
Access-time aware cache algorithms
Giovanni Neglia⇤, Damiano Carra†, Mingdong Feng‡,

Vaishnav Janardhan‡, Pietro Michiardi§ and Dimitra Tsigkari⇤
⇤Inria, {giovanni.neglia, dimitra.tsigkari}@inria.fr
†University of Verona, damiano.carra@univr.it

‡Akamai Technologies, {mfeng, vjanardh}@akamai.com
§Eurecom, pietro.michiardi@eurecom.fr

Abstract—Most of the caching algorithms are oblivious to
requests’ timescale, but caching systems are capacity constrained
and, in practical cases, the hit rate may be limited by the
cache’s impossibility to serve requests fast enough. In particular
the hard-disk access time can be the key factor capping cache
performances. In this paper, we present a new cache replacement
policy that takes advantage of a hierarchical caching architecture,
and in particular of access-time difference between memory and
disk. Our policy is optimal when requests follow the independent
reference model, and significantly reduces the hard-disk load, as
shown also by our realistic, trace-driven evaluation.

I. INTRODUCTION

The hit probability is a well-known key metric for caching
systems: this is the probability that a generic request for a
given content will be served by the cache. Most of the existing
literature implicitly assumes that a hit occurs if the content is
stored in the cache at the moment of the request. In practice,
however, in real caching systems the actual hit rate is often
limited by the speed at which the cache can serve requests.
In particular, Hard-Disk Drive (HDD) access times can be the
key factor capping cache performance.

As an illustrative example, Fig. 1 shows the percentage
of CPU and HDD utilization, as reported by the operating
system, over two days in the life of a generic caching server.
As the amount of requests varies during the day, the resource
utilization of the caching server varies as well: during peak
hours, HDD utilization can exceed 95%. Such loads may
cause the inability to serve a request even if the content is
actually cached in the HDD. In case of a pool of cache servers,
a solution based on dynamic load balancing may alleviate
this problem by offloading the requests to another server.
Nevertheless, this solution has its own drawbacks, because the
rerouted queries are likely to generate misses at the new cache.

In this paper, we study if and how the RAM can be used to
alleviate the HDD load, so that the cache can serve a higher
rate of requests before query-rerouting becomes necessary.

The idea to take advantage of the RAM is not groundbreak-
ing. Modern cache servers usually operate as a hierarchical
cache, where the most recently requested contents are stored
also in the RAM: upon arrival of a new request, content is first
looked up in the RAM; if not found, the lookup mechanism
targets the HDD. Hence, the RAM “shields” the HDD from
most of the requests.

The question we ask in this paper is: what is the optimal
way to use the RAM? Which content should be duplicated in

Fig. 1. Graph showing the CPU and HDD utilization percentage of a generic
caching server.

the RAM to minimize the load on the HDD? We show that, if
content popularities are known, the problem can be formulated
as a knapsack problem. More importantly, we design a new
dynamic replacement policy that, without requiring popularity
information to be known, can implicitly solve our minimiza-
tion problem. Our policy is a variant of q-LRU. In q-LRU after
a cache miss, the content is stored in the cache with probability
q and, if space is needed, the least recently used contents are
evicted. We call our policy qi-LRU, because we use a different
probability qi for each content i. The value qi depends on the
content size and takes into account the time needed to retrieve
contents from the HDD. Simulation results on real content
request traces from the Akamai’s Content Delivery Network
(CDN) [1] show that our policy achieves more than 80% load
reduction on the HDD with an improvement between 10% and
20% in comparison to standard LRU.

The paper is organized as follows. In Sec. II we formalize
the problem and illustrate the underlying assumptions. In
Sec. III we present the policy qi-LRU and prove its asymp-
totic optimality. We evaluate its performance under real-world
traces in Sec. IV. Related works are discussed in Sec. V.

II. MODEL

A. Hard Disk Service Time
Our study relies on some assumptions about the load im-

posed on the HDD by a set of requests. Consider a single file-
read request for content i with size si. We call service time the

time the HDD works just to provide content i to the operating
system. Our first assumption is that the service time is only
a function of content size si. We denote it as T (si).1 The
second assumption is that service times are additive, i.e. let A
be a set of contents, the total time the HDD works to provide
the contents in A is equal to

P

i2A T (si), independently from
the specific time instants at which the requests are issued.
Note that we are not assuming any specific service discipline
for this set of requests: they could be served sequentially
(e.g. in a FIFO or LIFO way) or in parallel (e.g. according to
a generalized processor sharing).2 But we are requiring that
concurrent object requests do not interfere by increasing (or
reducing) the total HDD service time.

The analytical results we provide in Sect. III, which is the
main contribution of our work, do not depend on a particular
structure of the function T (si). Nevertheless, we describe
here a specific form based on past research on HDD I/O
throughput [2][3], and based on our performance study of
disk access time observed in caching servers. We will refer
to this specific form later to clarify some properties of the
optimal policy. Furthermore, we will use it in our experiments
in Sec. IV.

Considering the mechanical structure of the HDD, every
time a new read is done, we need to wait for the reading arm
to move across the cylinders, and for the platter to rotate on
its axis. We call these two contributions the average seek time
and average rotation time, and we denote them by � and ⇢

respectively. Each file is divided into blocks, whose size b is a
configuration parameter. If we read a file whose size is bigger
than a block, then we need to wait for the average seek time
and the average rotation time for each block.

Once the reading head has reached the beginning of a block,
the time it takes to read the data depends on the transfer speed
µ. Moreover, while reading, the reading arm needs to move
across tracks and cylinders, so we need to add a contribution
due to the seek time for read, �r, which depends on the size
of the file we are reading. As a last contribution, we have a
constant delay due to the controller overhead, �.

Overall, the function that estimates the cost of reading a
file from the hard disk is given by the following equation (see
Table I for a summary of the variables used):

T (si) = (� + ⇢)

⇠

si

b

⇡

+

✓

1

µ

+ �r

◆

si + �. (1)

Based on our experience on real-life production systems,
the last column of Table I shows the values of the different
variables for a 10’000 RPM hard drive.

We have validated Eq. 1 through an extensive measurement
campaign for two different hard disk drives (10’000 RPM and
7’200 RPM). The results are shown in Fig. 2. In the figure,
we actually plot the quantity T (si)/si: in Sect. III we will
illustrate the key role played by this ratio. The estimated value

1If the service time is affected by significant random effects, then T (s
i

)
can be interpreted as the expected service time for a content with size s

i

.
2The specific service discipline would clearly have an effect on the time

needed to retrieve a specific content.

TABLE I
SUMMARY OF THE VARIABLES USED FOR T (s

i

).

