
On the Impact of Incentives in eMule
Analysis and Measurements of a Popular File-Sharing Application

Damiano Carra

University of Verona

Verona, Italy

damiano.carra@univr.it

Pietro Michiardi

Eurecom

Sophia Antipolis, France

pietro.michiardi@eurecom.fr

Hani Salah Thorsten Strufe

TU Darmstadt

Darmstadt, Germany

{hsalah,strufe}@cs.tu-darmstadt.de

Abstract—Motivated by the popularity of content distribution
and file sharing applications, that nowadays dominate Internet
traffic, we focus on the incentive mechanism of a very popular,
yet not very well studied, peer-to-peer application, eMule.

In our work we recognize that the incentive scheme of eMule is
more sophisticated than current alternatives (e.g. BitTorrent) as it
uses a general, priority-based, time-dependent queuing discipline
to differentiate service among cooperative users and free-riders.
In this paper we describe a general model of such an incentive
mechanism and analyze its properties in terms of application
performance. We validate our model using both numerical
simulations (when analytical tractation becomes prohibitive) and
with a measurement campaign of the live eMule system.

Our results, in addition to validating our model, indicate
that the incentive scheme of eMule suffers from starvation.
As such, we present an alternative scheme that mitigates this
problem and validate it through numerical simulations and a
new measurement campaign.

Index Terms—Dynamic Priority, Performance Evaluation

I. INTRODUCTION

Consumption of digital content is one of the most popular

uses of the Internet, involving millions of end-hosts: content

distribution services, such as direct download/streaming sites

using One-Click Hosting (OCH)1 and peer-to-peer (P2P) ap-

plications dominate Internet traffic [1], [2], [3]. The popularity

of such services and applications, and their impact on Internet

traffic, has attracted a lot of attention in the past decade: the

literature is rich of extensive studies of P2P applications – and

in particular of BitTorrent – and OCH [4], with the goal of

measuring [5], understanding and modeling their performance

[6], [7], [8], [9].

In addition to the scaling properties and their performance,

an integral part of such services is the presence of incentive

mechanisms to combat “free-riders”, that is, users who do

not offer local resources (bandwidth and storage) but make

the most of the contributions of the mass. Although incentive

mechanisms are very important for P2P applications, they are

also adopted in OCH services to create differentiation between

unsubscribed and premium clients. A prominent example of

incentive scheme – or variations thereof – that has received

a lot of attention is that of BitTorrent [10], which has been

1For a list of such services the reader can refer to http://birnchen.ath.cx/
index.php?s=list File Hoster Liste.

proven [6], [11], [12], [13] to work well in fostering coopera-

tion among peers, albeit in the short-term, i.e., for the duration

of an individual file exchange.

The endeavor of this work is to focus on eMule/aMule

[14], [15], another file-sharing application that is very popular

among users (the community counts millions of peers) but less

studied in the literature. Specifically, we investigate the built-in

incentive mechanism as it is substantially different from those

implemented in other P2P applications, but has a wide range

of applications, including OCH services (e.g., WUpload2).

Instead of having short-term goals, as in BitTorrent, the

incentive mechanism in eMule is content-oblivious: users are

granted credits (using a fairly complex procedure) that are used

to gain service from other peers across multiple contents.

In this paper, we first recognize that the incentive scheme

of eMule is a special instance of a more general scheduling

mechanism, that awards resources (in the context of eMule,

upload slots) using a time-based priority queueing discipline.

We call this scheme a proportional differentiation mechanism

and propose a model to study its properties under realistic

settings, that is, we assume finite-capacity queues and include

churn, a characteristic trait of P2P applications where peers

may join or leave the system at any time. Our model is

validated both with numerical simulations and with an exten-

sive measurement campaign on the current deployment of the

eMule/aMule system.

Backed by our findings, we realize that the current im-

plementation of the incentive scheme in eMule suffers from

starvation: peers with little resources may have to wait for a

long time before being served by other peers. We thus propose

an alternative mechanism (that we call additive differentiation)

which mitigates starvation while maintaining the flexibility of

the original proportional mechanism in tuning service differ-

entiation using a handful of parameters. Finally, we validate

the additive scheme using numerical simulations and another

measurement campaign in which we deploy a modified aMule

client that implements our incentive mechanism.

The remainder of the paper is organized as follows. In

Sec. II we provide some necessary background on eMule and

we describe its incentive mechanism in detail. In Sec. III we

present a baseline version of our model and discuss the main

2http://www.wupload.fr/



results in terms of system performance, i.e., waiting times

experienced by eMule users to obtain their content. In Sec. IV

we extend the model to account for realistic settings and

we provide its numerical solution. In Section V we validate

our model using an extensive measurement campaign on the

current deployment of eMule. In Sec. VI we present the details

of an alternative incentive scheme, and we evaluate its impact

both numerically and through another measurement study. We

discuss the related work Sec. VII, and we conclude the paper

in Sec. VIII.

II. THE EMULE INCENTIVE SYSTEM

In this Section we describe the inner principles of the

priority discipline implemented in eMule [14], [16].

The motivation for eMule peers to use a priority scheme for

awarding upload slots to remote peers stems from the fact that

peers may behave selfishly and free-ride on system resources.

As such, the priority scheme is effectively an incentive mech-

anism that aims at fostering peer cooperation. However, unlike

other popular file-sharing applications such as BitTorrent [10],

which implements an instantaneous mechanism akin to the tit-

for-tat scheme, in eMule time plays an important role.

