
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DIT - University of Trento

Performance Evaluation of

Overlay Content Distribution Systems

Damiano Carra

Advisor:

Prof. Renato Lo Cigno

Università degli Studi di Trento

Co-Advisor:

Prof. Ernst W. Biersack

Institut Eurécom

March 2007

to Matteo

to my mother, to my father

Abstract

The peer-to-peer (P2P) networking paradigm received a lot of atten-

tion in recent years. P2P systems construct an overlay network at the

application level and do not require any modification to the existing net-

working infrastructure, which is in contrast to other technologies such as

IPv6 or IP-level multicast that do require modifications inside the network.

Therefore, P2P systems are very attractive for supporting new communi-

cations paradigms such as ‘application level multicast’ or ‘distributed pub-

lish/subscribe’.

Research in peer-to-peer networks has so far mainly focused on content

storage and lookup, but few efforts have been spent to analyze and optimize

the distribution phase. Cooperative content distribution networks are in-

herently self-scalable, in that the capacity of the system increases as more

peers arrive: each new peer requests service from, but also provides service

to, the other peers. The network can spontaneously adapt to the demand

by taking advantage of the resources provided by every peer, but the organi-

zation of the distribution process, the network characteristics, and the peer

behavior can greatly influence the overall performance.

In this work we analyze the performance that can be obtained by different

distribution architectures in a heterogeneous environment, where peers have

different access link bandwidths.

We start form a deterministic case, where the peers know exactly the

bandwidth of their neighbors and can apply smart distribution policies. We

then consider the case when peers do not know their neighbor bandwidth,

e.g., when peers participating in the distribution process might dedicate only

part of the bandwidth and this fraction can change over time. The analysis

of such case can be done for simple architectures, with specific constraints,

like chains or tree where we fix the maximum depth.

In order to consider general distribution architectures, we introduced a

graph based approach in the analysis of the systems. In particular, we

analyze the overly distribution building process as a Markov process, called

Stochastic Graph Processes (SGP): with the help of SGP we find the main

performance metrics, such as the download time distribution or the distance

from the source. We are able to analyze trees and meshes with different

system constraints, such as the number of neighbors, the minimum and

maximum outdegree, or the lifetime of the nodes. This approach gives us a

great flexibility in deciding the level of detail of the system we are analyzing.

We successfully apply the SGP formalism to file distribution and also

to streaming services. In such a case, we are able to analyze mesh based

streaming systems and to evaluate their performance, also in a comparative

perspective. The performance metrics in this case are the delay of the

received stream and the number of parents from which a node receives.

SGP represents a powerful analytical tool that allows for detailed com-

parisons between different systems of very large size that were previously

not feasible. Our technique allows the precise quantification of the per-

formance of different solutions and the evaluation of the impact of design

parameter.