Variable Meaning Typical Value
s

i

Size of object i -
� Average seek time 3.7·10�3 s
⇢ Average rotation time 3.0·10�3 s
b Block size 2.0 MB
�

r

Seek time for read 3.14·10�9 s/MB
µ Transfer bandwidth 157 MB/s
� Controller Overhead 0.5·10�3 s

of T (si)/si has discontinuity points at multiples of the block
size b: in fact, as soon as the size of an object exceeds one
of such values, the service time increases by an additional
average seek time and an additional average rotation time. The
points in the figures represent the output of our measurement
campaign for a representative subset of sizes (in particular,
for sizes close to the multiples of block size b, where the
discontinuities occur). Each point is the average value for
a given size over multiple reads. From the experiments, we
conclude that the function T (si) shown in Eq. 1 is able to
accurately estimate the cost of reading a file from the HDD.

 0

 0.01

 0.02

 0.03

 0.04

 0 1 2 3 4 5

10’000 RPM

T
(s

i)
/s

i
(s

/M
B

)

Size (MB)

Estimated
Measured

 0 1 2 3 4 5

7’200 RPM

Size (MB)

Estimated
Measured

Fig. 2. Graph of the function T (s
i

)/s
i

.

B. Query Request Process

Let N = {1, 2, . . . N} denote the set of contents. For
mathematical tractability, as done in most of the works in
the literature (see Sec. V), we assume that the requests follow
the popular Independent Reference Model (IRM), where con-
tents requests are independently drawn according to constant
probabilities (see for example [4]). In particular we consider
the time-continuous version of the IRM: requests for content
i 2 N arrive according to a Poisson process with rate �i and
the Poisson processes for different contents are independent.
While the optimality results for our policy qi-LRU are derived
under such assumption, significant performance improvements
are obtained also considering real request traces (see Sec. IV).

C. Problem Formulation

In general, the optimal operation of a hierarchical cache
system would require to jointly manage the different storage
units, and in particular to avoid to duplicate contents across
multiple units. On the contrary, in the case of a RAM-
HDD system, the problem is usually decoupled: the HDD

caching policy is selected in order to maximize the main cache
performance metric (e.g. hit ratio/rate), while a subset of the
contents stored in the HDD can be duplicated in the RAM to
optimize some other performance metric (e.g. the response
time). The reason for duplicating contents in the RAM is
twofold. First, contents present only in the RAM would be
lost if the caching server is rebooted. Second, the global cache
hit ratio/rate would not be significantly improved because the
RAM accounts for a small percentage of the total storage
available at the server. A consequence of such decoupling
is that, at any time, the RAM stores a subset (MR) of the
contents stored in the HDD (MH).3 In our work we consider
the same decoupling principle. As a consequence, our policy
is agnostic to the replacement policy implemented at the HDD
(LRU, FIFO, Random, . . .).

We now look at how the RAM reduces the HDD load. An
incoming request can be for a content not present in the HDD
(nor in the RAM because we consider MR ⇢ MH). In this
case the content will be retrieved by some other server in
the CDN or by the authoritative content provider, and then
stored or not in the HDD depending on the specific HDD cache
policy. Note that the choice of the contents to be duplicated in
the RAM plays no role here. Read/write operations can occur
(e.g. to store the new content in the HDD), but they are not
affected by the RAM replacement policy, that is the focus of
this paper. We ignore then the corresponding costs. On the
contrary, if an incoming request is for a content present in the
HDD, the expected HDD service time depends on the set of
contents MR stored in the RAM. It is indeed equal to

X

i2MH\MR

�i
P

j2N �j
T (si) =

X

i2MH

�i
P

j2N �j
T (si)�

X

i2MR

�i
P

j2N �j
T (si),

(2)

because, under IRM, �i/
P

j2N �j is the probability that the
next request is for content i, and the request will be served
by the HDD only if content i is not duplicated in the RAM,
i.e. only if i /2 MR.

Our purpose is to minimize the HDD service time under the
constraint on the RAM size. This is equivalent to maximize the
second term in Eq. (2). By removing the constant

P

j2N �j ,
we obtain then that the optimal possible choice for the subset
MR is the solution of the following maximization problem:

maximize

MR⇢N

X

i2MR

�iT (si) (3)

subject to
X

i2MR

si C.

This is a knapsack problem, where �iT (si) is the value
of content/item i and si its weight. The knapsack problem

3Although it is theoretically possible that a content stored in the RAM and
in the HDD may be evicted by the HDD earlier than by the RAM, these events
can be neglected in practical settings. For example in the scenario considered
in Sec. IV typical cache eviction times are a few minutes for the RAM and
a few days for the HDD for all the cache policies considered.

is NP-hard. A natural, and historically the first, relaxation of
the knapsack problem is the fractional knapsack problem (also
called continuous knapsack problem). In this case, we accept
fractional amounts of the contents to be stored in the RAM.
Let hi 2 [0, 1] be the fraction of content i to be put in the
RAM, the fractional problem corresponding to Problem (3) is:

maximize

h1,...hN

N
X

i=1

�ihiT (si) (4)

subject to
N
X

i=1

hisi = C.

From an algorithmic point of view, the following greedy algo-
rithm is optimal for the fractional knapsack problem. Assume
that all the items are sorted in decreasing order with respect to
the profit per unit of size (i.e. �iT (si)/si � �jT (sj)/sj for
i j). The algorithm finds the biggest index c for which the
sum

Pc
i=1 si does not exceed the memory capacity. Finally, it

stores the first c contents in the knapsack (in the RAM) as well
as a fractional part of the content c+1 so that the RAM is filled
up to its capacity. A simple variant of this greedy algorithm
guarantees a 1

2 -approximation factor for the original knapsack
problem [5, Theorem 2.5.4], but the greedy algorithm itself is
a very good approximation algorithm for common instances of
knapsack problems, as it can be justified by its good expected
performance under random inputs [5, Sec. 14.4].

From a networking point of view, if we interpret hi as the
probability that content i is in the RAM,4 then we recognize
that the constraint in Problem (4) corresponds to the usual
constraint considered under Che’s approximation for cache
networks [6], where the effect of the finite cache size is taken
into account by imposing the expected cache occupancy for
an unbounded TTL-cache [7] to have the form:

N
X

i=1

hisi = C. (5)

The last remark connects our problem to the recent work
in [8], where the authors use Che’s approximation to find
optimal cache policies to solve the following problem:

maximize

h1,...hN

N
X

i=1

Ui(hi) (6)

subject to
N
X

i=1

hisi = C,

where each Ui(hi) quantifies the utility of a cache hit for
content i.5 Results in [8] do not help us solve our Problem (4)
because their approach requires the functions Ui(hi) to be (i)
known and (ii) strictly concave in hi. On the contrary, in our
case, content popularities (�i) are unknown and, even if they

4Since the PASTA property holds under the IRM model, then h

i

is also
the RAM hit probability.

5The work in [8] actually assumes that all the contents have the same size,
but their analysis can be easily extended to heterogenous sizes, as we do in
Sec. III-B.

were known, the functions Ui(hi) would be �ihiT (si) and
then linear in hi. Besides deriving the cache policy that solves
a given optimization problem, [8] also “reverse-engineers”
existing policies (like LRU) to find which optimization prob-
lem they are implicitly solving. In Sec. III we use a similar
approach to study our policy.