Each peer in eMule records the volume of data exchanged

(download and upload) with every other peer it has interacted

with in the past, for a finite amount of time. The combination

of these two values is referred to as credits. Such credits are

used to assign the priority that remote peers will be granted for

each content request. Note that credits are content oblivious,

i.e., they are accumulated by each peer independently of the

requested or served content. Furthermore, it should be noted

that credit associated to a peer are never stored on the peer

itself. For example, if peer A exchanged data with peer B and

C, both peer B and C will maintain a distinct value for the

credits of peer A. Credits are “sealed” such that the credit that

peer B holds for peer A cannot be forwarded to peer C.

A peer in eMule implements a time-dependent priority

discipline with preemption. For a generic request j received

from a remote peer, its priority over time is computed as

follows:

qj(t) =
(

t− Tarrival + T30Is(t)
)

· fp · Cj(t) (1)

where Tarrival is the arrival time of the request, t ≥ Tarrival, T30

is a constant equal to 30 minutes, Is(t) is the indicator function

for the service – which takes the value 1 if the request is in

service, and 0 otherwise – fp is a constant value associated to

each file, and Cj(t) is the priority coefficient for that specific

request (derived from the credits), which varies over time.

It is crucial to note that pending requests may change

priority class while they are waiting to be served (or even

while they are being served). Indeed, the coefficient Cj(t) is

computed as follows:

Cj(t) = max

(

1,min

(

2U(t)

D(t)
,
√

U(t) + 2, 10

))

where U(t) and D(t) is the total volume of data (expressed

in MBytes) respectively uploaded and downloaded at time t

by the peer that issued the request j, as tracked by the peer

currently acting as a single server queue for that particular

request j. In eMule, the constant fp can take one of the

following values: 0.2, 0.6, 0.7, 0.9, 1.8. As a result of the

“min” and “max” operations, we have that 1 ≤ Cj(t) ≤ 10.

In summary, the time-dependent, proportional priority

scheme adopted by the system designers introduces the notion

of the “history” of past interactions among peers to compute

the coefficients that govern the generic priority.

III. PERFORMANCE MODELING

In this section we provide a simple model that can be used

to evaluate the impact of the eMule incentive system on the

system performance (time spent in the system by the requests).

The model is represented by a single server queue with a finite

buffer and a scheduling discipline based on a dynamic priority.

For such a simple model, we provide a set of original, and

interesting, results. We then show how these results can be

used to study the eMule incentive system.

A. Time-Dependent Priority

We consider a M/M/1/k + 1 queue, where jobs, which

hereinafter we call requests, arrive according to a Poisson

process, and their service times are exponentially distributed.

Although the assumption of exponential service times is un-

realistic from a practical perspective (but it greatly simplifies

the analysis from the theoretical point of view), we will see

in the numerical results that the impact of such an assumption

is not significant.

The single server queue allows P different priority classes

(or groups): requests for group i (i = 1, 2, . . . , P ) arrive

according to independent Poisson processes with rate piλ,

where λ is the total arrival rate and pi is the probability that

the requests belong to group i, with
∑

i pi = 1. The request

processing time is exponentially distributed with parameter

µi = µ∀i. We note that this assumption of a unique service

rate µ reflects a system in which the requests arriving from

different priority classes concern the same set of “objects,”

and thus the service rate is the same, independently of class

i.
We define:

ρi =
piλ

µ
, ρ =

λ

µ
and W0 =

ρ

µ
,

where W0 is the expected completion time for the request (job)

in service.

Differently from the usual convention, we assume that a

request i has priority over another request j if its priority value

is bigger than the priority value of request j. We assume that

requests do not leave the system until they are served.

With a time-dependent discipline, the priority of a request

depends both (i) on the specific group it belongs to and (ii) on

the amount of time spent by such requests in the system. As

such, these schemes have the desirable property that request

starvation is not present (if ρ < 1): indeed, as the time

progresses, the priority of a request grows, and it is eventually

served by the system. The single server queue executes a
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Fig. 1. Examples of the evolution of the priority in case of proportional and
additive schemes.

simple scheduling process that selects the next request to be

served based solely on its instantaneous priority.

Let Tarrival be the arrival time of a request and let Tleave be

the time when the request leaves the system. We consider a

class of priority schemes in which the priority qi(t) at time

t assigned to a request belonging to group i is given by the

following general expression:

qi(t) = bi(t− Tarrival)
r
+ ai, (2)

with Tarrival ≤ t ≤ Tleave. Each priority group can be identified

by the coefficients bi and ai, with i = 1, 2, . . . , P , 0 < b1 ≤
b2 ≤ . . . ≤ bP and 0 < a1 ≤ a2 ≤ . . . ≤ aP .

In Figure 1 we show two different cases. On the left hand

side we show the case where ai = 0 , ∀i ∈ P and r > 1: the

priority over time of the requests follows a convex function.

In case of r < 1 we have a similar behaviour, with concave

functions. We label this approach the proportional scheme.

On the right hand side we show the case where bi = b,
∀i ∈ P and r = 1. The difference in terms of priority between

two requests remains constant over time. We call this approach

the additive scheme (the reasons for these names, proportional

and additive scheme, will become clear later in the paper).

B. Proportional Scheme: Main Results

We consider the case where the coefficients ai in Eq. 2 are

all set to zero, i.e., we consider the proportional scheme. The

literature is rich of studies that consider M/M/1 or M/G/1
single server queues that execute a variety of priority queueing

disciplines [17], [18], [19], [20]. However, prior works mainly

focus on systems with an infinite buffer size. Instead, in this

work we are interested in studying applications under the more

realistic assumption which accounts for a limited buffer.

