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ABSTRACT

Motivated by emerging cooperative P2P applications that go

beyond file-sharing, we study new uplink allocation algo-

rithms for substituting the rate-based choke/unchoke algo-

rithm of BitTorrent which becomes inefficient in these cases.

Our goal is to reduce further the download times. We do so

by improving the uplink utilization when it is mostly chal-

lenged: in young torrents, and when there exist downlink

and network bottlenecks. We develop a new family of uplink

allocation algorithms which we call BitMax, to stress the

fact that they allocate to each unchoked node the maximum

rate it can sustain, instead of an 1/(k+1) equal share as done

in the existing BitTorrent. BitMax computes in each interval

the number of nodes to be unchoked, and the corresponding

allocations, and thus does not need any empirically preset

parameters like k. We demonstrate experimentally that Bit-

Max can reduce significantly the download time in a typical

reference scenario involving mostly ADSL nodes. We also

consider scenarios involving network bottlenecks caused by

filtering of P2P traffic at ISP peering points and show that

BitMax retains its gains also in these cases.
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1. INTRODUCTION

BitTorrent [1] (henceforth BT) has been enjoying phe-
nomenal growth over the last few years and is now be-
lieved to amount for a substantial percentage of Inter-
net’s traffic [2]. Evident to its success is the fact that
several ISPs have started rate-limiting BT-generated
traffic at their peering points to prevent it from disrupt-
ing their economics [3]. As elaborated in Sect. 2, sev-
eral innovative aspects allow BT to carry so much data,
including its ability to perform perfect discovery of con-
tent, the adoption of parallel downloads from multiple
nodes, and the enforced contribution during participa-
tion. The achieved download times depend largely on
the uplink utilization level that the protocol can achieve
for the participating nodes under the particular operat-
ing parameters of each torrent.

Uplink utilization in BitTorrent: Uplink utiliza-
tion depends largely on the choke/unchoke algorithm
used in BT for deciding which nodes get to have their
requests for missing chunks honored. The algorithm op-
erates as follows. Every 10 sec a node “unchokes” the
k = 4 nodes1 which have provided it with the highest
download rates over the previous 20 sec interval. Each
one of the unchoked nodes is given an equal share of
the node’s upload capacity which it can use for pulling
missing chunks. Also, every 30 sec, a randomly picked
choked node is unchoked for the next 30 sec interval,
independently of the download rate it might have pro-
vided. These so called optimistic unchokes are used
for discovering new nodes that can support high trans-
fer rates. Several measurement [4, 5, 6] and simula-
tion [7] works have reported that the choke/unchoke al-
gorithm achieves above 90% utilization of upload band-
width once it reaches steady-state, after an initial “flash
crowd” phase in which utilization is low. Most stud-
ies have focused in torrents composed mainly of ADSL
users with heavily asymmetric upload/download rates.
In addition, analytic works [8, 9] have verified the above
results by showing that simplified contact processes that
capture some of the characteristics of BT are asymptot-
ically efficient in steady-state in large networks.

Open questions: Despite this substantial body of work,
there still exist some important questions on uplink uti-
lization that have not gotten a definitive answer yet.
First and foremost, there seems to be no clear justifi-
cation behind the choice to unchoke k = 4 nodes at
each unchoking interval. The aforementioned experi-
mental studies have reported that 4 seems to be work-
ing well after the startup phase in the typical ADSL
scenario. But is 4 a magic number that can guaran-
tee high utilization independently of network size and
upload/download capacities? Could a different value

1The value 4 is the default one given in [1] and used until
recently in the reference mainline BT client, as well as in
popular clients like Azureus and µTorrent. Different default
values have appeared in some versions that the user can
override. There does not exist,however, any kind of guideline
on how to make a better choice, and thus users either stick
to the default value, or experiment on a trial and error basis.
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prove more efficient during the initial phase of a torrent
when utilization is low, or for that matter, why should
k be independent of the torrent’s lifetime (or state)?
Such questions has been posed in the past [7, 10], but
were never answered.

Moving a little further, even if someone could make
the case for a way to set k, it would still remain an open
question whether splitting the uplink capacity equally
is a good choice or not. One could for example ask:
“if the objective is to optimize the social utility of the
group, then why not give a higher uplink endowment
to nodes that are themselves fast uploaders?”. The an-
swer the above questions depends on a huge parameter
set that includes: the size of a swarm and of individual
neighborhoods, the amount of asymmetry between up-
link and downlink, the distribution of node capacities,
and finally, the existence of additional network bottle-
necks beyond the access links. The latter has become a
timely consideration in view of recent news that several
ISPs have started rate-limiting the amount of BT traffic
that is allowed to cross their peering points [3] (previ-
ous works like [4, 7, 5, 6] that have reported high uplink
utilization have assumed only access link bottlenecks).

Our contribution: In this paper we address the above
questions by focusing specifically on the uplink utiliza-
tion problem. Our target is to see if we can further de-
crease download times through improved uplink schedul-
ing. This requirement stems from the fact that we are
motivated by new applications in which, unlike stan-
dard P2P file-sharing, peers are cooperative. One such
example is given in [11]. It involves edge devices like
set-top-boxes, home gateways, etc., that belong to the
same ISP or service provider, and confederate by pool-
ing their excess resources in order to offer an alternative
to capital-intensive/energy-consuming monolithic data-
centers. Another example is the case of P2P clients par-
ticipating in a private torrent that is set-up by a system
administrator to disseminate a software update or a new
application to all the computers of a large organization.
In all these settings, the first and only priority is the
maximization of the aggregate system performance and
therefore, the choke/unchoke algorithm becomes redun-
dant since it makes performance sacrifices to protect
from selfishness, which is not an issue in these cases.