Keywords

Peer-to-Peer, Content Distribution, Modeling techniques, Stochastic Pro-

cesses

6

Contents

1 Introduction 1

1.1 Distributing Content . 1

1.2 Overlay Systems . 2

1.3 Motivations of the Thesis 4

1.3.1 Overlay System Performance 4

1.3.2 Performance Evaluation Tools 5

1.4 Content of the Thesis and Contributions 6

1.4.1 Analysis of File Distribution Architectures: Deter-

ministic Case . 6

1.4.2 Stochastic Analysis of File Distribution 7

1.4.3 Stochastic Analysis of Overlay Streaming Systems . 9

1.5 Topics not Covered in the Thesis 9

1.6 Related Works . 11

1.7 Structure of the Thesis . 13

2 Deterministic Analysis of File Distribution 15

2.1 Introduction . 15

2.2 Architectures, Schemes and General Assumptions 16

2.2.1 Architectures . 16

2.2.2 Schemes . 19

2.2.3 General Assumptions 20

2.3 Linear . 21

i

2.3.1 Independent . 23

2.3.2 Generous . 25

2.3.3 Generous, with Collaboration 28

2.3.4 Altruistic . 32

2.3.5 Comparative Analysis for Linear Architecture . . . 35

2.4 Tree . 40

2.4.1 Independent . 40

2.4.2 Generous . 42

2.4.3 Leaves Only Generous 44

2.4.4 Generous, with Collaboration 46

2.4.5 Altruistic . 48

2.4.6 Comparative Analysis for Tree Architecture 49

2.5 PTree . 53

2.5.1 Independent . 54

2.5.2 Generous . 55

2.5.3 Generous, with Collaboration 57

2.5.4 Altruistic . 58

2.5.5 Comparative Analysis for PTree Architecture . . . 59

2.6 Overall Comparative Analysis 61

2.7 Lesson Learned: Conclusions on the 2-Class Analysis . . . 63

3 Stochastic Analysis of Simple Distribution Architectures 67

3.1 Introduction . 68

3.2 The Analytical Model . 69

3.2.1 Single Chain Analysis 70

3.2.2 Multiple chains . 72

3.2.3 Tree Based Architectures 74

3.2.4 Results of the Analytical Model 77

3.3 Overlay Network Simulator 81

ii

3.3.1 Simulator Description 81

3.3.2 Comparison with the Analysis 82

3.4 Improving the Distribution Architecture 83

3.4.1 Analysis of Hybrid Architectures 83

3.4.2 Changing the Minimum Outdegree 85

3.4.3 PTree with dynamic outdegree 87

3.5 Additional Insights . 91

3.5.1 Asymmetric Access Bandwidth 91

3.5.2 Selfish Peers . 93

3.6 Discussion and Conclusions 93

4 Stochastic Graph Processes 97

4.1 Introduction . 98

4.2 Problem Formulation . 99

4.2.1 Content Distribution 99

4.2.2 General definitions 100

4.2.3 Stochastic Graph Processes for Content Distribution 101

4.3 Content-Delivery CSGP 104

4.3.1 Content-Delivery Related Definitions 104

4.3.2 Cost-driven and Hop-driven Trees 105

4.3.3 General Mesh Architecture 109

4.4 Solution of the CD-CSGP 112

4.4.1 Detailed Description 114

4.4.2 Computation of the Performance Metrics 115

4.4.3 The Numerical Solver 116

4.5 Numerical Results . 120

4.5.1 Tree Based Distribution Architectures 122

4.5.2 Mesh Based Distribution Architectures 126

4.6 Practical Aspects . 129

iii

4.7 Conclusions . 131

5 Mesh based Streaming Services 133

5.1 Introduction . 133

5.2 Mesh-based Overlay Streaming Systems 135

5.2.1 System parameters 135

5.2.2 Join, Update and Leave Procedures 137

5.3 System Model . 138

5.3.1 Formal Description of the System 139

5.3.2 Applicability of the Model 143

5.3.3 Master Equations 144

5.3.4 Distribution Graph Properties 144

5.3.5 Rate Equations . 145

5.4 Monte Carlo Integration of the Master Equations 146

5.4.1 Comparison with Fluid Models 147

5.5 Application of the Methodology 149

5.5.1 System Description 149

5.5.2 Analysis of the Indegree 150

5.5.3 Analysis of the Delay 152

5.5.4 Analysis of the Quality 153

5.6 Comparison with Simulations 156

5.6.1 Protocol Description and Simulation Set Up 156

5.6.2 Simulation Results 157

5.7 Discussion and Conclusions 159

6 Conclusions and Perspectives 161

A Stochastic Graph Processes and Chemical Kinetic Systems165

A.1 Similarities with Chemical and Physical Systems and Con-

vergence Properties . 165

iv

B Overlay Streaming Systems: Procedures 171

B.1 Join and Update . 171

B.2 Computing the Delay . 172

Bibliography 175

v

List of Tables

2.1 Amount of work with Linear architecture 40

2.2 Amount of work with Tree architecture 53

2.3 Amount of work with PTree architecture 61

3.1 Rate distributions used in the examples 78

3.2 Rate distribution with asymmetric bandwidths 91

4.1 Bandwidth distribution used in the examples 121

4.2 Comparison of cost-driven trees and meshes. 128

5.1 Stripes node 5 can select 142

5.2 Upload bandwidth distribution A (normalized w.r.t. rstr) . 149

5.3 Upload bandwidth distribution B (normalized w.r.t. rstr) . 149

5.4 Other statistics. 155

vii

List of Figures

2.1 Example of a PTree distribution architecture with 13 nodes

and 3 stripes, each node appears once in every distribution

tree. 19

2.2 Linear chain: number of peers per chain versus time with

Linear architecture (C=3): the server upload to a single

class (a) and alternatively to two classes (b) 22

2.3 Chunk distribution with two independent classes 23

2.4 Linear chain with independent classes: time necessary to

complete the download (N1 = N2 = N/2, N = 104) 24

2.5 Chunk distribution with generous fast peers 25

2.6 Linear chain with generous fast peer: time necessary to com-

plete the download (N = 104, C = 102). With N1 < N2 (a),

when fast peers have completed, slow peers can download

only from the server. With N1 > N2 (b), after helping slow

peers, fast peers evolve with full bandwidth 27

2.7 Chunk distribution with generous fast peers and collabora-

tive slow peers . 29

2.8 Linear architecture: system evolution with Generous with

Collaboration scheme (N2 = 10N1, N = 104) 31

2.9 Chunk distribution with altruistic fast peers 33

2.10 Linear chain architecture: system evolution with Altruistic

scheme (N1 = N2, N = 104) 34

ix

2.11 System evolution with Linear architecture (b1 = 5b2, N1 =

N2, N = 104) . 36

2.12 System evolution with Linear architecture (b1 = 10b2, N2 =

10N1, N = 104) . 36

2.13 Total download time with Linear architecture achieved by

each class with different schemes (N1 = N2, N = 104) . . . 37

2.14 Total download time with Linear architecture achieved by

each class with different schemes (N2 = 10N1, N = 104) . . 38

2.15 Total download time with Linear architecture in case of b1 =

2b2 (N = 104, C = 102) . 38

2.16 Average Download Time with Linear architectures using dif-

ferent schemes (N1 = N2, N = 104) 39

2.17 Tree architecture with independent classes: time necessary

to complete the download (N1 = N2 = N/2, N = 104) . . . 42

2.18 Tree architecture: system evolution with Generous scheme

(N1 = N2, N = 104) . 44

2.19 Tree architecture: tree building in case of k=2, s=1 and f=1 46

2.20 Tree architecture: system evolution with Altruistic scheme

(N1 = N2, N = 104) . 49

2.21 System evolution with Tree architecture (N1 = N2, N = 104,

C = 102) . 50

2.22 Total download time with Tree architecture achieved by each

class with different schemes (N = 104, C = 102) 51

2.23 Total Download Time in case of Tree architecture, with b1 =

2b2, using different Generous schemes (N1 = N2, N = 104,

C = 102) . 52

2.24 Average Download Time with Tree architectures using dif-

ferent schemes (N = 104, C = 102) 52

x

2.25 PTree architecture with independent classes: time necessary

to complete the download (N2 = 10N1, N = 104) 55

2.26 PTree architecture: system evolution with Generous scheme

(N2 = 10N1, N = 104) . 57

2.27 Total Download Time with PTree architecture using differ-

ent schemes (N1 + N2 = N = 104, C = 102) 60

2.28 Total Download Time with different architectures and dif-

ferent schemes (N1 = N2, N = 104, b1 = 5b2) 62

2.29 Total Download Time with different architectures and dif-

ferent schemes (N2 = 10N1, N = 104, b1 = 100b2) 63

3.1 File transfer over a single chain 70

3.2 Example of different conditional distributions obtained with

the bandwidth distribution in Table 3.1 73

3.3 Example of a sample path in a binary tree; black nodes are

in the sample path, gray nodes are those that influence the

computation of bj. 74

3.4 Real distribution tree (left) and equivalent tree with “dupli-

cated” nodes considering independent steps (right). 76

3.5 Evolution of the pdfs of the download time for two different

tree heights. 78

3.6 Mean completion time for a given number of peers: com-

parison between chain based and tree based architecture,

heterogeneous peers (rate distribution A) and homogeneous

with average bandwidth. 79

3.7 Mean completion time for a given number of peers: compar-

ison between chain based and tree based architecture (rate

distribution B). 80

xi

3.8 Comparison between analysis and simulations with different

architectures; the upper plot refers to rate distribution A

and the lower one to B. 82

3.9 Mean completion time for a given number of peers in a tree

based architecture with dynamic outdegree; rate distribu-

tion A. 84

3.10 Percentage of completed peers at a given time in a tree based

architecture with dynamic outdegree; rate distribution A. . 85

3.11 Example of evolution of fast hybrid tree. 86

3.12 Mean completion time for a given number of peers in a tree

based architecture, with minimum outdegree 1; rate distri-

bution A. 86

3.13 PTree performance with different dynamic outdegrees; r = 3. 88

3.14 Percentage of completed peers at a given time in PTree ar-

chitecture with dynamic outdegree; rate distribution A. . . 89

3.15 Tree vs. PTree performance with different number of stripes,

the outdegree for all the configurations is 1–8. 90

3.16 PTree performance with different number of stripes, rate

distribution B (the outdegree for all the configurations is 1–8). 90

3.17 Mean download time with ADSL (tree architecture) com-

pared with the symmetric case, where the bandwidth is ei-

ther set to the minimum or to the maximum of the ADSL

bandwidth. 92

3.18 Mean download time with ADSL (PTree architecture) com-

pared with the symmetric case where the bandwidth is ei-

ther set to the minimum or to the maximum of the ADSL

bandwidth. 92

3.19 Mean download time with different percentage of selfish

peers (tree architecture): the maximum outdegree is 8. . . 94

xii

3.20 Mean download time with different percentage of selfish

peers (PTree architecture): the maximum outdegree is 8. . 94

4.1 Overlay and distribution graphs 101

4.2 Sample of the embedded DTMC for a CD-CSGP 1 process;

states are graphs built on G, black and white circles repre-

sent slow and fast nodes respectively, kmax

i = 2 and kmin

i = 1. 107

4.3 Difference between hop- and cost-driven trees, considering

the corresponding weighted graphs where the length of edge

between nodes i and j is given by tstep

ij 109

4.4 Mesh topologies obtained from interconnection of different

diffusion subtrees . 111

4.5 Histogram of the estimated pdf of the download time of the

nodes with CD-CSGP 3 for 104 nodes. 121

4.6 T for different number of neighbors |Bi| in the overlay; CD-

CSGP 1 with outdegree between 1 and 4. 122

4.7 Mean download time for cost- and hop-driven trees. 123

4.8 Distribution of the step distance for 106 nodes. 124

4.9 CDF of the download times for 104 nodes with a churn prob-

ability of 30%. 126

4.10 Mean download time T for cost-driven trees and mesh ar-

chitectures with different outdegree constraints. 127

4.11 Comparison of the Cumulative Distribution Function of the

mean download time between hop-driven tree, cost-driven

tree and mesh. 128

5.1 Sample arrival pattern of nodes joining a stream. 136

5.2 Overlay and distribution graphs 138

5.3 Neighbor relationships and diffusion trees of the example

when node 5 joins the stream. 141

xiii

5.4 Results of the Master Equations and the Rate Equations . 146

5.5 Solution of the differential equation and the Rate Equation. 148

5.6 Indegree distribution at time Tstr/2 obtained from the solu-

tion of the MEs. 148

5.7 Solution of the MEs for the indegree (initial number of

nodes: N/10; sojourn time: Tstr, bandwidth distribution A). 151

5.8 Probability Distribution of the indegree at Tstr for different

R′ (initial number of nodes: N/10; sojourn time: Tstr, band-

width distribution B). 152

5.9 Distribution of the delay with different sojourn times (initial

number of nodes: N/2, bandwidth distribution A). 153

5.10 Distribution of the delay for different R′ (initial number of

nodes: N/2, bandwidth distribution A). 154

5.11 CCDF of the delay with different sojourn times (initial num-

ber of nodes: N/2, bandwidth distribution B). 154

5.12 Results obtained by simulation for the indegree (initial num-

ber of nodes: N/10). 158

5.13 Distribution of the delay obtained by simulation with Peer-

Sim (initial number of nodes: N/2; R′ = 6). 159

xiv

Chapter 1

Introduction

1.1 Distributing Content

In the last decade the problem of content distribution over the Internet

has attracted much attention: providing a content wherever a user is, and

whenever she/he wants it, represents a big challenge. The growth of the

user’s demand, driven by the spread of broadband access connections such

as xDSL, cable and wireless, has been tackled by different approaches.