After this general analysis of the problem, we are ready to
introduce in the next section a new caching policy qi-LRU that
aims to solve Problem (4), i.e. to store in the RAM the contents
with the largest values �iT (si)/si without the knowledge of
content popularities �i, for i = 1, . . . N .

III. THE qi-LRU POLICY

We start introducing our policy as a heuristic justified by
an analogy with LRU.

Under IRM and Che’s approximation, if popularities �i

are known, minimizing the miss throughput at a cache with
capacity C corresponds to solving the following problem:

maximize

h1,...hN

N
X

i=1

�ihisi (7)

subject to
N
X

i=1

hisi = C

The optimal solution is analogous to what discussed for
Problem (4): set hit probabilities to one for the k most popular
contents, a hit probability smaller than one for the (k + 1)-th
most popular content, and hit probabilities to zero for all the
other contents. The value of k is determined by the RAM size.

Now, it is well known that, from a practical perspective, the
traditional LRU policy behaves extremely well, despite content
popularity dynamics. LRU is a good heuristic for Problem (7):
it implicitly selects and stores in the cache the contents with
the largest values of �i, even when popularities �i are actually
unknown.

Recall that our purpose is to store the contents with the
largest values �iT (si)/si: then, the analogy between the
two problems suggests us to bias LRU in order to store
more often the contents with the largest values of T (si)/si.
Intuitively, upon a cache miss, the newly requested content i
is cached with probability qi, which is an increasing function
in T (si)/si. Specifically, we define qi as follows:

qi = e

��
si

T (si)
, i 2 N , (8)

where � > 0 is a constant parameter.6 In practical cases, as
discussed in section IV, we set � such that qi � qmin for every
i 2 N , so that any content is likely to be stored in the cache
after 1/qmin queries on average.

Our policy has then the same behaviour of the q-LRU policy,
but the probability q is not fixed, it is instead chosen depending
on the size of the content as indicated in Eq. (8). For this
reason, we denote our policy by qi-LRU.

6The reader may wonder why we have chosen this particular relation and
not simply q

i

proportional to T (s
i

)/s
i

. The choice was originally motivated
by the fact that proportionality leads to very small q

i

values for some contents.
Our analysis below shows that Eq. (8) is a sensible choice.

With reference to Fig. 2, the policy qi-LRU would store with
higher probability the smallest contents as well as the contents
whose size is slightly larger than a multiple of the block size
b. Note that the policy qi-LRU does not depend on the model
described above for the HDD service time, but it requires the
ratio T (s)/s to exhibit some variability (otherwise we would
have the usual q-LRU).

Until now we have provided some intuitive justification for
the policy qi-LRU. This reasoning reflects how we historically
conceived it. The reader may now want more theoretically
grounded support to our claim that qi-LRU is a good heuristic
for Problem (4). In what follows we show that qi-LRU is
asymptotically optimal when � diverges in two different ways.
We first prove in Sec. III-A that qi-LRU asymptotically stores
in a cache the contents with the largest values �iT (si)/si,
as the optimal greedy algorithm for Problem (4) does. This
would be sufficient to our purpose, but we find interesting to
establish a connection between qi-LRU and the cache utility
maximization problem introduced in [8]. For this reason, in
Sec. III-B, we reverse-engineer the policy qi-LRU and derive
the utility function it is implicitly maximizing as a function
of �. We then let again � diverge and show that the utility
maximization problem converges to a problem whose optimal
solution corresponds to store the contents with the largest
values �iT (si)/si.

A. Asymptotic qi-LRU hit probabilities
In [9] it is proven that under the assumptions of the IRM

traffic model, the usual q-LRU policy tends to the policy that
statically stores in the cache the most popular contents when
q converges to 0. We generalize their approach to study the
qi-LRU policy when � diverges (and then qi converges to 0,
for all i). In doing so, we address some technical details that
are missing in the proof in [9].7

Let us sort contents in a decreasing order of �iT (si)
si

assum-
ing, in addition, that �iT (si)

si
6= �jT (sj)

sj
for every i 6= j.

Note that the hit probability hi associated to the content i
for the qi-LRU policy is given by the following formula (see
[9])

hi(�, ⌧c) =
qi(�)(1� e

��i⌧c
)

e

��i⌧c
+ qi(�)(1� e

��i⌧c
)

, (9)

where ⌧c is the eviction time that, under Che’s approximation
[6], is assumed to be a constant independent of the selected
content i.

Now, by exploiting the constraint:

C =

X

i

sihi(�, ⌧c) (10)

it is possible to express ⌧c as an increasing function of � and
prove that lim�!1 ⌧c(�) = 1. This result follows [9], but,

7What is actually proven in [9] is that there exist two constants k1 and
k2 with k1 k2 such that the most popular k1 contents are stored with
probability one and the least popular N � k2 contents with probability 0.
The two constants are not estimated and it is unknown what is the asymptotic
behaviour of the hit probabilities for the k2 � k1 contents with intermediate
popularity.

for the sake of completeness, we present it extensively in our
TR [10], Appendix A.

We can now replace qi = e

��
si

T (si) in Eq. (9) and express
the hit probability as a function of � only as follows:

hi(�) =
1� e

�i⌧c(�)

e

⌧c(�)
si

T (si)

⇣
�

⌧c(�)��i
T (si)

si

⌘

+ 1� e

��i⌧c(�)

. (11)

Let us imagine to start filling the cache with contents sorted
as defined above. Let c denote the last content we can put in
the cache before the capacity constraint is violated8 i.e.

c = max

(

k

�

�

�

k
X

i=1

si C

)

.

We distinguish two cases: the first c contents fill exactly the
cache (i.e.

Pc
i=1 si = C), or they leave some spare capacity,

but not enough to fit content c + 1. Next, we prove that qi-
LRU is asymptotically optimal in the second case. The first
case requires a more complex machinery that we develop in
our TR [10], Appendix B.

Consider then that
Pc

i=1 si < C <

Pc+1
i=1 si. As an

intermediate step we are going to prove by contradiction that

lim

�!1

�

⌧c(�)
= �c+1

T (sc+1)

sc+1
. (12)

Suppose that this is not the case. Then, there exists a
sequence �n that diverges and a number ✏ > 0 such that
8n 2 N

either
�n

⌧c(�n)

�c+1T (sc+1)

sc+1
� ✏ (13)

or
�n

⌧c(�n)
�

�c+1T (sc+1)

sc+1
+ ✏. (14)

If inequality (13) holds, then 8i c+ 1

�n

⌧c(�n)
� �iT (si)

si
 �n

⌧c(�n)
�

�c+1T (sc+1)

sc+1
 �✏

From Eq. (11) it follows immediately that

lim

�n!1
hi(�n) = 1 8i c+ 1,

but then it would be

lim

n!1

c+1
X

i=1

hi(�n)si =

c+1
X

i=1

si > C

contradicting the constraint (10). In a similar way it is possible
to show that inequality (14) leads also to a contradiction and
then Eq. (12) holds.