We focus on closed systems, where the number of requests

inside the system is constant (equal to k+1), and a new request

is accepted only when the request in service leaves the system.

In this case the request arrival rate equals the service rate, i.e.,

λ = µ. Since the request processing time is exponentially

distributed, the arrival process is still Poisson. The group of

the new arrival is independent from the group of the request

that has completed the service.

Closed systems represent an analytically tractable approx-

imation of the heavy traffic regime, i.e., a regime where the

the offered load approaches the service rate. We are interested

in the heavy traffic regime, which is the one eMule operates

in: the request rate to access content approaches or is larger

than the service rate a peer can offer (cf. Sect. V).

Service without Preemption: In case of service without

preemption, once a request has been scheduled, the next

request will be scheduled only when the current request has

been fully served.

The authors in [21] have found an interesting relation in

case of a M/G/1 queue (i.e., with infinite buffer) and heavy

traffic regime (with an additional constraint, i.e., the parameter

r is set to one): the ratio between mean waiting times of two

classes depends on the ratio of the priority coefficients, i.e.,

Wi

Wj
→

bj
bi
.

In the following Theorem, we extend this result in case of

closed systems and without constraints for the parameter r.

Moreover, we provide a simple way to compute the mean

waiting times Wi for each class.

Theorem 1: Given any two priority groups i and j, the

mean waiting times Wi and Wj , in case of non pre-emptive

service, in closed systems, satisfies the following condition:

Wi

Wj
=

(

bj
bi

)1/r

. (3)

The mean waiting times can be computed as:

Wi =
1

b
1/r
i

k

µ

1
∑P

i=1
pi

bi1/r

. (4)

Proof: See Appendix A.

In other words, Theorem 1 indicates that, independently

from the traffic composition (i.e., the values of ρi), a time-

dependent priority discipline provides a proportional differen-

tiated service that depends on r and the coefficients bi and

bj .

The theorem is interesting because it also shows the relation

between the mean waiting times and the parameters of the

system (k, µ, r and bi) that can be tuned by the system

administrator.

Service with Preemption: We now consider the case in which

the service to any request can be interrupted by a new request

that, as time progresses, has gained a higher priority than

the currently scheduled one. The interrupted request can be

resumed if its priority resumes to be the highest.

Let Ti be the mean time spent in the single server queuing

system by a request belonging to priority class i, i.e., Ti =
E[Tleave−Tarrival]. Clearly, we have that Ti = Wi+1/µ, where

Wi is the mean waiting time for a request in the class i.
The following result holds:

Theorem 2: Given any two priority groups i and j, the

mean times spent in the system Ti and Tj , in case of pre-

emptive service, in closed systems, satisfies the following



condition:
Ti

Tj
=

(

bj
bi

)1/r

. (5)

The meantime spent in the system can be computed as:

Ti =
1

b
1/r
i

k + 1

µ

1
∑P

i=1
pi

bi1/r

. (6)

Proof: See Appendix B.

To the best of our knowledge, this result, or part of it, has

been never found before, not even in the infinite buffer case.

C. Relevance of the Main Results

The main results discussed above can be used to characterize

the performance of the eMule. In particular, we shall consider

next Theorem 2, since eMule clients offer a service with

preemption.3

Considering Eq. 1, let’s neglect the term T30Is(t) to simplify

the expression, and assume fp = 0.7 for each file (this is the

default value in eMule). In this case, Theorem 2 indicates that

if the mean download time for a request with top priority is

TH , then the mean download time for a request with the lowest

possible priority will be TL = 10TH (since the ratio between

the maximum possible value and the minimum possible value

of Cj(t) is 10).

In practice, however, the eMule system is more complex

than the model we presented so far. A more realistic model

should include the ability of eMule to allow parallel uploads

among Q slots; moreover, peer churn (dynamic departure of

peers, along with their requests) should also be allowed in the

model. In the following, we enhance our basic model but revert

to a numerical analysis due to the additional complexity we

introduced. In Sect. IV we show that the results of Theorem 2

still hold in a more realistic setting.

IV. NUMERICAL VALIDATION OF THE MODEL

We consider the following three modifications to the single

server model described in Sect. III-A:

1. We allow the service rate to be generally distributed.

This means that, with a closed system, the arrival rate

is generally distributed too.

2. The system serves Q request in parallel, giving to each

of them a service rate equal to µ/Q. The system has a

waiting line of k positions, therefore the total number of

requests in the system is k +Q.

3. The requests in the waiting queue can leave the system

at any time. In particular, the requests are active for

a random interval which is generally distributed. When

they become inactive, they leave the waiting queue –

in practice, when the client that has issued the request

disconnects, its request is discarded by the system. We

refer to this behavior as “churn.” Since we have a closed

system, if a position becomes available, it is immediately

3For the sake of completeness, we also presented the non-preemitve case,
which can be useful to model other incentive schemes such as the ones used
in OCH services (e.g., RapidShare, WUpload).

occupied by a new request. Note that this has an impact

on the arrival process. The new arrival belongs to class i
with probability pi, independently from the class of the

request that has left the system.

The model, with the above mentioned changes, is hard to

solve analytically, if not impossible. We therefore revert to a

numerical solution In particular, we make use of the Stochastic

Simulation (also known as Gillespie algorithm). In practice,

the model (which is a Markov process) is simulated for a

sufficiently long time, and then the statistics of interest are

taken. The approach is interesting since, given a performance

index, it is possible to estimate not only the mean, but also

the whole probability distribution; the error in the estimation

can be decreased to a desired level with the usual statistical

techniques (multiple runs, with evaluation of confidence inter-

vals). The drawback of this approach is that it does not provide

general results, but only the numerical solution of the specific

setting. Therefore, one should test many different settings to

obtain hints on the general behavior.