For this reason, we propose uplink allocation algo-
rithms that go beyond choke/unchoke, and study them
under standard and new operational settings that haven’t
been studied in previous works. Our main outcome is
a generalized family of uplink allocation algorithms for
deciding (1) how many nodes to unchoke at each un-
choking interval, and (2) what percentage of the avail-
able upload capacity to allocate to each unchoked node.
We label these new algorithms under the term – BitMax
– and show experimentally that they can provide for a
substantial reduction of download times, while also re-

maining nearly as simple as the standard choke/unchoke
algorithm. BitMax uplink allocation is build around the
following guidelines:

– The uplink should be partitioned minimally: When
a node is unchoked, it should be allocated exactly the
maximum rate it can sustain. The underlying principle
is to saturate the uplink bandwidth of a node by “fo-
cusing” it to as few neighbors as possible. The idea is to
give them a chunk as fast as possible, and then redirect
the uplink to other nodes if necessary, while the origi-
nal ones can start utilizing their own uplinks for pushing
further the newly received chunk. Focusing the band-
width is the exact opposite of what the “anti-social”
BitTyrant client [6] is doing (over-partitioning the up-
link to maximize the number of reciprocating peers).

To make the point more clear, consider the following
simple example with 3 nodes. Node v has upload rate 1
and wants to upload a chunk of size 1 to nodes v1 and v2.
Assigning rate 0.5 to each one gets the chunk to both
nodes after 2 time slots. Alternatively, assigning the
entire rate of 1 to v1 for 1 time slot and then redirecting
it to v2 has the same end result – both v1 and v2 have
the chunk at the end of time slot 2. The latter, however,
more “focused” allocation, has the added advantage of
permitting node v1 to start contributing to the network
by uploading the new chunk earlier, with the beginning
of slot 2. This becomes very important during the initial
phase of a torrent when most nodes suffer from low
chunk availability and can thus underutilize their uplink
severely, unless they are provided with new chunks as
fast as possible.

– The allocation should be constrained minimally: Split-
ting the uplink into k equal shares works well for some
scenarios but it is certainly not optimal for large parts
of the parameter space. Therefore we propose a gen-
eralized allocation of bandwidth that does not depend
on any fixed k or need to abide to equal-share endow-
ments. We decide the allocation at the beginning of
each unchoke period, attempting to fulfill the follow-
ing objectives: (1) saturate the uplink of the node, (2)
maximize its “focus”, (3) give preference to nodes with
high upload capacity and low availability of chunks as
they run the highest risk of underutilization due to low
chunk availability. We meet these objectives by mod-
eling the allocation of uplink bandwidth as a fractional
knapsack problem [12]. Computing an optimal solution
to this problem is as complex as the standard unchoke
algorithm. Applying the derived uplink allocation leads
to significant performance benefits, as outlined below:

• On typical BT settings that we examined, involv-
ing mostly ADSL nodes and few fast peers, Bit-
Max is able to reduce the median and the worst
case download time by a factor of 2.

• Adding throttling of BT traffic at ISP peering points
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hurts both BT and BitMax but the latter still out-
performs the formed by a factor of 2.

• The performance gains are independent of whether
leechers stay or leave after becoming seeds. This is
due to the fact that under BitMax nodes complete
their downloads not far apart in time.

Overall, BitMax outperforms the existing unchoke
because it strives consciously towards the optimization
of the social utility of the network, while at the same
time caters to the download rates of individual nodes
through natural load balancing rules. Therefore, it avoids
getting trapped into an unnecessary campaign against
selfishness through tit-for-tat that would hurt the so-
cial utility. BitMax uplink allocation is readily applica-
ble in settings in which peers work towards a common
goal, like the aforementioned private torrent or the sys-
tem described in [11]. For standard P2P file-sharing
that involves selfish peers, BitMax could be realized
only through the adoption of “closed” clients that users
download and use without being able to modify (simi-
larly to the way Skype works, see Sect. 5 for details).

The remainder of the article is structured as follows.
In Section 2 we briefly overview some of the properties
of BT and present a simple example to demonstrate that
partitioning the uplink slows down the speed with which
new chunks spread in the network. In Section 3 we
detail and justify the allocation of uplink under BitMax.
Section 4 quantifies the advantages of BitMax through
extensive performance evaluation based on simulation.
Section 5 discusses implementation and adoption issues
for clients using BitMax allocation. Section 6 reviews
recent related work and Section 7 concludes the article.

2. BACKGROUND

In this section we first briefly introduce some of the
key enablers behind BT’s success (more details can be
found in [1, 13]). We then motivate the use of “focused”
bandwidth allocation by studying a simplified example
that we can evaluate numerically without needing sim-
ulation.

Key innovations of BitTorrent: The following have
contributed to BT’s data dissemination efficiency.

– Perfect discovery: BT trackers know exactly which
peers are downloading a file (called “leechers”) and which
already have it entirely (called “seeds”), and thus can
directly point new comers to the appropriate peers. Com-
pared to 1st generation flood-search approaches (Gnutella),
the centralized directory kept at the trackers guarantees
the best possible discovery, while minimizing the over-
head of searching for content. Compared to 1st genera-
tion index-based discovery, either centralized (Napster)
or distributed (KaZaA), BT achieves its scalability by
providing at least one dedicated tracker to each file.

– Parallel downloads from multiple peers: In BT a file
is cut into multiple 256 kBytes chunks, allowing a peer
to download different chunks in parallel from multiple
other peers in its “neighborhood”. This increases the
perceived download rates while improving the resilience
against churn (unexpected disconnection of an uploader
before its downloaders have finished receiving the file).

– Enforced contribution: In 1st generation P2P it was
very common that nodes would free-ride [14] by discon-
necting from the network immediately after they fin-
ished downloading the file. This meant that in systems
in which nodes needed to have the entire file before they
could assist in uploading, free-riders would contributed
almost zero capacity. BT works around this problem
by using small chunks and thus permitting nodes to
start contributing actively early on, with the comple-
tion of their first chunk. In addition, the employed
choke/unchoke algorithm, creates a tit-for-tat environ-
ment in which peers are incentivized to upload chunks
to others in exchange for faster downloads. Thus, even
if nodes disconnect immediately after receiving the en-
tire file, they still have to contribute for at least as long
as the duration of their participation.

In this paper we will show that alternative unchoke
algorithms that utilize the above enablers are in position
to provide significantly shorter download times than the
standard one that uses an empirically set fixed k and
equal-share allocations. We start with an idealized ex-
ample in which we show that it is preferable to saturate
the uplink using the minimum possible k (in the ideal-
ized case k = 1). The intuition from this example drives
our generalized design in Sect. 3 whose performance is
evaluated under various realistic settings in Sect. 4.

