, and Andrew M. Bruckner. 2001. Elementary Real Analysis. Prentice-
Hall.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:30 G. Neglia et al.

Stefano Traverso, Mohamed Ahmed, Michele Garetto, Paolo Giaccone, Emilio Leonardi, and Saverio Niccol-
ini. 2013. Temporal Locality in Today’s Content Caching: Why It Matters and How to Model It. SIG-
COMM Comput. Commun. Rev. 43, 5 (Nov. 2013), 5–12. DOI:http://dx.doi.org/10.1145/2541468.2541470

Neal E. Young. 2008. Encyclopedia of Algorithms. Springer US, Boston, MA, Chapter Online Paging and
Caching, 601–604. DOI:http://dx.doi.org/10.1007/978-0-387-30162-4 267

Received August 2016; revised ; accepted

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 4, Article 39, Publication date: March 2010.