In the following, we show the numerical solutions obtained

with stochastic simulations and compare them with the theo-

retical results obtained in Sect. III-B. We observe that part of

the theoretical results hold even with the three modifications

explained above. We will show only some representative

results for the preemptive case, but we have obtained similar

results for the non-preemptive case and with many different

settings (e.g., with many different service time distributions),

that we omit from this paper due to lack of space.

We consider four classes with parameters bi equal to 1, 2, 4

and 10 respectively, and equal probability, i.e., pi = p = 0.25.

We set the parameter r (see Eq. 2) to 1. The buffer size

is k = 1000 and the service rate for requests is Weibull

distributed with scale parameter µ = 10 and shape parameter

s. We consider a Weibull distribution since, by changing

the shape parameter, it is possible to obtain a light tailed

distribution (s > 1), a heavy tailed distribution (s < 1) or

an exponential distribution (s = 1).

We start validating our stochastic simulation solver against

the main theoretical results (Theorem 2), i.e., we use a shape

parameter s = 1 to obtain an exponential distribution, the

system serves Q = 1 request at a time, and we have

requests that are always active (no churn). Table I shows the

mean time spent in the system by the requests belonging to

different classes. The second and the third column show the

absolute values of the Tis, theoretical and simulated (with the

corresponding 98% confidence interval). Moreover, the last

column shows the ratio between T1 and Ti: considering class

1 as the reference class, the ratio should be equal to bi/b1.

Since b1 = 1, then the ratio should be equal to bi, i.e., the last

column should be equal to the first column. The results show

a clear match between theoretical and numerical results, thus

validating our numerical solver.

We now consider the case where the distribution of the

service time is heavy tailed (s = 0.5), the system serves

Q = 6 requests in parallel, and there is churn: we assume

that the requests are active for a random interval, which is



TABLE I
MEAN TIME SPENT IN THE SYSTEM: VALIDATION OF THE NUMERICAL

SOLVER OF THE M/M/1 CLOSED SYSTEM MODEL (FOR THE NUMERICAL

RESULTS, 98% CONFIDENCE INTERVALS ARE SHOWN).

bi T theor
i

T numeric
i

T numeric
1

/T numeric
i

1 2162.16 2157.99 ± 6.30 –

2 1081.08 1080.26 ± 3.02 2.00± 3 · 10
−5

4 540.54 540.86 ± 1.58 3.99± 0.01

10 216.21 216.93 ± 0.64 9.96± 0.05

Weibull distributed, with scale parameter equal to 600 and

shape parameter equal to 0.7 (heavy tailed distribution). Note

that, with this level of churn, approximately 33% of the

requests leave the system while waiting to be served.

The main difference with respect to the basic model is that

it is not possible to compute the absolute values of the Tis. On

the other hand, the proportional property, i.e., Ti

Tj
=
(

bj
bi

)1/r

,

is still valid, as shown in Table II

TABLE II
MEAN TIME SPENT IN THE SYSTEM IN CASE OF CHURN, MULTIPLE

PARALLEL UPLOADS AND SERVICE TIME WEIBULL DISTRIBUTED (WITH

98% CONFIDENCE INTERVALS ARE SHOWN).

bi T numeric
1

/T numeric
i

1 –

2 1.99± 0.001

4 3.97± 0.002

10 9.86± 0.006

Table II shows the case where all the three modifications –

service time Weibull distributed, Q requests served in parallel,

and churn – are applied. We have tested the impact of each

modification alone: none of them has an impact greater than

the others, therefore all of them concur in the slight deviation

with respect to the proportional property.

In summary, the basic M/M/1 closed system model rep-

resent a good approximation even for more complex systems,

with different service time distributions, number of requests

served in parallel and levels of churn.

V. MEASUREMENTS

In this section we provide the results of an extensive

measurement campaign on the eMule system in order to

further validate our theoretical results: in essence we study

the accuracy of our model in predicting the performance (in

terms of mean time spent in the system) achieved by eMule

with its credit system.

The eMule system differs from the model in many details.

For instance, we will show that it works under heavy traffic

regime, i.e., the offered load is close to the service rate, while

in our model we have assumed a closed system. Moreover,

credits depend on the amount of data downloaded and up-

loaded, therefore they change over time: this behavior can not

be modeled with simple tools, therefore we can only observe

its impact on the main performance metric.

A. Setup

For our measurements, we take the perspective of a single

node that serves the requests for non copyrighted content

issued by other peers. As such, we have instrumented an

aMule client (version 2.2.6, [15]) to log different information.

Among them, we consider all the events related to the aMule’s

incentive system: in particular, we record when a node issues

a request (i.e., the request enters the waiting queue) when

the request is served (i.e. it leaves the waiting queue and

takes a serving slot), when the request has been completely

served or when it is sent back in the waiting queue (e.g., as

a result of preemption). Additionally, our instrumented client

reports all the incentive-related numerical values, such as bytes

uploaded to other peers, bytes downloaded from other peers,

and computed credits.

The log traces we obtain require post-processing, since they

contain data that may affect the analysis. For instance, when

we compute the total time spent in the system, we consider

peers that have left after downloading the content, i.e., we filter

partial sessions due to churn.