Because of the limit in Eq. (12) and of Eq. (11), we can
immediately conclude that, when � diverges, hi(�) converges
to 1, for i c, and to 0, for i > c + 1. Because of the
constraint (10) it holds that:

lim

�!1
hc+1(�) =

C � lim�!1
P

i 6=c+1 hisi

sc+1
=

C �
P

ic si

sc+1
.

8We consider the practical case when s1 < C <

P
N

i=1 si.

The same asymptotic behavior for the hit probabilities
holds when

Pc
i=1 si = C, as it is proven in our TR [10],

Appendix B.9 We can then conclude that:

Proposition III.1. When the parameter � diverges the hit
probabilities for the qi-LRU policy converge to the solution
of the fractional knapsack problem (4), i.e.

lim

�!1
hi(�) =

8

>

<

>

:

1, for i c,

(C �
Pc

i=1 si)/sc+1, for i = c+ 1,

0, for i > c+ 1.

Then the qi-LRU policy asymptotically minimizes the load
on the hard-disk.

B. Reverse-Engineering qi-LRU

In [8], the authors show that existing policies can be thought
as implicitly solving the utility maximization problem (6) for
a particular choice of the utility functions Ui(hi). In particular
they show which utility functions correspond to traditional
policy like LRU and FIFO. In what follows, we “reverse-
engineer” the qi-LRU policy and we show in a different way
that it solves the fractional knapsack problem. We proceed
similarly to what done in [8], extending their approach to the
case where content sizes are heterogeneous (see our TR [10],
Appendix C). We show that the utility function for content i
is

Ui(hi) = ��isi

Z 1�hi

0

dx

ln

⇣

1 +

1�x
qix

⌘

, (15)

that is defined for hi 2 (0, 1] and qi 6= 0. Each function
Ui(.) is increasing and concave. Moreover, Ui(hi) < 0 for
hi 2 (0, 1), Ui(1) = 0 and limhi!0 Ui(hi) = �1.

We are interested now in studying the asymptotic behavior
of the utility functions Ui(hi) when � diverges, and then qi

converges to zero. First, we note that the following inequalities
are true for every � > 0 such that q�i < 1� hi:

Z 1�hi

0

dx

ln

⇣

1 +

1�x
qix

⌘ �
Z 1�hi

q�i

dx

ln

⇣

1 +

1�x
qix

⌘

� 1� hi � q

�
i

ln

⇣

1 +

1�q�i
q�+1
i

⌘

, (16)

where the last inequality follows from the fact that the inte-
grand is an increasing function of x.

Similarly, it holds
Z 1�hi

0

dx

ln

⇣

1 +

1�x
qix

⌘ 1� hi

ln

⇣

1 +

hi

qi(1�hi)

⌘ 1� hi

ln

⇣

1 +

1
qi

⌘

.

(17)
Asymptotically, when qi converges to zero, the lower bound

in Eq. (16) is equivalent to 1�hi

(1+�) ln(1/qi)
, and the upper bound

9When
P

c

i=1 si = C, h
c+1(�) converges to (C�

P
c

i=1 si)/sc+1 = 0.

in (17) is equivalent to 1�hi

ln(1/qi)
.10 We obtain the following

(asymptotic) inequalities when qi converges to 0

1� hi

(1 + �) ln(1/qi)

Z 1�hi

0

dx

ln

⇣

1 +

1�x
qix

⌘ 1� hi

ln(1/qi)
, (18)

for every � > 0 (when q converges to 0, q

�
i < 1 � hi

asymptotically). Thus, when qi converges to 0, we get
Z 1�hi

0

dx

ln

⇣

1 +

1�x
qix

⌘ ⇠ 1� hi

ln(1/qi)
,

since, otherwise, we could find an " > 0 and a sequence qi,n

converging to 0 such that for large n

Z 1�hi

0

dx

ln

⇣

1 +

1�x
qi,nx

⌘ (1� ")

1� hi

ln(1/qi,n)
.

But, this would contradict the left-hand inequality in (18)
which is valid for every � > 0. We conclude that, when qi

converges to 0,

Ui(hi) = ��isi

Z 1�hi

0

dx

ln

⇣

1 +

1�x
qix

⌘ ⇠ ��isi(1� hi)

ln(1/qi)
.

Next, we consider qi = e

��
si

T (si) and we can write

Ui(hi) ⇠ ��iT (si)(1� hi)

�

, when � ! 1.

Note that the maximization problem (6) is over the hit
probabilities hi and the solution of the problem will be the
same even if the functions Ui(.) are multiplied by a positive
constant. We conclude that, when � diverges, the problem (6)
can be formulated as follows

maximize

h

N
X

i=1

�ihiT (si) (19)

subject to
N
X

i=1

hisi = C

which is exactly the formulation of the fractional knapsack
problem.

IV. EXPERIMENTS

In this section we evaluate the performance of our qi-LRU
policy. Here we take a numerical perspective, and design
a trace-driven simulator that can reproduce the behavior of
several caching policies, which we compare against qi-LRU.
We have used both synthetic traces generated according to the
IRM and real traces collected at two vantage points of the
Akamai network [1]. We proved that qi-LRU is optimal under
the IRM and indeed our experiments confirm it and show
significant improvement in comparison to other replacement
policies. For this reason, in this section we focus mainly on the

10We say that f(x) is equivalent to g(x) when x converges to 0 if
lim

x!0 f(x)/g(x) = 1, and we write f(x) ⇠ g(x).

results obtained with real traces. In the following, we describe
our experimental methodology, show the characteristics of the
real traces we use, and present the results of our evaluation.

A. Methodology and Performance indexes

The comparative analysis of different caching policies re-
quires an environment where it is possible to reproduce exactly
the same conditions for all the different policies. To do so,
we adopt a trace-driven simulation approach,11 which allows
us to control the initial conditions of the system, explore the
parameter space and perform a sensitivity analysis, for all
eviction policies.

Our simulator reproduces two memory types: the main
memory (RAM) and the hard disk (HDD). Each object is
stored in the HDD according to the LRU policy. For the RAM
we consider 3 different policies: LRU, SIZE and qi-LRU.
They all evict the least recently requested content, if space
is needed. They differ in the criterium to decide if storing the
most recently requested content:

• LRU always stores it;
• SIZE stores it if 1) its size is below a given threshold T ,

or 2) it has been requested at least N times, including
once during the previous M hours;

• qi-LRU stores it with probability qi, as explained in the
previous sections.

So, in addition to comparing qi-LRU to the traditional LRU
policy, we also consider the SIZE policy since small objects
are the ones that have a bigger impact on the HDD, in terms
of their service time T (si) (see also Fig. 2). We therefore
prioritize small objects, and we store objects bigger than
the threshold T only after they have been requested for at
least N times. The SIZE policy can thus be seen as a first
attempt to decrease the impact of small objects on the HDD,
and ultimately reduce the strain on HDD resources. With the
qi-LRU policy, we aim at the same goal, but modulate the
probability to store an object in RAM as a function of its
size, and thus service time.