Motivating a “focused” uplink allocation: In the
following we will demonstrate why it makes sense to
allocate nodes the maximum rate they can download
instead of allocating less and increasing the number of
parallel unchokes. Consider n nodes, each with upload
capacity u and download capacity d : d ≫ u. Let c de-
note the size of a chunk. Since nodes split their upload
capacity into k equal parts and unchoke k out of their w
neighbors, it requires kc/u time to upload a complete
chunk to a neighbor. We ask the following question:
How many nodes can get a new chunk in T time units,
starting at time 0 with a single seed?

We look at the idealized case in which nodes give pri-
ority to our tagged chunk over other missing ones (e.g.,
because it is rare or because it is new). Then, owing to
the assumed common capacities, uploads will complete
at discrete points in time (iterations), at kc/u, 2kc/u, . . .
Let n(i) denote the number of nodes that have the
chunk at the beginning of the ith iteration (n(0) = 1).
To write n(i + 1) in terms of n(i), we first compute the
probability p(x|n(i)) that x out of the w neighbors of a
node already have the chunk at iteration i, granted that
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Figure 1: Number of nodes with the chunk at time

T under different k for a network of n = 1000 nodes,

chunk size c = 1 and different upload capacity u.

n(i) have it in total at i. If we assume that the n(i)
copies are randomly distributed at the various nodes
(which is approximately true for standard trackers that
return random neighbors) then p(x|n(i)) obeys the fol-
lowing Hyper-Geometric distribution [15],

p(x|n(i)) = HyperGeo(x, n − 2, n(i) − 2, w),

which gives the probability of selecting x “successes”
when drawing randomly w samples from a pool of n−2
items, out of which n(i) − 2 are “successes” (the -2 be-
cause the node that is uploading is one of the successes
and the seed is a second one). Using p(x, n(i)), we can
write n(i + 1) as follows:

n(i + 1) = n(i)+

n(i)·

(

k

w−k
∑

x=0

p(x|n(i)) +

w
∑

x=w−k+1

(w − x)·p(x|n(i))

)

The formula captures the fact that each one of the n(i)
nodes with the chunk will spawn k new copies over the
next iteration if it can, i.e., if at least k of its neighbors
don’t already have it. Otherwise, it will spawn as many
as its neighborhood status permits. In Fig. 1 we plot the
number of nodes with the chunk at time T for n = 1000
and c = 1 for different k. Figure 1(a) shows that for
upload capacity u = 1, using k = 1 manages to get the
chunk to all nodes at T = 10, at which point k = 2 and
4 are still2 well below 100. Even for u = 3 (Fig. 1(c)),
which amounts to quite high upload bandwidth, enough
to transmit a 256 Kbytes chunk to 3 neighbors in one
unchoke period (10 sec), k = 1 requires almost half of
the time required by k = 4.

The above example shows that over-partitioning the
uplink slows down the speed at which fresh chunks reach
nodes in need of them. In one sense, requiring too much
time to transmit a single chunk to a node goes against
the very basic upload-while-download philosophy of 2nd

2The time for an iteration depends on k and thus the tics of
different curves do not align. A direct consequence is that
the last tic of some curves with k = 2 or 4 is before T = 10
due to a last iteration that does not complete before T = 10.

generation P2P, pointing more to 1st generation sys-
tems in which you had to wait too long (the entire file
to arrive) before being able to upload. Our new al-
gorithms described in the following section try to focus
the bandwidth and thus increase the torrent’s efficiency,
especially during its early stage.

3. BITMAX UPLINK ALLOCATION

In this section we present BitMax, a family of al-
gorithms for optimizing the allocation of uplink band-
width in swarm-based systems.

3.1 Knapsack formulation

Consider node v with nominal uplink capacity u(v).
Let V (v) denote the set of v’s neighbors that are in-
terested on at least one of its chunks and let u(v, vi)
denote the maximum upload rate from v to its neigh-
bor vi ∈ V (v). u(v, vi) depends on: (1) the nominal
rate of all links on the IP path from v to vi, and (2)
the cross-traffic on these links. Thus it captures all of
the following: the uplink and downlink capacities of the
end nodes, potential network bottlenecks due to conges-
tion or filtering of P2P traffic at ISP peering points, the
current download saturation of the target node vi due
to participation in the current or other torrents. Define
U(vi, h) to be the utility to the network if v uploads at
full rate u(v, vi) to vi for a duration (“horizon”) h. The
utility U(vi, h) will be defined precisely on Sect. 3.2.

The allocation of uplink rate in BitMax is decided
based on the solution of a fractional knapsack prob-
lem [12] involving |V (v)| “items” vi, each with utility
U(vi, h) and weight W (vi) = u(v, vi), and a “knapsack”
with capacity u(v). Selecting items greedily accord-
ing to decreasing normalized utility U(vi, h)/W (vi) is
known to provide an optimal solution to such a knap-
sack. Let S ⊆ V (u) denote the set of nodes that make
it into the knapsack in an optimal solution. All nodes in
S are allocated their maximum attainable rate u(v, vi),
with the possible exception of the last (partially fit-
ting) one that is allocated the remaining upload capac-
ity up to the saturation3 of u(v). In the general case
this is less than the maximum attainable rate from v.
A selected node vi uses the allocated rate u(v, vi) to
download chunks at full rate from v but looses its allo-
cation if upon the completion of a chunk fails to request
a new one. In such cases, the unutilized bandwidth is
re-allocated to nodes in V (v)\S according again to their
normalized utility (i.e., it goes to the next most valu-
able nodes that didn’t make it into the knapsack in the
first draft).

3To use the full nominal rate of the uplink, one must also
consider some underutilization introduced by TCP’s con-
gestion control mechanism. In [16] it has been shown that
a small number of parallel TCP sessions (2-3) is enough for
capturing most of the capacity of a link.
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3.2 Utility functions

We examine two families of utility functions with dif-
ferent information requirements.