Another issue is related to the time-varying nature of eMule

credits: since the credits depends on the amount of data

uploaded and downloaded, the credits of a generic peer may

change over time. To simplify our analysis, we have divided

the possible credits in ten classes: class i contains the peers

with credits greater or equal to i − 0.5, but smaller than

i+0.5. The only exceptions are class 1, which contains peers

with credits between 1 and 1.5, and class 10, which contains

peers with credits between 9.5 and 10, since eMule imposes a

minimum and a maximum value for Cj(t) (equal to 1 and 10

respectively). We have verified that most of the peers remain

in the same class during our experiments, and we have filtered

out the (very) few exceptions.

In our measurement campaign we have tested our instru-

mented client in different locations and periods of times. In the

following, we will show some representative results in which

we tested two values of buffer size (300 and 100 positions)

and two values of available bandwidth for serving requests

(240 and 360 kbit/s). We have imposed a single serving slot,

i.e., at most one peer can be served at a time, while the others

are put in the waiting queue. This was done to minimize the

time peers spent in the system and avoid the side-effects of

churn during service time.

In all the tests we have performed, the number of arrived

requests have been greater than the requests that our system

was able to serve. This translated in a buffer completely full

for most of the time, except at the beginning of the experiment

and in few other small intervals. These observations validate

the heavy traffic regime assumption and its approximation with

a closed system.

B. Results

Table III shows the results (time spent in the system ,

expressed in minutes) with bandwidth 240 kbit/s and different



buffer sizes. For each class (first column, which provides the

values of the coefficients bis) we show the number of samples

that contributed to provide the mean download time, along

with the mean download time itself and the 95% confidence

interval. Note that, differently from the numerical solution

presented in Sect. IV, where we have performed multiple short

runs, here we can only analyze a single, long observation (the

experiment covers approximately 12 days).

Since we have a single observation, we can not compute the

ratio with the corresponding confidence interval as we have

done with the numerical solution in Sect. IV. We therefore

consider an alternative approach: we use the download time

of the lowest priority class (for which we also have the

highest number of samples) as a reference Tj , and we compute

the download times of the other classes, Ti applying the

proportional property of Theorem 2, i.e., Ti =
bj
bi
Tj . The last

column shows the results of such computation.

TABLE III
MEASUREMENTS RESULTS WITH BANDWIDTH 240 KBIT/S AND DIFFERENT

BUFFER SIZES.

Mean (minutes) Expected

Class # samples with 95% Conf. Interv Mean

Buffer size k=300

1 4289 375.6 ± 4.33 -

2 61 158.8 ± 19.18 187.8

3 13 145 ± 22.74 125.5

4 127 73 ± 4.71 93.9

10 287 35.2 ± 1.71 37.6

Buffer size k=100

1 5453 135 ± 2.6 -

2 25 77 ± 16.9 67.5

3 72 75.2 ± 25.0 45

6 30 22.4 ± 4.6 22.5

8 68 17.2 ± 3.2 16.88

10 63 16.9 ± 2.23 13.5

The confidence interval of each class overlaps or is close

to the mean theoretical value. Considering the approximations

made to compute the performance indexes during the measure-

ments, we can observe a good match between measurements

and theoretical values.

As already noted before, Theorem 2 provides the absolute

values of the Tis in case of service time exponentially dis-

tributed. Nevertheless, looking at the expression of Ti, it is

possible to note that there is a linear dependence between

Ti and the buffer size k. The results presented in Table III

suggest that this linear dependency seems to exist even in

the real system. We will analyze in detail this aspect as a

future work. As for the mean service rate µ, Theorem 2 shows

a linear dependency between Ti and 1/µ. Additional tests

with different server bandwidths (not shown here for space

constraints) suggest that in this case the linear dependency is

not present.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
3

10
4

10
5

P
D

F

time

proportional
additive

FCFS

Fig. 2. PDF of the waiting times for different priority schemes.

VI. AN ALTERNATIVE INCENTIVE SYSTEM

In this Sec. we illustrate a problem with the credit system

currently implemented in eMule, using our model. We show

that the distribution of the request waiting times with a scheme

akin to proportional differentiation exhibits heavy tails which

imply that requests from low priority groups may require a

very long time before they are served.

As such, we propose, analyze and validate an alternative

time-dependent priority discipline that can be obtained from

Eq. 2 when we set the coefficients bi = b, ∀i ∈ P and

r = 1. With such settings, the difference in terms of priority

between two requests remains constant over time (see Fig.1):

we call this approach additive scheme. We then compare, using

a numerical approach, the complete distribution of the waiting

times for both the additive and proportional schemes, and show

that the additive approach mitigates the effects of starvation.

A. Distribution of the Waiting Times: Results From a Numer-

ical Analysis

In this section we are interested in understanding some

basic properties of the complete probability distributions of

the request waiting times. Since it is hard to derive such

distributions analytically, we take a numerical approach which

is similar to that developed in [22]. In particular, we have

used our numerical solver based on Stochastic Simulations

(cf. Sec. IV) to obtain the results. We assume a finite buffer

of size k = 5000.

We compare the distribution obtained by three service disci-

plines: (i) the basic First Come First Serve (FCFS) discipline,

(ii) the time-dependent proportional scheme (Sec. III-B) and

(iii) the time-dependent additive scheme.

Specifically, for the proportional scheme we generate a large

set of requests whose priority class is uniformly distributed in

the interval bi ∈ {1, 50}, with r = 1 and ai = 0 ∀i ∈ P .