Note that the hit ratio of the whole cache depends only on
the size of the HDD and its replacement policy (LRU). The
RAM replacement policy does not affect the global hit ratio.
In what follows we focus rather on the number of requests
served by RAM and by disk. More precisely, we consider the
total disk service time: this is the sum of the T (si) of all
the objects served by the HDD. Smaller disk service times
indicate lower pressure on the disk.

We show the results for a system with 4 GB RAM and
3 TB HDD. We have tried many different values for the
RAM size up to 30 GB, and the qualitative results are similar
(not shown here for space constraints). For the SIZE policy,
we have extensively explored the parameter space (threshold
T , number of requests N , and number of hours M) finding

11As a future work, we plan to deploy our policy in a real production
system. In this case, the methodology to perform a comparative analysis is
substantially different.

TABLE II
TRACES: BASIC INFORMATION.

30 days 5 days
Number of requests received 2.22 · 109 4.17 · 108

Number of distinct objects 113.15 M 13.27 M
Cumulative size 59.45 TB 2.53 TB
Cumulative size of objects
requested at least twice 20.36 TB 1.50 TB

similar qualitative results.12 For the qi-LRU policy, the default
value of the constant � is chosen such that min

i2N
qi = 0.1 (see

Eq. (8)).

B. Trace characteristics
We consider two traces with different durations and col-

lected from two different vantage points. The first trace has
been collected for 30 days in May 2015, while the second
trace for 5 days at the beginning of November 2015. Table II
shows the basic characteristics of the traces.

Fig. 3 shows the number of requests for each object, sorted
by rank (in terms of popularity), for both traces. For the 30-day
trace, there are 25-30 highly requested objects (almost 25% of
the requests are for those few objects), but the cumulative size
of these objects is less than 8 MB. Since they are extremely
popular objects, any policy we consider stores them in RAM,
so they are not responsible for the different performance we
observe for the different policies.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

N
u
m

b
er

 o
f

re
q
u
es

ts

Object popularity

30 days
5 days

Fig. 3. Number of requests per object (ordered by rank).

Next, we study the relation between the size and the number
of requests of each object. In Fig. 4, for each object, we plot
a point that corresponds to its size (y-axis) and the number
of requests (x-axis). For the 30-day trace, the plot does not
include the 30 most popular objects. We notice that the 5-day
trace does not contain objects smaller than 1 kB.

This is also shown in Fig. 5, where we plot the empirical
Cumulative Distribution Function (CDF) for the size of the
requested objects (without aggregating requests for the same
object). The 30-day trace contains a lot of requests for small
objects, while the 5-day trace contains requests for larger
objects (e.g., see the 90-th percentile). In the 30-day trace
we have then a larger variability of the ratio T (s)/s (see

12As a representative set of results, we show here the case with T = 256
KB, N = 5 and M = 1 hour.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
3

10
4

10
5

10
6

10
7

30 days

O
b
je

ct
 s

iz
e

(b
y

te
s)

Number of requests

10
3

10
4

10
5

10
6

10
7

5 days

Number of requests

Fig. 4. Size vs Number of requests. For ease of representation, we consider
the objects with at least 1000 requests (for the 30-day trace, we do not include
the 30 most popular objects).

Fig. 2) and we expect qi-LRU to be able to differentiate more
among the different contents and then achieve more significant
improvement, as it is confirmed by our results below.

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
C

D
F

 o
f

th
e

re
q
u
es

ts

Object size (bytes)

30 days
5 days

Fig. 5. Given an object size, the CDF shows the cumulative fraction of the
requests up to that object size (for the 30-day trace, we do not include the 30
most popular objects).

C. Comparative analysis of the eviction policies

Tables III and IV summarize the aggregate results for the
two traces we consider in our study. For the hit ratio, we see
that the qi-LRU policy can serve more requests from the RAM.
On the other hand, the overall number of bytes served by RAM
is smaller: this means that the RAM is biased towards storing
small, very popular objects, as expected. The last column
shows the gain, in percentage, in disk service time between
each policy and LRU, which we take as a de-facto reference
(e.g., -10% for policy “x” means that its disk service time
is 10% smaller than for LRU). This is the main performance
metric we are interested in. For the 30-day trace, the qi-LRU
policy improves by 23% the disk service time, over the LRU
policy. For the 5-day trace, the improvement of qi-LRU over
LRU is smaller, topping at a bit more than 7%. The reason
behind this result relates to the object size distribution in the
trace: as shown in Fig. 5, the trace contains objects starting
from 1 kB, while, for the 30-day trace, 20% of the requests
are for objects smaller than 1 kB. The impact of these objects
on the overall T (si) is significant.

Next, we take a closer look at our policy, qi-LRU, in
comparison to the reference LRU policy. We now consider
the contribution to the overall hit ratio of each object, to

TABLE III
RESULTS FOR THE 30-DAY TRACE WITH 4 GB RAM.

bytes service � (%)
% reqs served time w.r.t. LRU

LRU RAM 73.06 509 TB 4907 h -
HDD 26.94 157 TB 1663 h -

SIZE RAM 76.38 512 TB 5055 h + 3.02%
HDD 23.62 154 TB 1515 h -8.90%

q

i

-LRU RAM 84.27 489 TB 5294 h +7.89%
HDD 15.73 177 TB 1276 h -23.27%

TABLE IV
RESULTS FOR THE 5-DAY TRACE WITH 4 GB RAM.

bytes service � (%)
% reqs served time w.r.t. LRU

LRU RAM 79.61 159 TB 1058 h -
HDD 20.39 23 TB 219 h -

SIZE RAM 80.31 160 TB 1064 h + 0.57%
HDD 19.69 22 TB 213 h -2.74%

q

i

-LRU RAM 84.72 149 TB 1074 h +1.51%
HDD 15.28 33 TB 203 h -7.31%

understand their importance to cache performance. For the 5-
day trace, we sorted the objects according to their rank (in term
of popularity) and their size, and plot the difference between
LRU hit ratio and qi-LRU hit ratio. Fig. 6 shows that both
policies store the same 1000 most popular objects; then, the
qi-LRU policy gains in hit ratio for medium-popular objects.
Switching now to object size, both policies store the same
set of small objects, while qi-LRU gains hit ratio with the
medium-size objects.

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

H
it

 r
at

io
 (

d
if

fe
re

n
ce

)

Obj popularity

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

10
1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9

H
it

 r
at

io
 (

d
if

fe
re

n
ce

)

Obj size (bytes)

Fig. 6. Difference between hit ratios when objects are ordered by popularity
(left) and by size (right) for the 30-day trace.