At a first stage, content providers increased the service capacity by

deploying additional mirror servers: given a network of mirror servers,

users can be automatically and transparently redirected to the optimal

server. This solution was considered sufficiently efficient by many content

providers. However, the cost of maintaining such an infrastructure may

be high: the focus of the content provider should be to produce contents,

rather than distributing them.

In this scenario, new companies started to offer content delivery services

to content providers. The basic idea is building a private infrastructure,

mainly on top of the Internet, dedicated to spread the content as nearly

as possible to the end user. Such a Content Distribution Network (CDN)

can be shared by multiple content providers, thus, reducing the cost of

operation.

1

CHAPTER 1. INTRODUCTION

Nevertheless, the business model where the content providers produce

the content and CDNs deliver it may not be applied to every cases. Small

content providers may find the cost of CDNs too high. Moreover, we have

witnessed recently to an increasing phenomenon where the users themselves

become content providers. The success of YouTube or Google Video, where

thousands of users publish their own videos, the proliferation of indepen-

dent composers, songwriters or filmmakers that publish their contents on

the web, are examples of a trend where everyone may potentially be in-

terested in distributing a content. In such a case, these content providers

may not exploit the advantages of CDNs due to their cost.

Another attempt to provide tools for content distribution is represented

by the IP Multicast protocol. In this case the network itself is responsible

for efficiently reducing the load on the network to the minimum neces-

sary for the transmission, avoiding duplicated content over the same link.

This model can be applied when many users ask for the same content at

the same time. However, a problem with IP Multicast is the lack of gen-

eral deployment, without collaboration among Internet Service Providers

(ISPs) for creating a working infrastructure.

Given this scenario, a huge challenge is finding a solution for the con-

tent distribution problem that can be deployed today, with the existing

infrastructure, at affordable cost.

1.2 Overlay Systems

One of the solution suitable to solve the content distribution problem is

building the CDN as cooperative overlay, like peer-to-peer (P2P) network-

ing. P2P systems construct an overlay at the application layer and offer a

great flexibility in creating different services, without requiring any modifi-

cation to the existing Internet. The novelty of the P2P paradigm relies on

2

1.2. OVERLAY SYSTEMS

the concept of cooperation among users. Cooperation, with users provid-

ing services to the community, has several beneficial effects on the global

system performance: it permits to improve capacity, network reliability,

and it makes the network more adaptive to the users needs.

The P2P paradigm has become very popular essentially for file-sharing:

Napster, Gnutella, Kazaa, and are well known examples of P2P file-sharing

applications. After the first wave of these applications, which often reaches

the attention of mass media for they were used to exchange illegal con-

tents, the P2P communication paradigm was used in different applications.

The introduction of BitTorrent has moved the focus to an efficient content

download. The primary aim of BitTorrent is the distribution of very large

popular files (bulk data), such as operating systems updates, patches, anti-

viruses, to large communities of users, and for its characteristics it was

considered as a candidate for efficient overlay content distribution.

Live media streaming and on-demand streaming services are expected

to benefit from the P2P approach too. These applications relies on Ap-

plication Level Multicast, an implementation of the multicast concepts to

the application level that can be realized without changing the existing

infrastructure. The distribution of streaming media content represents one

of the most bandwidth intensive services available on the Internet.

P2P for content distribution has the appealing feature of self-scaling:

each peer can play both roles, the one of a client and the one of a server,

which implies that the amount of resources scales with the demand for

service. The issue that needs to be addressed is how to efficiently use

the resources of the overall P2P system. Most P2P systems were born

with a make-it-do approach, applying heuristics and common good sense

to most parts of the system. Nevertheless, many performance issues must

be taken into account when an application with a potential impact, as P2P

applications have, is deployed.

3

CHAPTER 1. INTRODUCTION

1.3 Motivations of the Thesis

1.3.1 Overlay System Performance

Despite the success of P2P system and many proposed systems, a lot of

issues related to distribution of the content anywhere, anytime, anyone,

remain open. Most of the research effort was focused on efficient lookup

mechanisms (e.g., structured systems based on Distributed Hash Tables,

DHTs), considering the download phase just a matter of time. Neverthe-

less, the search phase requires the exchange of a relatively small amount of

data1, while the download phase (content retrieval) represents a demanding

aspect for the network.

Many studies set the P2P traffic as the dominant traffic over the In-

ternet [1]. In such a scenario, the network resources are becoming scarce

and application designers should start considering a re-engineering of the

systems, or provide new systems with a performance oriented design. The

change of the overlay protocols is simple, so each content provider can

theoretically create its ad-hoc content distribution protocol.

Application layer has a limited view of the physical topology (mainly

an approximated and indirect view through measures of the delay) and

cannot rely on IP Multicast for efficient delivery. Thus, a content distri-

bution application should be carefully designed taking into consideration

the impact of such application on the network, considering all the possible

design degrees of freedom and comparing the different solutions in order

to provide systems as much efficient as possible, i.e., those efficiency can

be compared to the IP Multicast.

The design process of such complex systems requires multiple iterations:

the number of nodes involved in a content distribution network, in fact, is

1Even in an unstructured system, as Kazaa, smart policies, like hierarchical organization of the nodes,

result in a limited traffic due to queries.

4

1.3. MOTIVATIONS OF THE THESIS

high and it is not possible to completely predict the behavior of a protocol,

i.e., the effects of interactions among different nodes or between nodes and

the network. The evaluation of the performance needs specific tools that

are able to account for such a complex environment.

1.3.2 Performance Evaluation Tools

The application designer should evaluate, besides the formal correctness,

the protocol performance given a set of performance indexes. There are

essentially three available tools for such an evaluation: analytical modeling,

simulation and prototypes. Even if the direct implementation and testing

(using a simulator or a prototypes) may seem the simplest way, with P2P

networks it is not easy to follow this approach. Simulations (or measures

on prototypes) have scalability problems, i.e., they can be controlled and

performed in a small environment, where it is possible to analyze correctly

the behavior of the protocol. P2P networks represent the opposite of this

situation: the typical size of a P2P community starts from thousands of

users (for streaming services) to millions of users (e.g., file sharing). How

this huge network size can be simulated?

If, on the one hand, analytical tools do not have scalability problems, on

the other hand they deal with a simplified model of the system. Building

an analytical model represents a challenging task: such a model should

represent the essential features of the system we are studying, assuming

that the behavior of some elements of the system have a small impact on

the total performance. The problem with modeling is to find an analytical

tool that is able to reduce as much as possible these simplifications.

5

CHAPTER 1. INTRODUCTION

1.4 Content of the Thesis and Contributions

1.4.1 Analysis of File Distribution Architectures: Deterministic

Case

In this thesis we first consider the specific problem of how to distribute in

the shortest possible time a file to a community of users organized as an

overlay of peers. We assume the presence of two classes of peers (according

to their bandwidth) and we consider an ideal situation where each peer

knows the addresses and the bandwidths of all the other peers. We define

three distribution architectures: linear chain, tree and a forest of trees

called PTree. We analyze the performance of these three architectures and

derive an upper bound on the number of peers served within an interval

of time t. We consider different cooperation schemes between the classes

in order to understand how heterogeneity affects the performance of the

distribution scheme.

The analysis is carried out using basic combinatorial techniques: in

fact, once the parameters are set — the number of nodes in each class, the

ratio between bandwidths, the distribution architecture, the collaborations

scheme — the distribution time is completely deterministic.

The results of the analysis shows the importance of basic design pa-

rameters, such as the number pieces into which the file is broken or the

outdegree of the distribution trees. We can also evaluate which is the best

cooperation scheme for the different situations, e.g., for different values of

the ratio between the number of peers in each class and their bandwidth.

These results can be applicable in controlled contexts, such as a network of

a company, where the hypotheses we made are met. If the network admin-

istrator has to upgrade all the PCs of the company with a new software

patch, he/she can use a file distribution application during the nighttime

and set the distribution application and cooperation scheme suited for his

6

1.4. CONTENT OF THE THESIS AND CONTRIBUTIONS

problem. In such a context the peer bandwidths are stable and each peer

can maintain a database with all the peers.