Bandwidth-based: In this case the utility is defined
based solely on bandwidth quantities as follows:

U(vi, h)=

8

>

>

>

<

>

>

>

:

h·u(v, vi) if h·u(v, vi) ≤ c

h·u(v, vi)+
„

h −
c

u(v, vi))

«

(u(vi) − λ(vi))
otherwise

The definition requires some explanation. The first
part is just the maximum amount of new information
that can be put from v to vi during the horizon h (we
set h to 10 seconds to match the duration of unchoke
intervals in BT). The second part materializes when at
least one complete chunk can be put into vi during h. In
that case, the utility is incremented by (h− c/u(v, vi)) ·
(u(vi)−λ(vi)). The first parenthesis is the time during
which vi will surely have at least one new chunk to serve
to its own neighbors, assuming that this first chunk from
v to vi is also of interest to enough of vi’s neighbors
to saturate its uplink. The second parenthesis captures
the maximum rate at which vi can push to its neighbors
new information that it gets from v – it is approximated
by taking the difference between vi’s nominal upload
capacity u(vi), and its aggregate incoming rate λ(vi)
from all other nodes but v (negative values are ok as
explained shortly).

Bandwidth/Interest-based: In this case, the util-
ity function factors in also the amount of interest from
neighbors of vi. The basic idea is that if vi, vj ∈ V (v)
have equal download rates from v and also equal upload
capacities, then v will choose whichever one is least in-
teresting to its own neighbors – this is the node that
has a more immediate need for new chunks to avoid
underutilizing its upload capacity. We denote η(vi) the
amount of interest to vi from its neighbors V (vi) and
quantify it as follows:

η(vi) =
1

|V (vi)|

∑

vj∈V (vi)

∣

∣Cvi
\
(

Cvi
∩ Cvj

)∣

∣

where Cvi
denotes the set of chunks held by vi, also

known as its bitfield. We use the interest to normal-
ize the second part of the previous bandwidth-centric
utility function.

U(vi, h)=

8

>

>

>

>

>

<

>

>

>

>

>

:

h·u(v, vi) if h·u(v, vi) ≤ c

h·u(v, vi)+
“

h −
c

u(v,vi))

”

(u(vi) − λ(vi))

η(vi)

otherwise

Justification: By unchoking nodes S ⊆ V (v) that
maximize

∑

vi∈S U(vi, h) node v attempts to contribute

to the maximization of the social utility of the network.
The approach is distributed, as each node has control
only of its own uplink, and of course heuristic, as it is
impossible to write precisely the contribution of v’s ac-
tions to the social utility of the network – the extent of
this contribution jointly depends on unknown present
and future decisions of other nodes. Nevertheless, our
utility functions try to take actions towards the general
“right direction”: Neighbors that can download fast are
preferred and are allocated exactly the maximum rate
they can sustain under the current uplink, downlink
and network bottlenecks. Thus the uplink of a node is
saturated using the minimum possible amount of parti-
tioning, as justified earlier in Sect. 2.

Besides being sensitive to how fast vi can download
from v, the allocation jointly factors in how fast vi can in
turn forward to nodes in V (vi) the chunks it gets from v.
This rate is estimated by subtracting from vi’s nominal
upload capacity u(vi), its current aggregate reception
rate λ(vi) from nodes other than v. A low or negative
value indicates that vi is already receiving new chunks
fast enough from other nodes and thus should not be
allocated additional bandwidth from v. When η(vi) is
also known, normalizing by it improves our estimate of
which node is in the biggest need for new chunks. With
these simple load-balancing heuristics our allocations
attempt to make sure that in the process of optimizing
the social utility of the network, no node is left too much
behind in terms of reception rate.

In terms of computational requirements, BitMax re-
quires sorting the neighbors according to normalized
value once per unchoking interval and, therefore, is as
complex as the standard choke/unchoke that requires
sorting according to reception rate. The additional re-
mote information required for executing BitMax (u(vi)’s
and λ(vi)’s) can either be reported by nodes, or be in-
ferred, depending on the assumed setting, as elaborated
later in Sect. 5.

4. EVALUATION

4.1 Preliminaries

All our evaluations are based on flow-level discrete
event simulation conducted using the publicly available
peer-to-peer simulator GPS [17]. We patched the BT
protocol implemented in GPS with minor bug fixes, and
implemented the two versions of BitMax uplink alloca-
tion described in Sect. 3 (labelled MAX1 and MAX2
respectively). We also implemented a standard tracker
that bootstraps new peers by providing them with ran-
domly generated lists of 50 neighbors.

Peer model: Like most previous work [7, 18], we fo-
cus on peer arrivals that correspond to a flash crowd,
and thus all of our peers are assumed to be arriving
uniformly at random within a small initial interval of
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10 seconds. Regarding peer departures, we considered
two cases: peers that stay connected until the end of
the simulation, and peers that disconnect immediately
after becoming seeds. In our experiments we explored
the following settings: a total number of peers in the set
n = {50, 100, 500}, and a standard file sizes FS = 500
MB. If not otherwise stated, in the following we present
results for n = 100 peers, and a single initial seed. We
chose this torrent size because it appears frequently on
real measured torrents [13]. Furthermore, the torrent
size is large enough to avoid having all the peers neigh-
boring the initial seed, which is the typical case for very
small torrents. It has been shown in [5], and also dis-
cussed later, that BT fares very well in that case.

Physical network model: The underlying physical
network is modeled at the IP-level using synthetically
generated “transit-stub topologies” from BRITE [19].
The core of the network consists of 5 transit nodes
(representing different ISPs) forming a complete graph.
Each transit node has attached to it 200 stub nodes,
representing residential ADSL connections. We placed
our n peers randomly on these stubs and assumed up-
link capacities that are in line with previous works,
e.g., [7, 6]. Specifically, we used the same uplink capac-
ity distribution of [6], that has been obtained through
real-life measurements over a large set of torrents. Such
a distribution corresponds to a commonly assumed pop-
ulation of mostly slow and fast ADSL mixing with few
very fast peers connected through corporate and univer-
sity networks. In all simulations we used a fluid model
of TCP in which different competing flows receive equal
shares of the link’s capacity.