Fig. 7 considers the contribution to the disk service time
of each object (ordered by rank or by size) and shows the
difference between qi-LRU and LRU. Clearly, medium popular
objects and medium size objects contribute the most to the
savings in the service time that our policy achieves.

D. Sensitivity analysis
Next, we study the behavior of qi-LRU as a function of

the parameter �, but we plot the results for the parameter
qmin = min

i2N
qi, that is easier to interpret, being the minimum

probability according to which a content is stored in the RAM.
Figure 8 provides two different views. On the left-hand side,

it shows the percentage of HDD service time offloaded to the

-400

-350

-300

-250

-200

-150

-100

-50

 0

10
1

10
2

10
3

10
4

10
5

10
6

10
7S

er
v

ic
e

ti
m

e
d

if
fe

re
n

ce
 (

h
o

u
rs

)

Obj popularity

-400

-350

-300

-250

-200

-150

-100

-50

 0

10
1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9S
er

v
ic

e
ti

m
e

d
if

fe
re

n
ce

 (
h

o
u

rs
)

Obj size (bytes)

Fig. 7. Difference between service time (served by the RAM) when objects
are ordered by rank (left) and by size (right) for the 30-day trace.

RAM by qi-LRU, both under the 30-day trace and a synthetic
IRM trace generated using the same empirical distributions for
object size and popularity as in the 30-day trace. As expected,
under IRM, the improvement from qi-LRU increases as qmin

decreases, i.e. as � increases. Interestingly, the HDD benefits
even more under the 30-day trace, with more than 80% of the
service offloaded to the RAM. This is due to the temporal
locality effect (see e.g. [11]), i.e. to the fact that requests
typically occur in bursts and then the RAM is more likely to
be able to serve the content for a new request than it would be
under the IRM model. We observe also that the performance of
qi-LRU are not very sensitive to the parameter qmin (and then
to �), a feature very desirable for practical purposes. The right-
hand side of Fig. 8 shows the relative improvement of qi-LRU
in comparison to LRU (calculated as difference of the HDD
service time under LRU and under qi-LRU, divided by the
HDD service time under LRU). While qi-LRU performs better
and better as qmin decreases with the IRM request pattern, the
gain reduces when qmin approaches 0 (� diverges) with the
30-day trace. This is due also to temporal locality: when the
probabilities qi are very small, many contents with limited
lifetime have no chance to be stored in the RAM by qi-
LRU and they need to be served by the HDD. Despite this
effect, qi-LRU policy still outperforms LRU over a large set
of parameter values and obtain improvements larger than 20%

for 0.02 < qmin < 0.4.

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4

% saved from the HDD

p
er

ce
n
ta

g
e

q min

traces
IRM

 0 0.1 0.2 0.3 0.4

% improvement over LRU

q min

traces
IRM

Fig. 8. Sensitivity analysis to the value of qmin.

V. RELATED WORK

Cache replacement policies have been the subject of many
studies, both theoretical and experimental. We focus here on
the more analytical studies, which are closer to our contribu-
tion in this paper. Moreover, our policy is explicitly designed to
mitigate the burden on the HDD, a goal not considered in most
previous experimental works, despite its practical importance.

Most of the theoretical work in the past has focused on the
characterization of the performance of LRU, RANDOM, and
FIFO [6][12][9][13]. All these works do not assume different
levels of caches, where one level replicates the content stored
in the other level to decrease the overall response delay.

The work in [14], instead, considers a 2-level hierarchy,
with the content stored in the SSD and DRAM. They design
a policy which decreases the response time by pre-fetching
the content from SSD to DRAM. To this aim, they focus on a
specific type of content, videos divided into chunks, for which
the requests are strongly correlated, and a request for a chunk
can be used to foresee future requests for other chunks of the
same content. In our work, instead, we provide a model for
the qi-LRU policy which does not assume any correlation on
the requests arrivals, but prioritize the content that imposes a
high burden on the HDD.

A different approach is taken in [15]. The authors consider
that caching policies could be designed with other purposes
than maximizing the local hit probability. For example, they
propose a heuristic that takes into account the cost to retrieve
the contents from expensive inter-domain links. Cost-aware
caches have been the subject of many experimental studies
[16][17][18]. While these studies are similar in spirit, none of
them considers cost functions analogous to the HDD service
time that is the focus of this paper. Moreover, they did not
prove the optimality of the replacement policies proposed.

The most related work to ours is the cache optimization
framework in [8], that we have widely discussed through
the paper. We stress again here, that they assume content
popularities to be known (or to be explicitly estimated) and
the utility functions to be strictly concave, and this is not the
case in our problem.

VI. CONCLUSION

Caches represent a crucial component of the Internet archi-
tecture: decreasing the response time is one of the primary
objectives of the providers operating such caches. This ob-
jective can be pursued by exploiting the RAM of the cache
server, while keeping most of the content on the HDD.

In this paper we presented a new cache replacement policy
that takes advantage of the access-time difference in the RAM
and in the HDD to reduce the load on the HDD, so that to
improve the overall cache efficiency for a capacity constrained
storage systems. Our policy, called qi-LRU, is a variant of
q-LRU, where we assign a different probability qi to each
content based on its size.

We proved that qi-LRU is asymptotically optimal, and
we provided an extensive trace-driven evaluation that shown

between 10% and 20% reduction on the load of the HDD with
respect to the LRU policy.

ACKNOWLEDGMENT

The authors would like to thank Bodossaki Foundation to
support Dimitra Tsigkari’s internship at Inria.

REFERENCES

[1] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai Network: A
Platform for High-performance Internet Applications,” SIGOPS Oper.
Syst. Rev., vol. 44, no. 3, pp. 2–19, Aug. 2010.

[2] R. Barve, E. Shriver, P. B. Gibbons, B. K. Hillyer, Y. Matias, and J. S.
Vitter, “Modeling and Optimizing I/O Throughput of Multiple Disks on
a Bus,” in Proceedings of the 1999 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, ser.
SIGMETRICS ’99. New York, NY, USA: ACM, 1999, pp. 83–92.

[3] S. W. Ng, “Advances in Disk Technology: Performance Issues,” IEEE
Computer, vol. 31, pp. 75–81, 1998.

[4] E. G. Coffman, Jr. and P. J. Denning, Operating Systems Theory.
Prentice Hall Professional Technical Reference, 1973.

[5] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems. Springer,
2004.

[6] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems:
modeling, design and experimental results,” Selected Areas in Commu-
nications, IEEE Journal on, vol. 20, no. 7, pp. 1305–1314, Sep 2002.

[7] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Performance evalu-
ation of hierarchical TTL-based cache networks,” Computer Networks,
vol. 65, pp. 212 – 231, 2014.

[8] M. Dehghan, L. Massoulie, D. Towsley, D. Menasche, and Y. Tay,
“A Utility Optimization Approach to Network Cache Design,” in
Proc. of IEEE INFOCOM 2016, 2016, to appear, arXiv preprint
arXiv:1601.06838.