Similarly, we evaluate the additive scheme for a set of re-

quests whose priority class is identified by coefficients chosen

uniformly at random in the set ai ∈ {1, 2500}, with r = 1
and bi = 1 ∀i ∈ P . The results of our experiments consist in

the empirical probability density function (PDF) of the request

waiting times in the system, and are depicted in Figure 2.

Our results indicate that, for the FCFS scheme, the PDF

of the waiting times exhibit a peak around the mean waiting

time, as expected. Figure 2 illustrates that, for the proportional



case, the PDF exhibits heavy tails, a result also observed in

[23]. We performed another experiment with bi ∈ {1, 10} to

study the sensitivity of the proportional scheme to the range

in which the coefficient bi can take value: also in this case,

the results (that we do not report here for the sake of clarity)

show a PDF with heavy tails.

In [23], the authors consider also the additive scheme:

they show that the additive scheme exhibits heavy tails if

the coefficients ai are selected from a probability distribution

that has heavy tails. This means that, if the coefficients are

bounded, i.e., ai < amax, ∀i ∈ P , the waiting time distribution

does not have heavy tails, as our numerical results confirm

(see Fig. 2). We note that the PDF is centered around the

mean waiting time of the FCFS scheme, which is due to

the uniformity of the distribution of the coefficients ai, and

has a support that is correlated to the difference between the

maximum and minimum values of the coefficients ai.
In summary, proportional and additive differentiation repre-

sent a powerful way to control the resources dedicated to the

different priority classes, and thus their relative performance

in terms of waiting times. However, a system based on the

proportional scheme exhibits heavy tails in the distribution of

the waiting times. Instead, the additive scheme, independently

from the coefficients ai, does not exhibit heavy tails.

B. Main Results for the Additive Scheme

For the additive scheme, we are able to find general results

which are valid for both the non pre-emptive and the pre-

emptive cases. We assume, as in Sec. III-A, a M/M/1/k+ 1
closed system.

Theorem 3: Given any two priority groups i and j, the

mean waiting times Wi and Wj , for both the non pre-emptive

and the pre-emptive cases, in closed systems, satisfies the

following condition:

(Wi −Wj) →
aj − ai

b
(7)

The mean waiting times can be computed as:

Wi = −
ai
b
+

k

µ
+

1

b

P
∑

i=1

piai. (8)

Proof: See Appendix C.

As for the proportional case, Theorem 3 provides a relation

between the mean waiting times independently from the traffic

composition (i.e., the values of ρi). Moreover, having a simple

expression for the absolute values of Wi, allows us to easily

evaluate the impact of the system parameters on the waiting

times. To the best of our knowledge, this result, or part of it,

has been never found before, not even in the infinite buffer

case.

C. Results

As previously done for the proportional case, we first

evaluate the model when we introduce the three modifications

explained in Sec. IV: service time Weibull distributed, Q
requests served in parallel, and with churn. The parameters

of the service time distribution and of the request online time

remain the same used in Sec. IV. The coefficient b is set to

one, while the coefficients ai are set to 14, 28, 56 and 140

– note that such coefficient are the values 1, 2, 4 and 10 all

multiplied by 14, the reason of which will become clear below.

The number of requests served in parallel is Q = 6.

As previously noted, it is not possible to compute the

theoretical absolute values, therefore we will consider the main

property of Theorem 3, i.e. (Wi−Wj) → (aj−ai)/b. Table IV

shows the results obtained for the additive scheme. The second

column shows the difference between the coefficients ais and

the last column shows the difference between the mean waiting

times, showing a good match. We obtained similar results with

different settings (service time distribution, distributions of the

churn, different values of Q). This means that, even for general

distributions, the single server queue model represents a good

approximation of the system.

TABLE IV
MEAN TIME SPENT IN THE SYSTEM WITH THE ADDITIVE, 98%

CONFIDENCE INTERVALS ARE SHOWN).

ai ai − a1 W numeric
1

−W numeric
i

14 – –

28 14 15.11 ± 0.56

56 42 44.75 ± 0.51

140 126 130.79 ± 0.51

Once tested that the model maintains the properties for

the general case, we have performed a new measurement

campaign with a modified aMule client. In particular, we have

implemented the additive scheme by modifying the computa-

tion of the instantaneous priority, i.e., Eq. 1: the instantaneous

priority is set to

qj(t) =
(

t− Tarrival

)

+ fp · Cj(t) · α (9)

We have not modified the values of the coefficients Cj(t), but

we have introduced a parameter α to differentiate better the

classes. In particular, we set α = 20. The value of fp ·Cj(t)·α
corresponds to the coefficient ai in Eq. 2. Since the default

value of fp is 0.7, and the minimum and the maximum values

of Cj(t) are 1 and 10 respectively, then the minimum and the

maximum values of ai are 14 and 140. In general, class i will

have coefficient ai = i · 14, i = 1, . . . , 10.

The measurement setup is similar to the one used for the

proportional case (cf. Sec. V). In particular, we have k = 100
positions in the waiting queue, and a server bandwidth equal

to 240 kbit/s. Table V shows the measurement results. For each

class, we show the value of the coefficient ai, the mean waiting

time (in minutes) with the 95% confidence interval, and the

expected mean computed according to the main property of

Theorem 3. In particular, we have used class 1 as reference,

and we have computed the mean waiting time as Wi = W1 +
a1 − ai. The confidence interval of each class overlaps with

the mean theoretical value.



TABLE V
MEASUREMENTS RESULTS WITH BANDWIDTH 240 KBIT/S AND DIFFERENT

BUFFER SIZES.