Nevertheless, in open context, where peers may use their bandwidth for

other applications, or they may be selfish we must resort other analytical

tools.

1.4.2 Stochastic Analysis of File Distribution

For the case of unknown neighbor bandwidth, we develop a model that

consider the transmission bandwidth between logically adjacent nodes as

the only ‘un-determined’ of the problem, i.e., the only quantity that has

a stochastic description. We also consider that peers can leave the system

during the distribution process. We derive an approximated analytical

model that yields the stochastic distribution of the file delivery performance

as a function of the distribution of the peer bandwidth. The model allows

to assess the impact of slow peers on the delivery and gives enough insight

in the problem to devise dynamic distribution strategies to overcome the

impact of slow peers.

We develop an overlay network simulator in order to validate the model

and to analyze distribution architectures where the tree degree can vary

dynamically based on locally available resources. In particular, we analyze

the effect of bounds of the node outdegree (the tree degree local to a given

node) on global performance. We also assessed the performance of the

distribution in presence of selfish or malfunctioning peers as a function of

the distribution architecture. Results shows that selfish peers have no great

impact and the results on performance we obtain considering no selfish peer

still hold.

The distribution architectures that we are able to analyze with the ana-

lytical model we developed have some constraints: for instance, there must

be a maximum number of hops from the source, i.e. all the leaves of the

7

CHAPTER 1. INTRODUCTION

distribution process (peers that download only and do not find any peer

without the content to upload to) are at the same distance (in terms of

number of hops) from the source. These constraints limits the distribution

protocols that is possible to analyze, thus we consider a different analytical

tool.

We formalize the problem of building a content distribution overlay as

a Constrained Stochastic Graph Process (CSGP), which is a discrete time

Markov chain whose states are graphs with additional constraints describ-

ing the features of the distribution system. The graphs we are interested

in are directed acyclic graphs, such as trees or meshes. Depending on how

we define the transition rules from one state of CSGP to the next one,

we get different content distribution overlays. We consider three different

overlays, two of which are trees (hop-driven and cost-driven trees) and the

third one is a mesh.

The transient analysis of a Markov process is done considering the for-

mulation of the problem in terms of Master Equations (MEs), i.e., the

Kolmogorov forward (or backward) equations, coupled with the Chapman-

Kolmogorov Equations. The structure of the transition matrix that de-

scribes the stochastic process, and the correspondent MEs, is extremely

suited for an efficient numerical solution based on Monte Carlo techniques

— basically a random walk in the state space of the process. Monte Carlo

integration converges very quickly allowing to compute the metrics of inter-

est for the content distribution — such as the file download times, and the

percentage of upload bandwidth left unused —for very large overlays with

up to millions of nodes, where standard event-driven simulations would fail

for lack or time or memory.

8

1.5. TOPICS NOT COVERED IN THE THESIS

1.4.3 Stochastic Analysis of Overlay Streaming Systems

The formalism of CSGP represents a flexible tool and it can be applied to

other content distribution problem different form file distribution. Based

on the same principles that guided the analysis of file distribution, we

develop a mathematical model based on graph theory that can be used to

analyze fundamental performance issues of overlay streaming services. We

model such systems with a high level of abstraction that allows the study

of fundamental behavior under different conditions.

We derive the master equations that define the evolution of the stream-

ing system in time, based on the basic characteristics of the streaming

protocol as well as the bandwidth available at nodes for the streaming

application. The model allows the assessment of the impact of different

protocol choices, and of bandwidth heterogeneity on the delivery process

and it gives enough insight in the problem to formulate improved streaming

strategies.

The model is solved with the Monte Carlo integration methodology used

for CSGP. The solution provided by this method is compared with other

modeling and solution techniques to show the flexibility of the approach.

The solution of the model yields the entire probability distribution of the

results (not only the mean value), as well as the temporal (transient) dy-

namics.

1.5 Topics not Covered in the Thesis

There are important issues in Overlay Content Distribution that are not

treated in this thesis:

• Specific system details : We do not attempt to model a specific file-

distribution system, although this task may be possible using the

9

CHAPTER 1. INTRODUCTION

proposed methodology. We are also not proposing yet-another file

swarming application or a specific file distribution protocol. Rather,

we propose a methodology to capture general properties of distribu-

tion protocols and algorithms in the attempt of providing guidelines

for the protocol and system design.

• Security : we always consider collaborative nodes without malicious

peers. Content distribution may be affected by badly behaving peers,

that block the distribution process or provide fake content (pollution).

System should consider these cases and introduce policies that are able

to handle such nodes.

• Overlay management : building an overlay network that is closely re-

lated to the physical topology represents a crucial aspects for increas-

ing the performance. We always assume an overlay management that

take care of this aspect, working on the resulting overlay graph. The

close mapping between overlay and underlay layers is a general re-

quirement that do not depend on the actual information exchanged

and should be followed by any P2P application.

• Network related issues : the actual distribution of the content pass

through transport and network protocols that introduce many dynam-

ics during the content exchange. The throughput achievable depends

not only on the access link bandwidth, but also on TCP window or

congestion inside the network. During the evaluation of a content dis-

tribution protocol, these aspects should be taken into account (e.g.,

for a streaming application, by sizing accordingly the playout buffer).

10

1.6. RELATED WORKS

1.6 Related Works

Performance analysis of P2P systems is still in its infancy, and there are

only few works on the argument. Most of the analytical works analyzes a

specific P2P system, and often the problem is stated very differently from

the perspective of this thesis. The work in [2] is among the first to eval-

uate the performance of a P2P system, through the representation as a

multi-class closed queuing network. In [3], authors use an age dependent

branching process to model the transient evolution of a P2P system and a

simple Markovian model to analyze the steady state regime. Fluid mod-

els have been also considered since they can efficiently describe such an

amount of transferred data. The work in [4] proposes a fluid model for the

analysis of the Squirrel protocol [5]. The result is an accurate model that

estimates the performance of the protocol. In [6] authors study the Bit-

Torrent protocol with a simple fluid model. The model is able to catch the

transient and the steady state behavior of the system with few simple pa-

rameters; moreover, an analysis of the different mechanisms of BitTorrent

is provided. Of the works above only [2] tackles the problem of presence

of different access bandwidths among peers which is instead the one of the

purposes of this thesis.

A related topic where distribution architectures are explicitly taken into

account is the delivery of streaming services through overlay multicast, also

known as Application Level Multicast (ALM).

Systems such as ALMI [7], NICE [8] and Zigzag [9] organize the nodes

following a tree structure. The stream is received from a single father and

uploaded to a set of children (if any). The differences among these sys-

tems concern algorithms used for managing the structure in case of node

dynamics. Systems such as Narada [10], Coolstreaming [11] PRIME [12]

and PULSE [13] leverage on mesh structure. Nodes download from a set

11

CHAPTER 1. INTRODUCTION

of fathers that can change over time. Problems related to delay and syn-

chronization are handled according to different heuristics. Other systems

adopt an hybrid approach (e.g., SplitStream [14], from which the inspira-

tion for the architecture we use as reference comes), where the stream is

distributed using multiple trees obtaining a structured mesh.

The above distribution protocols were not designed with a performance

oriented approach as far as delivery is concerned. Many proposals use

heuristic methods to improve performance, but these heuristics are verified

a posteriori and protocol parameters are tuned according to these results.

Most of the analytical works focus on tree based structures or on a specific

system, but, to the best of author’s knowledge, no study has been done on

modeling general mesh-based streaming systems. Only [12] starts analyzing

such systems, but with a simulative approach and assuming a homogeneous

access bandwidth.

Other studies, as [15] and [16], analyze file swarming but do not consider

any particular architecture and are focused on other problems, such as

replication strategies and peer selection. The work in [17] studies how to

build the tree topology, but it does not compare different topologies.

Very few models have been proposed that allow comparative studies of

different distribution architectures. In [18], inspired by SplitStream, the

authors have defined and analyzed linear chain and tree-based architectures

in a completely deterministic setting. The work in [19] defines a model

for chain-based and tree-based architectures, uses max-plus algebra and

considers an infinite number of packets to calculate the long term average

throughput; our analysis instead considers a finite file size and calculates

either the download time of peer i or the mean (and total) download time

of all the peers involved in the distribution process.