Bottleneck scenarios: In the least constrained sce-
nario (caseU ), we consider only uplink bottlenecks dis-
tributed as above. Downlink capacities are assumed
to be infinite in this case. We complement this basic
scenario with two additional ones. In the first (case
UD), we constrain the downlink capacity of a peer to
be a multiple of the uplink capacity (in our experiments
we assume a multiplicative factor of 3.5, see [7, 6]). In
the second (case UDN ), we introduce additional bottle-
necks at the core of the network in order to model the
effects of P2P traffic-throttling at ISP peering points.
We implement these as follows: Connections between
peers belonging to the same ISP behave as in case UD,
whereas connections that cross ISP boundaries are sub-
jected to throttling which we simulate by constraining
the total available bandwidth to them at the peering
point. We explore different throttling intensities, repre-
senting 10%, 20% and 40% of the average peak-traffic
that would be required under case UD. We obtained
such peak demand by simulating case UD and com-
puting the traffic matrices of the different ISPs (using
multiple runs to remove noise). From these matrices we
estimated the peak demand at each transit link. Taking

10%, 20% and 40% percentages of this peek gave us the
nominal rates of 2 Mbps, 4 Mbps and 8 Mbps, which we
used as bottleneck capacities of the transit links in or-
der to simulate the effect of throttling. Bindal et al. [2]
have used similar values in their work on locality-aware
tracker design.

Metrics: We now define our evaluation metrics.

• Download time: This is the most natural met-
ric for assessing the effectiveness of a torrent. We
report the cumulative distribution function of the
time required by different nodes for downloading
the entire file. To ease the comparison between
different policies, we also present side by side the
most important percentiles.

• Service capacity: This metric captures the uti-
lization of the aggregate uplink capacity. In this
work, we focus on absolute values: We compute
the service capacity by counting the number of
chunks (of size 256 KB) uploaded in total in the
network over a time window of 10 seconds (i.e., in
the duration of a standard unchoke interval) and
express it in Mbps.

• Average number of unchoked peers: We com-
pute the time-series of the average number of un-
choked peers to study the effects of the dynamic
uplink allocation policies of BitMax. We parti-
tioned the set of peers in an experiment to distin-
guish slow peers from fast peers and compute the
average number of unchoked peers every second4.

All the results reported in Sections 4.2, 4.3 on the
above metrics were obtained by repeating each experi-
ment 10 times. In each execution, peer uplink capacities
were drawn randomly from the aforementioned uplink
bandwidth distribution. The initial seed is assumed to
be well provisioned with an uplink capacity of 10 Mbps.
As we are primarily interested on cooperative scenarios,
if not otherwise stated, we consider that leechers stay
in the system after they finish downloading.

As a final note before presenting our results we would
like to point out that in this work we are primarily inter-
ested in extending the design space of uplink allocation
policies so we cannot, for many practical reasons, ex-
amine the parameter space as exhaustively as previous
works [7, 5] that have focused specifically on the sec-
ond. Therefore, we do not report results for underpro-
visioned seeds, or for seeds that depart before all peers
are served, or file sizes other than 500 MB. Although we
do not show them here, we have sampled points across
this parameter space as well, and consistently see sub-
stantial improvement through BitMax. Of course, we

4We did not use a choke interval period to compute this
metric as peers are not synchronized.
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Figure 2: Case U: CDF of download times for BT and for the two BitMax uplink allocation algorithms

(FS = 500 MB). In the median case download times are halved with both versions of BitMax as compared to

BT; worst-case download times are also in favor of BitMax.
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Figure 3: Case U: Aggregate service capacity, absolute value (FS = 500 MB). A considerable gap during the

steady state phase appears, as shown by the peak aggregate upload capacity.

do not claim any kind of general optimality since Bit-
Max is itself a heuristic.

4.2 Bottleneck only at the uplink

We start with the case in which node uplinks repre-
sent the only bottlenecks of the system (caseU ).

Fig. 2(a) and 2(b) illustrate the CDF of the down-
load time across different peers, for n = 500 and n =
100 peers respectively. Both versions of BitMax yield
substantial performance improvements over BT. When
n = 500 peers, MAX1 and MAX2 have a median down-
load time of 740 sec. and 760 sec. respectively, whereas
BT has a median of roughly 1550 sec. The worst case
download time for MAX1 and MAX2 is below 1500 sec.
while in BT the worst case download time is roughly
2200 sec. The gap widens even more for a smaller sys-
tem: when n = 100 peers, the median and the worst
case download time is halved for MAX1 and MAX2
with respect to BT.

The faster downloads are due to BitMax’s superior
overall utilization of uplink capacity. To support this
claim, we plot in Fig. 3(a) and 3(b) the time series of

service capacity for the different policies, expressed in
terms of absolute upload rate. We observe the typi-
cal three phases [13] that characterize the lifetime of
a swarm-based system: an initial flash crowd phase
generally characterized by low utilization, an interme-
diate phase during which peers reach the maximum
attainable rate under the employed uplink allocation
policy, and a final phase during which the last few re-
ceiving peers approach the completion of the download.
With BitMax, the duration of the flash crowd phase is
very short. Indeed, the system reaches in a very short
time an efficient steady-state regime in which aggregate
upload rate is close to the maximum attainable rate
(which is the sum of nominal uplink bandwidth across
all peers) and remains so constantly for a substantial
amount of time. In contrast, BT requires much more
time to reach a substantially lower peak value of service
capacity and the system spends a fairly large amount
of time in this sub-optimal state.

These results corroborate recent observations from
the literature stating that BT is suboptimal in several
occasions. This was first documented by Legout et al.
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Figure 4: A comprehensive overview of results: Boxplot of download times when more and more
stringent bottlenecks are introduced in experiments (n=100 peers, FS = 500 MB, for case UDN there
is a 2 Mbps network bottleneck). The two BitMax algorithms maintain their gain in performance over
BT across all scenarios, and they are less sensitive to severe network conditions. Note the different
scale of the boxplots: whereas BitMax remains superior to BT in all the scenario we considered,
downlink and network bottlenecks increase the time it takes to distribute the content to all peers.

in [13], but without providing a clear explanation. In a
follow up work, Hamra et al. [18] attributed it to clus-
tering phenomena among the first peers that arrive in a
torrent. Such “early comers” have the privilege of hav-
ing the initial seed in their neighborhood. As shown in
the aforementioned work, for a period of time the early
comers confine piece exchange among themselves, con-
demning late comers to low utilization. It is only once
the initial clique starts breaking that the aggregate sys-
tem capacity increases by involving more nodes in the
active exchange of chunks.