[9] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the
performance analysis of caching systems,” in Proc. of IEEE INFOCOM
2014. IEEE, 2014, pp. 2040–2048.

[10] G. Neglia, D. Carra, M. D. Feng, V. Janardhan, P. Michiardi,
and D. Tsigkari, “Access-time aware cache algorithms,” Research
Report RR-8886, Inria, March 2016. [Online]. Available:
http://profs.sci.univr.it/⇠carra/downloads/RR-8886.pdf

[11] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and
S. Niccolini, “Temporal Locality in Today’s Content Caching: Why It
Matters and How to Model It,” SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 5, pp. 5–12, Nov. 2013.

[12] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate ap-
proximation for LRU cache performance,” in Proceedings of the 24th
International Teletraffic Congress, 2012, p. 8.

[13] G. Bianchi, A. Detti, A. Caponi, and N. Blefari Melazzi, “Check before
storing: What is the performance price of content integrity verification
in LRU caching?” ACM SIGCOMM Computer Communication Review,
vol. 43, no. 3, pp. 59–67, 2013.

[14] G. Rossini, D. Rossi, M. Garetto, and E. Leonardi, “Multi-Terabyte and
multi-Gbps information centric routers,” in INFOCOM, 2014 Proceed-
ings IEEE, 2014, pp. 181–189.

[15] A. Araldo, D. Rossi, and F. Martignon, “Cost-aware caching: Caching
more (costly items) for less (isps operational expenditures),” Parallel
and Distributed Systems, IEEE Transactions on, vol. PP, no. 99, pp.
1–1, 2015.

[16] O. Bahat and A. Makowski, “Optimal replacement policies for non-
uniform cache objects with optional eviction,” in Proceedings of the
Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications (INFOCOM), 2003.

[17] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms,” in
Proceedings of the USENIX Annual Technical Conference, 1997.

[18] D. Starobinski and D. Tse, “Probabilistic methods for web caching,”
Performance Evaluation, vol. 46, no. 2-3, pp. 125–137, 2001.

[19] B. S. Thomson, J. B. Bruckner, and A. M. Bruckner, Elementary Real
Analysis. Prentice-Hall, 2001.

APPENDIX A
PROOF OF lim�!1 ⌧C(�) = 1

We define the function f as follows

f(⌧C ,�) =

X

i

sihi

=

X

i

si(e
�i⌧C � 1)

e

�
si

T (si)
+ e

�i⌧C � 1

, (20)

as we discussed in Sec. III-A, Che’s approximation implies
that f(⌧C ,�) = C.

We will prove that lim�!1 ⌧C = +1. We differentiate the
formula (20) with respect to � and ⌧C and we obtain

@f

@⌧C
=

X

i

si�ie
�i⌧C+�

si
T (si)

(e

�
si

T (si)
+ e

�i⌧C � 1)

2

@f

@�

=

X

i

�s

2
i e

�
si

T (si)
(e

�i⌧C � 1)

T (si)(e
�

si
T (si)

+ e

�i⌧C � 1)

2
.

The first partial derivative is strictly positive while the second
is negative for all the values � > 0 and ⌧C > 0 and, therefore,
by the implicit function theorem ⌧C can be expressed locally
as a C1 function of � and

@⌧C

@�

= � @f/@�

@f/@⌧C
> 0. (21)

This is true in some open set (whose existence is assured by the
theorem) containing the points (⌧C ,�) that verify f(⌧C ,�) =

C. So, ⌧C is an increasing function with respect to � and the
limit lim�!1 ⌧C(�) exists.

We prove by contradiction that the limit is equal to +1.
Suppose that lim�!1 ⌧C(�) < 1, then, by (20), we get
lim�!1 f(⌧C(�),�) = 0. This would contradict the fact that
f(⌧C ,�) = C and therefore we conclude that lim�!1 ⌧C =

+1.

APPENDIX B
WHEN CONTENTS FILL EXACTLY THE CACHE

In this section we study the case where
Pc

i=1 si = C. Note
that the results up to Lemma B.3 (included) are general, i.e,
they do make any assumption on

Pc
i=1 si, while the rest of

the section focuses on the case
Pc

i=1 si = C.
We start introducing some additional notation. Remember

that contents are labeled according to the reverse order of the
values �i

T (si)
si

. Given a point y, we denote by r(y) the largest
index such that �i

T (si)
si

is larger than y (or 0 if all the values
are smaller), and by l(y) the smallest index such that �i

T (si)
si

is smaller than y (or N + 1 if all the values are larger), i.e.
we have

r(y) = max

✓

n

0

o

[
⇢

k = 1, . . . N

�

�

�

�k
T (sk)

sk
> y

�◆

,

l(y) = min

✓

n

N + 1

o

[
⇢

k = 1, . . . N

�

�

�

�k
T (sk)

sk
< y

�◆

.

We recall here the definition of a cluster value [19, Exercise
5.10.11], that allows us to express more synthetically some of
the following results.13

Definition B.1. Given a function f : A ! R, where A ⇢ R,
and x0 2 [�1,+1] an accumulation point of A, we say
that y

⇤ 2 R is a cluster value of f(x) at x0 if it exists a
sequence xn 2 A � {x0} such that limn!1 xn = x0 and
limn!1 f(xn) = y

⇤. We also say that f(x) has a cluster
value y

⇤ at x0.

In what follows we only consider cluster values at +1. For
the sake of coinciseness, we will omit to specify “at +1.”

We start establishing some connections between the asymp-
totic behaviour of �

⌧c(�)
and hi(�) in terms of their cluster

values.

Lemma B.1. If y⇤ is a cluster value of �
⌧c(�)

, then it exists
a diverging sequence �n such that, for all i r(y

⇤
), hi(�n)

converges to 1 and, for all j � l(y

⇤
), hj(�n) converges to 0.

Proof. From the definition of a cluster value it exists a
diverging sequence �n such that limn!1 �n/⌧c(�n) = y

⇤.
For each i r(y

⇤
), it holds

lim

n!1

✓

�n

⌧c(�n)
� �i

T (si)

si

◆

= y

⇤ � �i
T (si)

si
< 0.

Since lim�!1 ⌧c(�) = 1, it holds

lim

n!1
⌧c(�n)

✓

�n

⌧c(�n)
� �i

T (si)

si

◆

= �1.

From Eq. (11), it follows that

lim

n!1
hi(�n) = 1.

The reasoning for j � l(y

⇤
) is analogous.

A consequence of Lemma B.1 is that if y⇤ is a cluster value
of �/⌧c(�), then 1 is a cluster value of hj(�) for all j r(y

⇤
)

and 0 is a cluster value of hj(�) for all j � l(y

⇤
).

We can derive results about the convergence of the hit
probabilities if we know bounds for the cluster values of
�/⌧c(�).

Lemma B.2. If the set of cluster values of �/⌧c(�) is a subset
of the interval [a, b], then, when � diverges, hi(�) converges
to 1, for i < r(b), and to 0, for i > l(a).