Stochastic graph processes, the analytical tool we introduce in Chap-

ter 4 to model overlay content delivery networks, were defined in [20] with

12

1.7. STRUCTURE OF THE THESIS

the same notation we use here and they are based on well known random

graphs [21]. The focus of the analysis in [20][21] is the topological prop-

erties of random graphs, whereas our aim is to take into account not only

connections among nodes, but also their weights given by the bandwidths

of the nodes involved (this concept is clarified in the chapter), which give

rise to the state reward structure that allows the computation of comple-

tion times.

1.7 Structure of the Thesis

The remaining of the thesis is composed by the following research chapters.

Chapter 2 presents an extension of the model for file distribution pro-

posed in [18]: in this case we introduce multiple classes of peers and we

propose different collaboration policies among classes. We consider the

best case, i.e., a fully connected overlay graph with all peers that know the

bandwidth of their neighbors. In this case, the deterministic problem can

be solved with traditional combinatorial techniques.

In Chapter 3 we remove the hypothesis that peers are able to know

the neighbor bandwidths: in such a scenario we consider the distribution

architectures defined in the previous chapter and we analyze the download

time. We compare our results with the deterministic case, showing the

effect of limited knowledge on the performance.

Chapter 4 introduces a new performance evaluation tool based on Stochas-

tic Graph Processes. With such a tool, we are able to analyze and compare

general file distribution architectures and schemes.

In Chapter 5 we successfully apply SGP tool to the streaming case. We

model mesh based distribution architecture and evaluate the performance

under different node behavior.

Chapter 6 summarizes the results and the contribution of the thesis.

13

CHAPTER 1. INTRODUCTION

14

Chapter 2

Deterministic Analysis of File

Distribution

This chapter considers the deterministic analysis of a heterogeneous P2P

network with two classes of peers. The analysis introduces a set of schemes

that can be used with different distribution architectures and evaluates the

performances that can be obtained with each scheme.

2.1 Introduction

In this chapter we start from the analysis of the file distribution architec-

tures made in [18] and consider different scenarios. The main hypothesis

that we remove with respect to the previous analysis is the assumption

of homogeneous sources: we suppose that peers in the network can have

different available bandwidths.

In particular we consider the presence of two classes of peers: for each

proposed architecture – Linear, Tree and PTree – we present four differ-

ent schemes – Independent, Generous, Generous with Collaboration and

Altruistic – that can be applied for the distribution of files. Each class

is structured in the above mentioned architectures and the only degree of

freedom is how a class can help the other class in order to maximize the

15

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

overall performance.

We focus our attention on three performance indexes: the total down-

load time necessary to reach N peers, the mean download time and the

amount of work done (how many file copies each peer uploads). The results

we obtain show that, when we consider heterogeneity, slow peers may not

negatively affect the system. In general, the simpler the adopted delivery

architecture is, the more improvement can be obtained with a intelligent

distribution policy; the more complex the delivery architecture is, the less

the gain we have.

The rest of the chapter is organized as follows. Section 2.2 describes

the distribution architectures, the collaboration schemes and the system

characteristics with two classes of peers. Sections 2.3, 2.4 and 2.5 analyzes

the three different architectures, Linear, Tree and PTree respectively; for

each architecture a set of distribution scheme is defined. Each section con-

cludes with a summary of the results. Section 2.6 presents the comparison

among different architectures and schemes. Section 2.7 summarizes the

conclusions of this chapter.

2.2 Architectures, Schemes and General Assumptions

2.2.1 Architectures

Chains

The simplest architecture that can be defined is a single chain, where each

node downloads from exactly one node and uploads to exactly one node.

The distribution process generates different, parallel, independent chains,

and a peer can be a node in one chain only. Even if this architecture seems

too simple to be of practical interest, it serves as a basis for comparative

analysis. Moreover, it can be used as simple building block that can form

16

2.2. ARCHITECTURES, SCHEMES AND GENERAL ASSUMPTIONS

more complex distribution architectures, and in some cases it might suffice

for the application purposes. It is worth noticing that chains are fair in the

sense that each peer (excluded the last one in the chain) uploads exactly

the same amount of information it downloads.

Tree

In tree structures, each node downloads from exactly one node and uploads

to k nodes, where k is the outdegree of the tree. The choice of k has two

opposite effects: On the one side, by increasing k it is possible to reach

the leaf nodes in fewer steps. On the other side, the bandwidth used in

transferring the content from a peer to its children is divided among k

peers. Therefore, increasing k will increase the total download time from

one level of the tree to the next one. Considering a theoretical model where

all peers have the same bandwidth and the tree is balanced, the binary tree

is the best compromise between these two effects [18].

Tree based distribution architectures are an efficient way to distribute

contents, given performance and simplicity. Nevertheless they suffer from

two main shortcomings: (i) only interior nodes upload to other nodes,

whereas leaf nodes do not upload at all and (ii) nodes use only part their

download bandwidth (if the tree is balanced and peers are homogeneous,

each node receives 1/k of the uploading bandwidth of its parent node). The

first aspect results in unfairness among nodes: some nodes upload k times

the amount of data they receive, while other nodes (leafs) only receive data.

Since the number of leaf nodes is greater than the number of interior nodes1,

this also implies a great waste of upload bandwidth, since the majority of

the nodes do not contribute to the distribution of the content. The second

aspect implies that the time necessary to complete the download is k times

1In a balanced tree with l levels and outdegree k, k ≥ 2, the number of leaf nodes and interior nodes

is respectively kl and kl
−1

k−1 .

17

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

larger than the time it would take if the file were downloaded using the

full download bandwidth of the parent node (this is strictly true for the

homogeneous case, both with symmetric and asymmetric bandwidths).

PTree

The overall performance of a tree based architecture is significantly im-

proved by capitalizing the unused upload bandwidth of the leaf nodes and

the unused download bandwidth of internal peers. A solution in this direc-

tion is given by SplitStream [14]. The SplitStream architecture was defined

for streaming services in a structured P2P system (based on Pastry). In

the general case where we do not consider any particular structure for the

overlay network, we call this architecture PTree.

In PTree the content is divided into r different stripes and each stripe is

distributed by a different tree. A peer participates in all distribution trees,

but with different roles. Precisely, a peer is an interior node in at most one

tree, while it is a leaf node in the remaining r − 1 trees. In this situation,

when the node is interior, it uploads one stripe of the file k times, while

it is receiving the other r − 1 stripes in parallel since it is a leaf node of

the other trees. If we choose to divide the file in exactly k stripes, i.e.,

r = k, we obtain complete fairness (see Fig. 2.1): each peer uploads the

same amount of data it receives. There is only one exception: independent

of the outdegree k, there will always be one peer that is leaf node in all r

trees (the shaded circle in Fig. 2.1).

If we choose r < k, we obtain a situation where some peers are interior

nodes of one tree and leaves of the other trees and they upload k/r times

what they receive, whereas other peers are only leaf nodes, so they only

receive the whole file. This sort of mild unfairness can be considered ac-

ceptable, since nodes behind firewalls and NAT devices can not participate

actively in the distribution process. We do not consider the case r > k:

18

2.2. ARCHITECTURES, SCHEMES AND GENERAL ASSUMPTIONS

Figure 2.1: Example of a PTree distribution architecture with 13 nodes and 3 stripes,

each node appears once in every distribution tree.

the number of leaf nodes of one tree is not sufficient to cover the interior

nodes of the other r − 1 trees, and a subset of nodes must act as interior

node in more than one tree. We consider only the case r ≤ k.

2.2.2 Schemes

Given a distribution architecture, we consider four different schemes of

cooperation among peers belonging to different classes. Based on the access

link bandwidth, we identify a slow peer class and a fast peer class.

Independent: the server uploads the content independently to each

class; peers belonging to one class do not exchange packets with peers of

the other class. This scheme, with no interaction between classes, serves

as a reference.

Generous: slow peers do not upload; they only download from fast

peers; fast peers upload in parallel to a fast peer and to a slow peer.

Generous with Collaboration: the system evolves as with the Gen-

erous scheme, but here each served slow peer collaborates in distributing

the content to other slow peers. With this scheme we try to exploit the

unused capacity of slow peers.