It’s quite evident from the previous plots that the ser-
vice capacity of BT is far from being optimal, especially
if one looks at the absolute value. Based on this obser-
vation, one could conclude that these results contradict
previous works reporting almost optimal uplink utiliza-
tion for BT [7, 5]. We explain why such a contradiction
does not exist. Bharambe et al. [7] report utilization
levels that exceed 90%, but they confine their analysis
to the steady-state phase of a torrent’s lifetime, exclud-
ing the initial phase of low utilization. We on the hand,
plot the evolution of service capacity throughout the life
time of the torrent. When focusing on the steady-state,
we see a utilization of around 60% under the uplink
capacity distribution that we got from [6], which is dif-
ferent from the synthetic one of Bharambe et al. [7]. We
repeated the experiment with this synthetic distribution
and verified that indeed BT achieves 90% utilization in
this case. The previous, is just a confirmation of our
main thesis in this study, which is that the effectiveness
of the standard pre-parameterized unchoke algorithm
depend on operating parameters and that more elab-
orate heuristics like BitMax are expected to perform
much better in several scenarios.

Similarly, there’s no contradiction with Legout et al. [5]

that report almost 100% utilization based on real mea-
surements. The key to understanding why, is to notice
that their experiment is conducted on PlanetLab and,
thus, involves a small number of nodes (around 40). In
such small torrents, peers form a fully connected mesh
and thus there’s no clustering effect to hurt the per-
formance. Almost as important, all peers neighbor the
well provisioned initial seed which makes things easier.

4.3 Adding downlink and network bottlenecks

We now study the effects of adding downlink and net-
work bottlenecks in the system. We are interested in ob-
serving the impact that the added constraints have on
the absolute download times, as well as on the relative
performance between BitMax and BT. For the down-
link bottleneck case we constrain the downlink capacity
to be a multiple of the uplink capacity, as discussed in
Sect. 4. We then move to a more elaborate scenario in
which network bottlenecks are introduced to simulate
the effect of bandwidth throttling at ISP interconnec-
tion points. We employ the methodology described in
Sect. 4 to decide the bottleneck values (caps) that we
introduce at the AS interconnection points of our syn-
thetic topology.

Figure 4 provides a global snapshot of download times
under BT and the two versions of BitMax, as we pro-
gressively go from the least constrained scenario, to the
most constrained one, in the following order: uplink
bottlenecks (caseU ), uplink and downlink bottlenecks
(caseUD), uplink, downlink and network bottlenecks
(caseUDN ). A glance at Fig. 4, in which we show the
case for a 2 Mbps bottleneck, reveals that the addition
of extra bottlenecks affects negatively all uplink alloca-
tion policies in a similar way: download times raise by
a factor of roughly 2.5 when introducing downlink bot-
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Figure 5: case U: Dynamic uplink allocation (n = 100, FS = 500 MB).
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Figure 6: case UD: Dynamic uplink allocation (n = 100, FS = 500 MB).

tlenecks and by a factor of roughly 4 when introducing
also network bottlenecks. However, BitMax preserves
its advantage both in median and worst-case download
times, which are halved with respect to BT.

4.4 Looking deeper into BitMax

Dynamic allocation of the uplink: Downlink and
network bottlenecks make it more difficult to sustain
a high uplink utilization. Their impact, however, is
more severe on allocation policies that have to adhere
to empirically preset operational parameters. For ex-
ample, under BT’s standard unchoke algorithm there
can be underutilization when allocating 1/(k + 1) of a
fast node’s capacity to nodes that are either slow, or
sit behind peering points that are being throttled. In
such cases, it is required to unchoke more nodes and
provide them with smaller bandwidth shares. BitMax
achieves exactly that by adapting the allocation dynam-
ically, in response to the current state of the torrent and
the physical network. For that purpose, we analyzed the
time series of the average number of unchoked peers (or
equivalently the number of “items” that are selected in
an optimal solution of the knapsack problem of Sect. 3).

Fig. 5 and 6, report the average number of unchoked
peers for case U and case UD for both MAX1 and

MAX2, differentiating between slow and fast peers. When
there are only uplink bottlenecks, Fig. 5 clearly indi-
cates that a peer using BitMax unchokes less than 4
remote peers, as opposed to what a peer obeying to BT
would do; hence, uplink capacity is more “focused”. We
also observe that for the MAX1 case, slow peers are not
always able to unchoke a remote peer because of data
un-availability, whereas for the MAX2 case, both slow
and fast peers arrive at focusing their uplink capacity
to peers that need it most.

When downlink bottlenecks are present, our results
indicate that in order to avoid underutilization due to
downlink and network bottlenecks, peers using one of
the BitMax policies adjust the number of unchoked
peers across a wide range of values beyond 4. Fig. 6
shows that once fast peers establish a high aggregate in-
put rate for themselves (up to 500 sec.), their attention
turns to slower peers that have started falling behind.
MAX1 and MAX2 behave similarly, except during the
initial phase in which MAX2 unchokes more peers due
to piece (in)availability, as explained in Sec 4.2. When
the cross-ISP traffic is subjected to bandwidth throt-
tling, the response of BitMax is similar to the downlink
bottleneck case – fast peers unchoke a larger number of
peers in order to saturate their uplink bandwidth. How-

9



 0

 1000

 2000

 3000

 4000

 5000

 6000
BT

MAX1
MAX2

(a) case UD, peers stay

 0

 1000

 2000

 3000

 4000

 5000

 6000
BT

MAX1
MAX2

(b) case UD, 50% peers leaves

Figure 7: Impact of peer departures: Boxplot of download times for case UD when all peers stay in
the system and for case UD when 50% of peers leave the system once they finish downloading (n=100
peers, FS = 500 MB). The two BitMax algorithms maintain their gain in performance over BT across
all scenarios, and they are less sensitive to peer departures, although we notice an increased variance
in the distribution times with peer departures.

ever, in this case, the maximum number of unchokes is
smaller because peers at other ISPs are not unchoked
unless they can sustain a minimal rate. This is required
for avoiding pathological cases in which a chunk may
delay too much due to a very small allocated rate.