Mean (minutes) Expected

ClassID ai # samples with 95% Conf. Interv Mean

1 14 778 202.5 ± 8.2 -

8 112 10 107.0 ± 12.2 104.5

10 140 10 83.3 ± 15.9 76.5

In a generic uncontrolled environment, the additive scheme

is then able to provide service differentiation that depends

solely on the parameters of the incentive scheme.

VII. RELATED WORK

Incentives in P2P system have been the subject of many

studies in the past few years – see [11], [13], [24] and the

references therein. None of such studies, nevertheless, has

considered the incentive system adopted by eMule. Our work

not only provide a model for the incentive system, but also

show the results of a set of measurement campaign in real

settings.

With respect to the model, single server queues with time-

dependent priority disciplines have been studied originally in

[18] for the linear case (i.e., r = 1), and in [19], [20], [25] for

more general cases (r > 0). None of such works considers a

finite buffer and closed systems, as we do in this work. Only

[21] considered the heavy traffic regime for the linear time-

dependent priority scheme (r = 1) and infinite buffer, so our

results for the proportional scheme represent a generalization

of the results in [21].

The heavy traffic regime for the linear time-dependent

priority (i.e., r = 1), and some of the properties related to

the proportional scheme, has been also studied within the

Proportional Delay Differentiation (PDD) framework [26],

[27]. As previously pointed out, we consider the general case

with any value of r > 0 and finite buffer.

Also the authors in [26] study the properties of the additive

scheme under heavy traffic, in the specific case with bi = b =
1; however, they do so using a simulation-based approach.

Instead, we consider the general additive scheme with bi = b
and we provide analytical results of its properties for closed

systems.

Finally, all the above works consider systems and applica-

tions with no preemption, i.e., a single server queue in which,

once a request has been scheduled, it will be served before any

other request will be considered for scheduling. In contrast, we

provide results also for the pre-emptive work conserving case.

VIII. CONCLUSION

In this work we considered the incentive scheme adopted by

eMule / aMule, and studied its impact on the application by

modeling it as a time-dependent priority discipline. We showed

that service differentiation – that is, peers are granted upload

slots as a function of their contribution – is achieved with a

sophisticated combination of a “tit-for-tat”-like discipline, that

materializes in credits assigned to peers, and a time-dependent

priority scheme, where priority is assigned to peers based on

their credits. Essentially, the incentive mechanism of eMule /

aMule takes into account both the level of contribution of a

peer and the time it has spent waiting to be served.

Our analysis showed that it is possible to derive simple

laws that govern the service differentiation achieved by a

range of priority mechanisms, including that of eMule. In

practice, the relative performance of peers can be determined

by configuring a handful set of parameters. We validated

our model and an extension thereof (which accounts for

general service rate and churn) both numerically and with a

measurement campaign on the live eMule / aMule network.

Moreover, we identified an area in which the current eMule

incentive scheme could be improved: instead of using a

proportional service differentiation, in which some peers suffer

from starvation, we proposed an additive scheme that mitigates

such problem. We analyzed and validated our scheme through

numerical simulations and an additional measurement cam-

paign, and showed that our approach maintains the property

of the proportional scheme in that a handful set of parameters

is sufficient to regulate service differentiation.

In conclusion, we remark that our model can be applied to

other applications – e.g., OCH services, scheduling systems

– that necessitate service differentiation, with or without the

component that accounts for the level of contributions of the

entities involved.
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APPENDIX A

PROOF OF THEOREM 1

We consider a generic request coming from group p, and

its mean waiting time, Wp. We start from the P simultaneous

equations used to derive the time spent in the system defined

in [18]. Let Ni be the mean number of requests of group i in

the queue, and let fip be the expected fraction of such requests

which receive service before the newly arrived request from

group p.

Let Mi be the mean number of requests of group i which

arrive during Wp, and let gip be the expected fraction of such

requests which receive service before the generic request of

group p we are considering.

Given these definitions, for a generic class p we have:

Wp = W0 +

P
∑

i=1

Nifip
µi

+

P
∑

i=1

Migip
µi

. (10)

We need to compute the different parameters. In case of Ni,

we can use Little’s theorem, obtaining Ni = λiTi. In case

of Mi, when observing the system for Wp seconds, we see

Mi = λiWp arrivals. In both cases, Ni and Mi, the mean

arrival rate λi is equal to piµ (recall that the group of the new

arrival is independent from the group of the request that has

completed the service).

For the parameters fip and gip, we note that the derivation

obtained in [18] and [25] are based only on the Little the-

orem, which is still valid in our case with a closed system.

Therefore, we can use those results and arrive at the following

expressions:

fip =

{

(bi/bp)
1/r i < p

1 i ≥ p

gip =

{

0 i ≤ p

1− (bp/bi)
1/r i > p

Combining all the information, we obtain

Wp =

W0 +

p−1
∑

i=1

ρiWi

(

bi
bp

)1/r

+

P
∑

i=p

ρiWi

1−

P
∑

i=p+1

ρi

(

1−

(

bp
bi

)1/r
) . (11)

At this point, [18] invokes the Kleinrock’s conservation law

to simplify the expression. Since we are considering a closed

system, we analyze Eq. 11 without using the Kleinrock’s

conservation law. For the lowest priority group (p = 1), noting

that
∑P

i=2 ρi = ρ − ρ1, in case of a closed system (ρ = 1),

from Eq. 11 we obtain

W0 +

P
∑

i=1

ρiWi = b
1/r
1 W1

P
∑

i=1

ρi

b
1/r
i

. (12)

For the group with p = 2, Eq. 11 becomes, after some

manipulation,

W2 =

W0 +
P
∑

i=1

ρiWi − ρ1W1

(

1−

(

b1
b2

)1/r
)

1−

P
∑

i=3

ρi + b
1/r
2

P
∑

i=3

ρi

b
1/r
i

. (13)

The numerator of the fraction, with the help of Eq. 12, can be

transformed in

b
1/r
1 W1

P
∑

i=1

ρi

b
1/r
i

− ρ1W1 + ρ1W1

(

b1
b2

)1/r

=

b
1/r
1 W1

(

ρ1

b
1/r
2

+

P
∑

i=2

ρi

b
1/r
i

)

.