Altruistic: each fast peer, after uploading the content to a fast peer,

stays on-line and serves in parallel as many slow peers as possible.

19

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

2.2.3 General Assumptions

We consider a P2P system where each class is symmetric, i.e., peers that

belong to a class have the upload capacity equal to the download capacity.

In case of asymmetric capacities2, our analysis could give some insights if we

consider as reference bandwidth the upload capacity (that is typically the

smallest). Nevertheless, we leave for future works the detailed comparison

of the different scenarios.

The main metrics of interest are (i) the total download time necessary

to N users to complete the download of a file, (ii) the average download

time and (iii) the amount of work done by each peer, i.e., how much they

contribute to upload (this metric can be considered as a fairness index).

The main hypotheses of our model are the following:

• there are only two classes of peers in the network: class 1 (fast peers)

with upload and download bandwidth b1 and class 2 (slow peers) with

upload and download bandwidth b2; b1 > b2;

• the number of peers in class 1 and class 2 is equal to N1 and N2

respectively; the total number of peers is N = N1 + N2;

• all the peers know all the other peers, including their bandwidths;

• there is exactly one server that has the original content; it is always

on-line and it can indefinitely upload the file to new peers;

• we focus on the distribution of a single file F ; the file is divided in

C identical pieces called “chunks” and each chunk can be distributed

independently;

• the server has sufficient bandwidth to upload concurrently to the two

classes, i.e., its upload bandwidth bS is equal to b1+b2; this hypothesis

2For instance, ADSL users have the download capacity greater than the upload capacity.

20

2.3. LINEAR

simplifies calculations and does not greatly influence the final results

since the impact is only on peers that download from the server3;

• peers can be selfish, i.e., they disconnect as soon as they finish down-

loading the content, or altruistic, i.e., they remain in the system for a

certain period of time after finishing the download (the time lapse is

related to the specific used policy).

Even if the hypothesis of global knowledge can be unrealistic, it is neces-

sary in order to understand the optimal case. In Chapter 3 we will remove

this hypothesis analyzing the effect of limited knowledge. On the contrary,

the hypothesis of knowing to some extent the capacity of each link is re-

alistic, since most of the current systems can estimate the bandwidth of a

peer during previous exchanges (and each peer can also communicate its

own capacity).

Aim of this study is to find optimal policies (schemes) for file distri-

bution in such environment; depending on the file distribution policy, the

performance can be greatly different.

2.3 Linear

In this particular architecture, parallel upload should not be considered;

nevertheless, in order to exploit the capability of the system it is necessary

to allow some special configuration with parallel upload. For instance, it is

possible for a fast peer to upload in parallel to exactly one slow peer, with

bandwidth b2, and one fast peer, with bandwidth (b1 − b2). Another case

is when fast peers are altruistic, so they use their capacities to help slow

peers.

3We are interested in keeping the number of peers that download from the server as small as possible,

otherwise the network departs from a P2P architecture and resembles more a traditional client/server

one.

21

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

Under the hypotheses made above it is possible to identify a set of

cases. In the following paragraphs we analyze the cases considered most

interesting.

(a) Single class (b) Two classes

Figure 2.2: Linear chain: number of peers per chain versus time with Linear architecture

(C=3): the server upload to a single class (a) and alternatively to two classes (b)

Figure 2.2 shows a basic scheme to calculate the number of peers in

time. Figure 2.2(a) shows the evolution when there is a single class: each

row corresponds to a single chain. The first peer finishes to download

after F/b1 rounds; the second peer finishes at F/b1 + F/Cb1 since it has

to wait that the first peer has downloaded the first chunk before starting

the upload to the second peer. A new chain is started when the file is

completely downloaded from the first peer. Figure 2.2(b) considers the

case with two classes when a server alternatively serves a fast peer (with

bandwidth b1) and a slow peer (with bandwidth b2).

If we observe the system at certain time t it is possible to calculate

the number of chains and the number of peers per chain. In general,

through this kind of scheme we can evaluate the number of peers that have

completed the download versus time for all the policies we define.

22

2.3. LINEAR

2.3.1 Independent

In this case the server uploads chunks independently to each class; peers

belonging to a class do not exchange contents with other class’s peers.

Figure 2.3 shows the chunk distribution methodology.

Figure 2.3: Chunk distribution with two independent classes

Total download time. Generalizing the method used in [18], it is simple

to find that the time necessary to distribute the content to Ni peers with

bandwidth bi with a Linear scheme is

T Class i

Lin, Ind(bi, C, Ni) =
F

bi
·
(C − 2) +

√
(C − 2)2 + 8NiC

2C
(2.1)

where F is the file size in bits and bi the capacity of the class i in bit/s.

Since the two classes evolve independently, the total time necessary to

reach N peers is dominated by slow peers. Figure 2.4 shows the total time

against the number of peer n: in this example we have two classes with the

same number of peers, i.e. N1 = N2 = N/2, where N = 104, and different

bandwidth ratios: we assume that the bandwidth of class 2 is fixed, with

F/b2 = 1 and the bandwidth of class 1 is two, five, ten and 100 times

greater.

23

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

10-2

10-1

100

101

102

103

 0 2000 4000 6000 8000 10000

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Number of served peers (n)

b1 = 2b2
b1 = 5b2
b1 = 10b2
b1 = 100b2

(a) C = 102

10-2

10-1

100

101

102

103

 0 2000 4000 6000 8000 10000

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Number of served peers (n)

b1 = 2b2
b1 = 5b2
b1 = 10b2
b1 = 100b2

(b) C = 103

Figure 2.4: Linear chain with independent classes: time necessary to complete the down-

load (N1 = N2 = N/2, N = 104)

Average download time. Another important metric that can be useful to

understand the performance is the average download time. We consider

the sum of the times necessary to complete the download of each peer and

then we divide it by the number of peers.

Referring to Fig. 2.2(a), consider the first chain. The first peer finishes

to download at time F
bi
, the second peer at time F

bi
+ F

Cbi
, the third at time

F
bi

+2 F
Cbi

and so forth. So at time t in the first chain the sum of each single

download time is

t−F/bi
F/Cbi∑

j=0

F

bi
+ j

F

Cbi
. (2.2)

The second chain is equal to the first, with a delay of F
bi
, and the third chain

is delayed 2F
bi
. Let tclass i the time necessary to complete all the downloads

of a specific class i, i.e., tclass i = T Class i
Lin, Ind(bi, C, Ni) (we will use the simplified

form tclass i where it is clear which architecture and scheme we are using,

otherwise we will use the complete form). Since in the system there are

24

2.3. LINEAR

tclass i

F/bi
chains, the sum of the total download times Di for each class is

Di =

tclass i
F/bi∑

k=1

tclass i−kF/bi
F/Cbi∑

j=0

k
F

bi
+ j

F

Cbi
. (2.3)

The value of tclass i can be found with (2.1). The average download time is

Di/Ni for each class and (D1 + D2)/(N1 + N2) globally.

Amount of work. The number of copies distributed by the server is equal

to the number of started chains for each class. In this case we have
∑

i
tclass i

F/bi
.

As regards fast and slow peers, each peer uploads once. Only the last

peer of each chain does not upload; we can consider that the impact on

the index is not significant.

2.3.2 Generous

With this configuration slow peers do not upload any chunk; they only

download from fast peers; fast peers upload in parallel the chunks to a fast

peer and to a slow peer. Each fast peer stops after it has completely served

one slow peer. Figure 2.5 shows the chunk distribution methodology in this

case.

Figure 2.5: Chunk distribution with generous fast peers

25

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

Total download time. The system at the beginning evolves as if there were

only a single class with capacity b∗1 = b1 − b2. Every helped slow peer

finishes to download F
b2

+ F
Cb∗1

− F
b∗1

rounds after the correspondent fast peer

terminates. When the peers of one class finish downloading, the evolution

of the system is different depending whether N1 is larger or smaller than

N2. Let n be the number of peers that have already finished downloading

at time t, 0 < n < N . If N1 < N2 then fast peers finish before slow

ones (see Fig. 2.5) and, when n > 2N1, the remaining slow peers can only

download form the server (they are not collaborative, so they don’t upload

to any other peers); in this case bS/b2 peers finish to download every F/b2.