Peer departures: We now examine the performance
of BitMax and BT when peers leave the system as
soon as they finish downloading the content. Fig. 7(a)
and 7(b) summarizes the results for download times in
caseUD with 50% of the peers leaving the system as
soon as they finish to download. As expected, we notice
a global increase of the median and worst case download
time for both BT and BitMax. Both versions of BitMax
still achieve better download times than BT. The higher
variance of download times owes to the added random-
ness introduced during the selection of the 50% of peers
that get to leave the torrent after becoming seeds.

5. DISCUSSION

In this section we first comment on implementation
requirements for integrating BitMax allocation in exist-
ing BT clients and then discuss the possibility of using
BitMax in non-cooperative environments (e.g., typical
file-sharing).

Implementation requirements: BitMax is a new
uplink allocation mechanism not a different protocol,
so integrating it to existing clients requires rather lim-
ited amount of modification. The required information
for executing BitMax can be obtained as follows. For
unchoked nodes, u(v, vi) can be updated by monitor-
ing the actual data transfers: if the ongoing transfer
is slower than expected then the estimate is adjusted
downwards; occasionally additional epsilons of band-
width can be used for detecting increases in the maxi-
mum attainable rate. For choked nodes, u(v, vi) can be

estimated through optimistic unchokes: a sensible strat-
egy for the “probing” node v can be to start with a small
initial rate and increase it progressively on subsequent
optimistic unchokes (e.g., double it) until it reaches the
maximum rate that the probed node vi can support. In
terms of remote information, each node v needs to know
u(vi) and λ(vi) for each neighbor vi ∈ V (v). This in-
formation can be piggybacked on HAVE messages. Of
course the reporting clients need to be trusted, which is
not a problem in the cooperative case. Next we discuss
the possibility of using BitMax in settings where users
might be selfish.

BitMax and selish peers: To use BitMax in this
case it would require to have a “closed client”. This is
the approach taken by Skype and other P2P systems
that users download and use as they are. The promise
of this approach is that if the system is well designed,
then users will adopt it because of its superior perfor-
mance. In the case of BitMax a closed client would
first of all guarantee that all nodes follow faithfully the
protocol and report truthfully their information (nom-
inal upload rate and current reception rate). If nodes
upload as dictated by BitMax, then as we showed in
Sect. 4, all nodes will enjoy high download rates. Since
the client is closed, a free-riding user that wants to pre-
serve its uplink, would have to use a third program (a fil-
ter) to drop the uploading chunks from its client before
they get transmitted on the network. Such attempts are
rather too elaborate for the average user and can also
be disclosed by having the client issue digitally signed
reports with the amount of data it has sent and the
exact recipients. A node receiving such a report and
realizing that it didn’t get the actual data can identify
the filtering and disclose the free-rider.
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6. RELATED WORK

In Cohen’s original paper [1], it was suggested that k
should be set equal to 4, so as to “allow TCP’s built-in
congestion control to reliably saturate the upload ca-
pacity”. Such empirical setting works indeed well when
there is high chunk availability (i.e., after the initial
phase) and when there are no losses in utilization of the
uplink due to congested receiving peers (which pretty
much implies that the peers should be highly homoge-
neous, the uplink and downlink rates be highly asym-
metric, and the network be imposing no bottlenecks).
As shown in Sect. 4, by adapting the allocation on a per
unchoke basis we can both improve the utilization dur-
ing the startup phase, as well as handle arbitrary set-
tings in terms of peer rates, amount of uplink/downlink
asymmetry, and even network bottlenecks.

Following the initial BitTorrent paper, some works
such as Bharambe et al. [7], and very recently again
Mol et al. [10], have asked the question of how much
should the uplink be partitioned, but provided no an-
swer. We have addressed such question through our
dynamic BitMax allocation based on the solution of a
knapsack problem. However, instead of being trapped
into a discussion of selfishness and tit-for-tat, we chose
to explore the full potential of uplink utilization, which
can only be realized with utility functions that target
the improvement of the social, instead of individual wel-
fare. We took care, nevertheless, to include in our ob-
jective functions, natural load balancing heuristics that
make sure that no node is “sacrificed” in the process
of optimizing the social welfare. Our BitMax policy is
obviously applicable in networks of peers working for
a common goal. In networks including potentially self-
ish peers, we believe there are ways to realize BitMax
through “closed” clients, but we have left the develop-
ment of a prototype system to future work.

Diametrically opposite to our approach is the recent
work of Piatek et al. [6] on the BitTyrant client. They
also show how to allocate the uplink dynamically on a
per unchoke basis, but with a different objective. Their
intention is to maximize the number of reciprocating
peers, so they strive to saturate the uplink by parti-
tioning it in as many pieces as possible, while taking
care to make each piece just large enough to guarantee
reciprocation from the receiving peer. As shown by the
authors, this becomes detrimental to the social utility
as the percentage of BitTyrant clients increases. Con-
trary to that, our allocation of uplink works towards
the improvement of the social welfare and is trying to
focus the allocation of bandwidth. For these proper-
ties, we could think of BitMax as being the opposite of
BitTyrant.

Several simulation[7] and measurement-based works
[4, 20, 13, 5] have shown that BitTorrent is quite ef-
fective during the intermediate phase in typical ADSL

scenarios where constraints are mostly on the uplink of
nodes. Our results are aligned with this previous works
and complement them by looking more closely at the
low utilization problem in the initial phase, and at ad-
dressing additional bottlenecks, especially at the core
of the network, caused by throttling of P2P traffic at
ISP interconnection points. Works that substitute Bit-
Torrent’s piece selection policy with network coding [21]
are also based on setting the number of parallel uploads
empirically and thus can benefit from our work.