The denominator of the fraction can be transformed in

ρ1 + ρ2 + b
1/r
2

P
∑

i=3

ρi

b
1/r
i

= b
1/r
2

(

ρ1

b
1/r
2

+

P
∑

i=2

ρi

b
1/r
i

)

.

Equation 13 then becomes

b
1/r
2 W2 = b

1/r
1 W1. (14)

With the help of Eqs. 14 and 12 we can compute W3; repeating

this process for all groups we obtain the result of the first part

of the Theorem.

The absolute values of the Wis can be found considering

that the number of requests in the queue is constant (k) and



equal to the sum of requests belonging to each group, which

can be derived from Wi using Little’s theorem.

P
∑

i=1

λiWi = k (15)

Since Wi =
(

b1
bi

)1/r

W1, we can derive the expression for

W1 and, consequently, for all Wis.

APPENDIX B

PROOF OF THEOREM 2

In case of service with pre-emption, we consider the mean

time spent in the system by a generic request coming from

group p, Tp. With similar arguments used in Appendix A we

have the following relation:

Tp =
1

µp
+

P
∑

i=1

Nifip
µi

+

P
∑

i=1

Migip
µi

. (16)

It is easy to show that the values of Ni, Mi, fip and gip remain

the same as in Appendix A. We obtain:

Tp =

1

µ
+

p−1
∑

i=1

ρiTi

(

bi
bp

)1/r

+

P
∑

i=p

ρiTi

1−

P
∑

i=p+1

ρi

(

1−

(

bp
bi

)1/r
) . (17)

Comparing Eqs. 17 and 11 we notice that they have the same

structure, with 1/µ instead of W0, and Ti instead of Wi.

Thus the proof follows exactly the same scheme used in

Appendix A.

APPENDIX C

PROOF OF THEOREM 3

We consider first the non-preemptive case: the starting point

remains Eq. 10, and the value of Ni, Mi are the same, while

fip and gip change.

Let’s assume that the newly arrived request (which we call

the tagged request) belongs to group p. As said before, fip
represents the expected fraction of group i requests (already

in the queue at the arrival of the tagged request) which receive

service before the tagged request. Clearly, if i ≥ p, then fip =
1. If i < p, the request arrived at time Yi seconds before the

tagged one, with Wi > Yi such that

bYi + ai = ap

will receive service before the tagged request. So, the group

i request should arrive at most Yi = (ap − ai)/b seconds

before the tagged one. Let P [wi > t] be the probability that

the waiting time wi (whose mean is Wi) is greater than t, we

obtain

fip =











∫

∞

(ap−ai)/b

λiP [wi > t] dt i < p

1 i ≥ p

The parameter gip represents the expected fraction of group

i requests which arrive during Wp and receive service before

the tagged request. If i ≤ p, then gip = 0. If i > p, the request

will receive service if it arrives before wp, and Vi seconds after

the tagged request, with:

bVi + ap = ai.

Therefore, gip = λimin
(

(ai−ap)/b, wp

)

. Following the same

approach used in [20] it is possible to show that

min
(

(ai − ap)/b, wp

)

=

∫ (ai−ap)/b

0

P [wp > t] dt.

We then obtain

gip =











0 i ≤ p

λi

∫ (ai−ap)/b

0

P [wp > t] dt i > p

Combining all the information, we obtain

Wp = W0 +

p−1
∑

i=1

ρi

∫

∞

(ap−ai)/b

P [wi > t] dt+
P
∑

i=p

ρiWi+

P
∑

i=p+1

ρi

∫ (ai−ap)/b

0

P [wp > t] dt.

(18)

Note that
∫

∞

x

P [wi > t] dt = Wi −

∫ x

0

P [wi > t] dt.

In case of heavy traffic, as done in [20], we can assume that

wi > (aj − ai)/b, for any j, and approximate the integrals by
∫ x

0
P [wi > t] dt ≈ x. Equation 18 becomes

Wp = W0 +

P
∑

i=1

ρiWi −

p−1
∑

i=1

ρi
ap − ai

b
+

P
∑

i=p+1

ρi
ai − ap

b
.

(19)

Since ρ = 1, we obtain

Wp +
ap
b

= W0 +
P
∑

i=1

ρiWi −
P
∑

i=1

ρi
ai
b

= constant. (20)

In case of service with pre-emption, we consider the mean time

spent in the system by a generic request coming from group

p, Tp. With similar arguments used for the non pre-emptive

case, we arrive at the following relation:

Tp =
1

µp
+

P
∑

i=1

ρiTi−

p−1
∑

i=1

ρi
ap − ai

b
+

P
∑

i=p+1

ρi
ai − ap

b
, (21)

which leads to:

Tp −
1

µp
+

ap
b

=

P
∑

i=1

ρiTi −

P
∑

i=1

ρi
ai
b

= constant. (22)

Recalling that Tp −
1
µp

= Wp, we have completed the proof

(the absolute values of Wis can be obtained following through

with almost identical arguments used in Appendix A).