If N1 > N2 then slow peers finish before fast ones and, when n > 2N2, the

remaining fast peers evolves with full bandwidth b1.

Figure 2.6 shows the behavior in two cases. When N1 < N2 (here

N2 = 10N1, with N1 ≃ 900) it is possible to see that, after 2N1, the

system evolves very slowly, since only the server uploads the content. On

the contrary, when N1 > N2 (here N2 = 10N1, with N2 ≃ 900), only a

small part of fast peer are involved in helping slow peers; after 2N2 peers

are served, the system evolves faster. The Figure shows how the system

evolves: to see the difference between the phase when class 1 has a ca-

pacity equal to b∗1 and when it has a capacity equal to b1, the dashed line

represents the evolution if class had always a capacity b∗1. In case of greater

bandwidth ratios (not shown here), the difference fully disappear.

The total download time for class 1 is then

T Class1

Lin, Gen(b
∗
1, C, N1) =

F

b∗1
·
(C − 2) +

√
(C − 2)2 + 8N1C

2C
. (2.4)

For class 2 we have to distinguish between the two phases: let n2 the

26

2.3. LINEAR

100

101

 0 1000 2000

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Number of served peers (n)

b1 = 2b2
b1 = 5b2

(a) N1 < N2

100

101

 0 1000 2000 3000 4000 5000 6000 7000

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Number of served peers (n)

b1 = 2 b2

evolution with b1
*

evolution with b1
*, then b1

(b) N1 > N2

Figure 2.6: Linear chain with generous fast peer: time necessary to complete the download

(N = 104, C = 102). With N1 < N2 (a), when fast peers have completed, slow peers can

download only from the server. With N1 > N2 (b), after helping slow peers, fast peers

evolve with full bandwidth

number of slow peers that have completed the download, we have

T Class2

Lin, Gen(b2, C, N2) =

{
T Class1

Lin, Gen(b
∗
1, C, n2) + F

b2
+ F

Cb∗1
− F

b∗1
if n2 < N1

T Class1
Lin, Gen(b

∗
1, C, N1) + F

bS
n2 if n2 > N1

(2.5)

Average download time. The average download time has to be calculated

in the two different cases.

When N1 < N2, the average download time of the N1 fast peers can be

calculated with (2.3), where the bandwidth is b∗1 = b1 − b2. For class 2,

each of the N1 slow peers finishes with a delay of F
b2

+ F
Cb∗1

− F
b∗1

with respect

to each fast peer, so we can use again (2.3), with bi = b∗1 and considering

that delay by simply adding at the end N1

(
F
b2

+ F
Cb∗1

− F
b∗1

)
. The remaining

N2 −N1 slow peers complete at the rate of bS/b2 peers every F/b2. So the

27

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

sum of all the delays experimented by these peers is

N−2N1
bS/b2∑

k=1

tclass1 + k
F

b2
(2.6)

where tclass1 is the time necessary for class 1 to complete.

When N1 > N2 we can approximate the average download time of class

1 with (2.3) using the bandwidth b∗1. For class 2, we can calculate the

sum of the delays with (2.3), with bandwidth b∗1; the value of tclass i can be

calculated from (2.1) using a number of peers equal to N2; finally the term

N2

(
F
b2

+ F
Cb∗1

− F
b∗1

)
must be added in order to consider the delay necessary

to complete the download.

Amount of work. The number of copies distributed by the server is equal

to the number of started fast chains. If the number of fast peer is not

sufficient to serve all the slow peers, the server must upload to the remain-

ing slow peers, so we have tclass i

F/b∗i
+ max(0, (N2 − N1)). This represent an

approximation since we do not distinguish between N1 > N2 and N1 < N2;

nevertheless this approximation has not a great impact on final results.

As regards peers, each fast peer uploads at most twice (depending on

the number of slow peers), whereas slow peers do not upload.

2.3.3 Generous, with Collaboration

In this configuration the system evolves as in the previous case, but here

each slow peer served by a fast peer starts a new chain. In this case each

fast peer serves one fast peer and one slow peer, and each slow peer serve

one slow peer. Figure 2.7 shows the chunk distribution methodology in this

case.

With this scheme we try to exploit the unused capacity of slow peers.

While fast peers continue to upload chunks to slow peers, each slow peer

28

2.3. LINEAR

Figure 2.7: Chunk distribution with generous fast peers and collaborative slow peers

starts a new chain. The rate of slow chain creation is equal to the rate new

fast peers are involved in the distribution process.

Total download time. Looking at fast peers, the download time can be

found, as in the previous case, simply considering a Linear evolution with

capacity b∗1 = b1 − b2. In case of class 2 complete before class 1, the

remaining fast peers evolve with full bandwidth b1. We can approximate

the total download of class 1 considering the capacity b∗1, obtaining

T Class1

Lin, GenColl(b
∗
1, C, N1) =

F

b∗1
·
(C − 2) +

√
(C − 2)2 + 8N1C

2C
. (2.7)

As slow peers are concerned, in order to find the total download time we

first find the number of slow peers that have completed the download at

time t and then it is possible to derive the formula of total download time

against the number of served slow peers.

Consider the first chain of fast peers. A new fast peer is reached by a

chunk every F/Cb∗1, so the number of fast peers in the first fast chain is
tclass1−F/b∗1

F/Cb∗1
+ 1. For each fast peer a new slow chain is started. The number

of slow peers in a slow chain at time t is 1 + t−tstart−F/b2

F/Cb2
, where tstart is the

time when the chain is started. The number of slow peers contained in all

29

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

the slow chains generated by the first fast chain is then

tclass1−F/b∗1
F/Cb∗1

+1∑

j=1

max

(
0,

⌊
1 +

t − j F
Cb∗1

− F
b2

F/Cb2

⌋)
(2.8)

where tclass1 is the time necessary to class 1 to complete.

The second fast chain generates a number of slow chains equal to tclass1−2F/b∗1
F/Cb∗1

,

so the number of slow peers contained in all the slow chains generated by

the second fast chain is

tclass1−2F/b∗1
F/Cb∗1

+1∑

j=1

max

0,

1 +
t −
(
j F

Cb∗1
+ F

b∗1

)
− F

b2

F/Cb2

 . (2.9)

Applying the calculus for every fast peer chain, we obtain the total number

of slow peer reached at time t

n2(t) =

tclass1
F/b∗1∑

k=0

tclass1−(k+1)F/b∗1
F/Cb∗1

+1∑

j=1

max

0,

1 +
t −
(
j F

Cb∗1
+ kF

b∗1

)
− F

b2

F/Cb2

 .

(2.10)

From this relation, it is possible to find

T Class2

Lin, GenColl(b2, C, N2) such that n2(T
Class2

Lin, GenColl) = N2 (2.11)

It is important to note that equation (2.10) does not take into account the

possible contribution of the server, if it becomes available (this happens

if class 1 terminates before all slow peers finish): nevertheless we consider

the contribution not significant, since there are a lot of slow chain started

(a slow chain for every fast peer). The additional chains started by the

server can only be negligible for any interesting number N1, N2.

Figure 2.8 shows the total time against the number of peer n: in this

case N2 = 10N1, where N1 + N2 = N = 104. With collaboration, with few

fast peers it is possible to distribute the content to a lot of slow peers.

30

2.3. LINEAR

10-2

10-1

100

101

102

103

 0 2000 4000 6000 8000 10000

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Number of served peers (n)

b1 = 2b2
b1 = 5b2
b1 = 10b2
b1 = 100b2

(a) C = 102

10-2

10-1

100

101

102

103

 0 2000 4000 6000 8000 10000

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Number of served peers (n)

b1 = 2b2
b1 = 5b2
b1 = 10b2
b1 = 100b2

(b) C = 103

Figure 2.8: Linear architecture: system evolution with Generous with Collaboration

scheme (N2 = 10N1, N = 104)

Average download time. For the average download time we have to find

the sum of the delays experimented by the N peers. For class 1 the delays

can be found with the approximation that in both the cases tclass1 < tclass2

and tclass1 > tclass2 the bandwidth used by fast peer chains is b∗1 and then

apply (2.3).