Analytic works have shown that BitTorrent works ef-
ficiently once it reaches steady-state in large networks.
For example Qiu and Srikant [8] have shown that its “ef-

ficiency” becomes 1−
(

log n

n

)w

in such case (w denotes

the neighborhood size). This result is derived assuming
peers with homogeneous upload capacity and is oblivi-
ous to the way that this capacity is split. It also refers to
torrents that have reached high chunk availability, thus
it ignores the initial phase in a torrent’s life in which
utilization is low. Massoulie and Vojnovic [9] have pre-
sented a more refined analysis of steady-state dynamics
in which they used a contact process to model more
faithfully the exchanges of “coupons” (chunks) among
interacting peers (in [8] the specifics of the coupon ex-
change process were not modeled). Still they need to
make several simplifying assumptions as before, e.g.,
they consider that k = 1, and thus their analysis is not
able to discriminate among the different uplink alloca-
tion policies studied here.

7. CONCLUSIONS

In this work we set off to examine whether it is pos-
sible to improve the uplink utilization of BitTorrent,
and thus help in reducing further the download times
for the benefit of the users. In trying to meet such a
challenge, we had to question the efficiency of certain
design choices in the currently employed choke/unchoke
algorithm, which up to now, had not be justified suffi-
ciently. We did so through the development of our so
called BitMax allocation policy. Contrary to the exist-
ing empirically parameterized algorithm, BitMax allo-
cates the uplink dynamically in response to the current
operating conditions. Among other things, it tries to
focus instead of over-curve the uplink. It also avoids un-
derutilizing it by unchoking receivers that cannot fully
absorb the allocated rate (due to downlink or network
bottlenecks). To reduce the download times below what
an implicit coordination through tit-for-tat can achieve,
we built BitMax around objective functions that consis-
tently promote the social welfare of the torrent without,
however, sacrificing the download quality of any indi-
vidual peer in the process. BitMax is fundamentally
as simple as the standard unchoke algorithm, and has
certain concrete advantages over it: it fixes the low uti-

11



lization problem during the initial phase, it is better or
at least as good during the steady state, and it reacts
better to network bottlenecks. With these properties
we have demonstrated that it is in position to produce
significant performance gains in several settings.

8. REFERENCES

[1] B. Cohen, “Incentives build robustness in
BitTorrent,” in Proc. of First Workshop on
Economics of Peer-to-Peer Systems, Berkeley,
CA, USA, Jun 2003.

[2] R. Bindal, P. Cao, W. Chan, J. Medved,
G. Suwala, T. Bates, and A. Zhang, “Improving
traffic locality in BitTorrent via biased neighbor
selection,” in Proc. of IEEE ICDCS ’06, Lisbon,
Portugal, 2006.

[3] Slashdot, “Comcast Hinders BitTorrent Traffic,”
Aug 2007.

[4] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and
X. Zhang, “Measurements, analysis, and modeling
of bittorrent-like systems.” in Proc. of ACM
IMC’05, Berkeley, CA, 2005.

[5] A. Legout, N. Liogkas, E. Kohler, and L. Zhang,
“Clustering and sharing incentives in bittorrent
systems,” in Proc. of ACM SIGMETRICS ’07,
2007.

[6] M. Piatek, T. Isdal, T. Anderson,
A. Krishnamurthy, and A. Venkataramani, “Do
incentives build robustness in BitTorrent?” in
Proc. of NSDI’07, Cambridge, MA, 2007.

[7] A. R. Bharambe, C. Herley, and V. N.
Padmanabhan, “Analyzing and improving a
bittorrent networks performance mechanisms,” in
Proc. of IEEE INFOCOM ’06, Barcelona, Spain,
2006.

[8] D. Qiu and R. Srikant, “Modeling and
performance analysis of bittorrent-like
peer-to-peer networks,” in Proc. of ACM
SIGCOMM ’04, 2004, pp. 367–378.

[9] L. Massoulie and M. Vojnovic, “Coupon
replication systems,” in Proc. of ACM
SIGMETRICS ’05, Banff, Alberta, Canada, 2005,
pp. 2–13.

[10] J. Mol, J. Pouwelse, M. Meulpolder, D. Epema,
and H. Sips, “Give-to-get: An algorithm for P2P
video-on-demand,” in Proc. of SPIE/ACM
MMCN ’08, San Jose, California, Jan 2008.

[11] N. Laoutaris, P. Rodriguez, and L. Massoulie,
“ECHOS: edge capacity hosting overlays of nano
data centers,” ACM SIGCOMM Comput.
Commun. Rev., vol. 38, no. 1, pp. 51–54, 2008.

[12] C. H. Papadimitriou and K. Steiglitz,
“Combinatorial optimization: Algorithms and
complexity.” New York: Dover Publications,
1998.

[13] A. Legout, G. Urvoy-Keller, and P. Michiardi,
“Rarest first and choke algorithms are enough,”
in Proc. of ACM IMC ’06, Rio de Janeriro,
Brazil, 2006.

[14] M. Feldman, K. Lai, I. Stoica, and J. Chuang,
“Robust incentive techniques for peer-to-peer
networks,” in Proc. of ACM EC ’04, New York,
NY, USA, 2004.

[15] W. Feller, An Introduction to Probability Theory
and Its Applications. New York: Wiley, 1968.

[16] E. Altman, D. Barman, B. Tuffin, and
M. Vojnovic, “Parallel tcp sockets: Simple model,
throughput and validation,” in Proc. of IEEE
INFOCOM ’06, Barcelona, Spain, 2006.

[17] W. Yang and N. B. Abu-Ghazaleh, “GPS: A
general Peer-to-Peer simulator and its use for
modeling BitTorrent,” in in Proc. of
MASCOTS’05, Atlanta, GA, 2005, pp. 425–434.

[18] A. A. Hamra, A. Legout, and C. Barakat,
“Understanding the properties of the Bittorrent
Overlay,” Inria, Technical Report 00162088,
version 1, July 2007.

[19] A. Medina, A. Lakhina, I. Matta, and J. Byers,
“BRITE: An Approach to Universal Topology
Generation,” in Proc. of MASCOTS ’01,
Cincinnati, OH, Aug 2001, pp. 346–354.

[20] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips,
“The BitTorrent P2P file-sharing system:
Measurements and analysis,” in Proc. of
IPTPS’05, Ithaca, NY, 2005.

[21] C. Gkantsidis and P. Rodriguez, “Network coding
for large scale content distribution,” in Proc. of
IEEE INFOCOM ’05, Miami, FL, USA, 2005.

12