Proof. For all ✏ > 0, it exists a �✏ such that, for all � > �✏,

�

⌧c(�)
< b+ ✏

and
�

⌧c(�)
� �i

T (si)

si
< b� �i

T (si)

si
+ ✏.

13It is also referred to as a cluster point or a limit point (in analogy to the
corresponding concept for a sequence).

For i < r(b), it is �iT (si)/si > b and we can choose ✏

sufficiently small so that the left term is bounded away from
0 by a negative constant for large �

�

⌧c(�)
� �i

T (si)

si
< �� < 0.

From Eq. (11), it follows that, for large �,

1 � hi(�) �
1� e

�i⌧c(�)

e

�⌧c(�)
si

T (si)
�
+ 1� e

��i⌧c(�)

and then hi(�) converges to 1 when � diverges.
The other result can be proven following a similar reason-

ing.

The constraint on the expected cache’s occupancy under the
Che’s model leads to the following result:

Lemma B.3. If y⇤ is a cluster value of �
⌧c(�)

, then

r(y⇤)
X

i=1

si C
l(y⇤)�1
X

i=1

si.

Proof. Consider the following inequalities that are true for any
value of �:

r(y⇤)
X

i=1

hisi
N
X

i=1

hisi
l(y⇤)�1
X

i=1

si +

N
X

i=l(y⇤)

hisi.

Because of Eq. (5), the middle term is equal to C for all �,
then:

r(y⇤)
X

i=1

hisi C
l(y⇤)�1
X

i=1

si +

N
X

i=l(y⇤)

hisi.

Finally, Lemma B.1 leads to conclude that the terms hi in the
left (resp. right) sum can be made simultaneously arbitrarily
close to 1 (resp. 0).

From now on we consider that
Pc

i=1 si = C. Bounds for
the cluster values of �/⌧c(�) easily follow from Lemma B.3.

Lemma B.4. All the cluster values of �
⌧c(�)

are in the interval

�c+1
T (sc+1)

sc+1
,�c

T (sc)

sc

�

.

Proof. We prove it by contradiction. Let y⇤ be a cluster value
of �

⌧c(�)
and assume that y

⇤
< �c+1T (sc+1)/sc+1. Then, it

would be r(y

⇤
) � c+ 1, leading to

C <

c+1
X

i=1

si
r(y⇤)
X

i=1

si C,

where the first inequality follows from the definition of c and
the second inequality from Lemma B.3.

If we assume that y

⇤
> �cT (sc)/sc we arrive also to a

contradiction.

Proposition B.5. If
Pc

i=1 si = C, then

lim

�!1
hi(�) =

(

1, for i c,

0, for i > c+ 1.

Proof. We first observe that from Lemma B.2 and Lemma B.4
it immediately follows that hi(�) converges to 1 for i < c and
to 0 for i > c+1. We need to consider only i = c and i = c+1.

We prove that hc+1(�) converges to 0. Let us assume that
it is not the case, then hc+1(�) has a cluster value h

⇤
> 0.

Because of Lemmas B.2 and B.4 this implies that �/⌧c(�) has
a cluster value in �c+1T (sc+1)/sc+1. But from Lemma B.1
it follows that it exists a diverging sequence �n such that
limn!1 hi(�n) = 1, for all i c. Then, for each ✏ > 0,
it exists an n✏, such that for n � n✏,

C =

N
X

i=1

hi(�n)si �
c+1
X

i=1

hi(�n)si � C + h

⇤
sc+1 � ✏,

leading to a contradiction.
We have shown that hc+1(�) converges to 0. Because

PN
i=1 hisi = C, it follows that

hc(�) =
C �

P

i 6=c hi(�)si

sc

converges to 1.

APPENDIX C
THE LANGRANGE METHOD FOR THE UTILITY

MAXIMIZATION PROBLEM

In this appendix we study qi-LRU in the cache utility
maximization framework introduced in [8]. We derive the
corresponding utility functions that appear in the maximization
problem (6).

We look for increasing, continuously differentiable, and
strictly concave functions Ui(.). Moreover, we look for the
following functional dependency

Ui(hi) = �isiU0(hi, qi), (22)

where U0 is increasing and concave in hi. In what follows we
will consider si, �i and qi to be constant parameters, so that
Ui and U0(hi, qi) are only functions of hi.

The Lagrange function associated to problem (6) is

L(h,↵) =
N
X

i=1

⇣

Ui(hi)� ↵hisi

⌘

+ ↵C,

where ↵ is the Lagrange multiplier associated to the constraint.
Under qi-LRU (for finite � > 0) the hit probabilities hi

are in (0, 1), because every content has some chance to be
stored and no content is guaranteed to be stored. Then, if the
hit probabilities of qi-LRU are the solutions of problem (6)
for a given choice of the functions Ui(.), they belong to the
interior part of the definition set of the concave problem (6).
The hit probabilities can then be obtained by equating to 0 the
Lagrangian derivatives:

@L
@hi

=

dUi

dhi
� ↵si = 0.

Therefore, from the above equation we get14

hi = U

0�1
i (↵si). (23)

14The existence of the inverse functions of U 0
i

(·) follows from the assump-
tion that U

i

(·) are strictly concave.

Taking into account the specific functional dependency in
Eq. (22), it holds:

hi = U

0�1
0

✓

↵

�i
, qi

◆

. (24)

We equate the expression above to that in Eq. (9) and obtain

1� e

��i⌧C

1
qi
e

��i⌧C
+ 1� e

��i⌧C
= U

0�1
0

✓

↵

�i
, qi

◆

.

The expressions on the LHS and the RHS depend on �i

respectively through the products �i⌧C and �i/↵. It follows
that we should consider ↵ proportional to 1/⌧C , in particular
we choose:

↵ =

1

⌧C
.

By substituting the above equation into the formula of hi

(as given in (9)), we obtain

hi =
qi(1� e

��i
↵
)

e

��i
↵
+ qi(1� e

��i
↵
)

. (25)

Next, we solve (25) with respect to ↵ and we get

↵ =

�i

ln

⇣

1 +

hi

qi(1�hi)

⌘

. (26)

Finally, by replacing this expression for ↵ in U

0
i(hi) = ↵si

U

0
i(hi) =

�isi

ln

⇣

1 +

hi

qi(1�hi)

⌘

. (27)

By integrating (27) we obtain for hi 2 (0, 1]

Ui(hi) = ��isi

Z 1

hi

dx

ln

⇣

1 +

x
qi(1�x)

⌘

= ��isi

Z 1�hi

0

dx

ln

⇣

1 +

1�x
qix

⌘

. (28)

The function is well defined for hi 2 (0, 1], since
Z 1

hi

dx

ln

⇣

1 +

x
qi(1�x)

⌘
Z 1

hi

dx

ln

⇣

1 +

x
qi

⌘

 qi

Z 1+ 1
qi

1+
hi
qi

dy

ln y

< 1.

For hi ! 0

+, the integral diverges.