For class 2, consider the slow chains born from the first fast chain:

the first peer of the first slow chain finishes at F
Cb∗1

+ F
b2

, the second at
F

Cb∗1
+ F

b2
+ F

Cb2
, the third at F

Cb∗1
+ F

b2
+ 2 F

Cb2
; the first peer of the second

slow chain finishes at 2 F
Cb∗1

+ F
b2

, the second at 2 F
Cb∗1

+ F
b2

+ F
Cb2

, the third at

2 F
Cb∗1

+ F
b2

+ 2 F
Cb2

; generalizing for all the tclass1−F/b∗1
F/Cb∗1

+ 1 slow chains derived

from the first fast chain we obtain:

tclass1−F/b∗1
F/Cb∗1

+1∑

k=1

t−k F

Cb∗1
−

F
b2

F/Cb2∑

j=0

(
k

F

Cb∗1
+

F

b2
+ j

F

Cb2

)
(2.12)

where t is the instant that we choose to observe the system. If we jointly

31

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

consider also fast peer chains we obtain:

D2 =

tclass1
F/b∗1∑

l=0

tclass1−(l+1) F

b∗1
F/Cb∗1

+1∑

k=1

t−l F
b∗1

−k F

Cb∗1
−

F
b2

F/Cb2∑

j=0

(
l
F

b∗1
+ k

F

Cb∗1
+

F

b2
+ j

F

Cb2

)
. (2.13)

The result of this formula is cumbersome but easy to evaluate via software

implementation.

Amount of work. The number of copies distributed by the server is equal

to the number of started fast chains. Since slow peers upload to others,

even if fast peers complete before slow peers, it is not necessary that the

server continue to upload to slow peers.

Each fast peer uploads at most twice, whereas each slow peer uploads

at most once (the last peer of each chain does not upload, and, since here

the number of chains is high, this term becomes significant).

2.3.4 Altruistic

In this configuration each fast peer, after uploading the content to a fast

peer, stays on-line and serves slow peers; in this case, since the capacity is

big, parallel upload is necessary to exploit all the fast peers upload capacity.

This means that b1/b2 slow peers start to download from a single fast peer

and finish to download after F/b2 rounds. For simplicity, we suppose no

collaboration of slow peers, i.e., they do not start new chains. We suppose

that fast peers are able to serve all the slow peers (i.e., b1

b2
N1 > N2), so they

upload only once. Figure 2.9 shows the chunk distribution methodology in

this case.

Total download time. Considering an instant t, the number of slow peers

that has completed is equal to the number of fast peer that have completed

32

2.3. LINEAR

Figure 2.9: Chunk distribution with altruistic fast peers

at time t−F/b2 multiplied by a factor b1/b2. The total download time for

class 1 is equal to the total download time found for the Independent case,

i.e.,

T Class1

Lin, Altr(b1, C, N1) =
F

b1
·
(C − 2) +

√
(C − 2)2 + 8N1C

2C
. (2.14)

The total time for class 2 to complete is

T Class2
Lin, Altr(b2, C, N2) = F

b2
+ T Class1

Lin, Altr(b1, C, b2

b1
N2) given that N1 > b2

b1
N2

(2.15)

where the last term is the time necessary to reach a number of fast peers

that is able to serve all the slow peers (since every fast peer serves b1

b2
slow

peers, b2

b1
N2 fast peer are needed).

Figure 2.10 shows the total time against the number of peer n, with

N1 = N2 = N/2, where N = 104.

Average download time. For class 1 we can use (2.3). For class 2, following

the steps made to find (2.3), considering that each fast peer uploads the

file to b1/b2 slow peers and they finish with a delay of F/b2 with respect

33

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

10-2

10-1

100

101

102

103

 0 2000 4000 6000 8000 10000

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Number of served peers (n)

b1 = 2b2
b1 = 5b2
b1 = 10b2
b1 = 100b2

(a) C = 102

10-2

10-1

100

101

102

103

 0 2000 4000 6000 8000 10000

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Number of served peers (n)

b1 = 2b2
b1 = 5b2
b1 = 10b2
b1 = 100b2

(b) C = 103

Figure 2.10: Linear chain architecture: system evolution with Altruistic scheme (N1 = N2,

N = 104)

to the fast peer, the mean download time is

D2 =

tclass2−F/b2
F/b1∑

k=1

tclass2−F/b2−kF/b1
F/Cb1∑

j=0

b1

b2

(
k
F

b1
+ j

F

Cb1
+

F

b2

)
. (2.16)

The Altruistic case is the most interesting case because it removes the

hypothesis that peers leave the system as soon as they complete, so they

can help slow peers. Of course this comes at a cost: each fast peer replicates

the file b1/b2 times. In a specific context, this could be not acceptable

(private users); in other context (file distribution in a company) this is not

a problem.

Amount of work. The number of copies distributed by the server is equal

to the number of started fast chains. As regards peers, each fast peer

uploads 1 + N2

N1
times, whereas slow peers do not upload.

34

2.3. LINEAR

2.3.5 Comparative Analysis for Linear Architecture

As numerical example we consider a set of bandwidth ratios, with two

possible numbers of slow peers with respect to fast peers. In particular we

focus on a total number of peers equal to 104: the analyzed cases correspond

to (i) N2 = N1 = 5000 and (ii) N1 ≃ 900 and N2 = 10N1 ≃ 9000. We

suppose a number of chunks equal to 102 and 103. We consider the file

size and the bandwidth b2 such that F/b2 = 1 round and the bandwidth

b1 such that F/b1 = 0.5, 0.2, 0.1 and 0.01. The last case corresponds to

b1 = 100b2 and can be considered as a limit to which the system evolves:

with such a high bandwidth, in fact, fast peers complete the download very

quickly and can help, with high capacity, low peers. The inferior limit that

can be reached is a download time that tends to zero for fast peers and a

download time that tends to 1 for slow peers (by construction F/b2 = 1).

Total Download Time

Figures 2.11 and 2.12 show how the system evolves in case of Linear archi-

tecture4. Each plot shows the percentage of completed peers for each class

with the four different schemes (Independent, Generous, ...). Figure 2.11

shows the case b1 = 5b2, with N1 = N2 and different values of C, whereas

Fig 2.12 shows the case of b1 = 10b2, with N2 = 10N1 and different values

of C. It is possible to see that a helping policy greatly improves the class 2

performance, especially when N2 = 10N1, and the Generous with Collab-

oration reaches near optimal performance, regardless of bandwidths ratio

and number of peers ratio. In particular, in Fig. 2.11, class 2 finishes even

before class 1. The reason is that a lot of slow chains are started almost

at the same time (i.e., one slow chain every F/Cb1, whereas only one fast

chain every F/b1 is created). Each of these slow chains, after the whole

4Note that plots show each line with different point types: the shown points do not represent all the

samples, but only a subset necessary to distinguish among different lines

35

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

file is uploaded, adds a new slow peer every F/Cb2, so in few slots of time

(each slot is F/Cb2) a lot of slow peers are reached.

10-1

100

101

102

103

 0.2 0.4 0.6 0.8

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Class 1 Completed peers [%] Class 2

Ind
Gen
G.Coll
Altr

 0.2 0.4 0.6 0.8

(a) C = 102

10-1

100

101

102

103

 0.2 0.4 0.6 0.8

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Class 1 Completed peers [%] Class 2

Ind
Gen
G.Coll
Altr

 0.2 0.4 0.6 0.8

(b) C = 103

Figure 2.11: System evolution with Linear architecture (b1 = 5b2, N1 = N2, N = 104)

10-1

100

101

102

103

 0.2 0.4 0.6 0.8

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Class 1 Completed peers [%] Class 2

Ind
Gen
G.Coll
Altr

 0.2 0.4 0.6 0.8

(a) C = 102

10-1

100

101

102

103

 0.2 0.4 0.6 0.8

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Class 1 Completed peers [%] Class 2

Ind
Gen
G.Coll
Altr

 0.2 0.4 0.6 0.8

(b) C = 103

Figure 2.12: System evolution with Linear architecture (b1 = 10b2, N2 = 10N1, N = 104)

In Fig 2.12 the download time with the Generous scheme grows rapidly

since slow peers do not upload and, when fast peers have completed the

download, only the server can upload to slow peers.

Figures 2.13 and 2.14 shows the complete set of results for N1 = N2

and N2 = 10N1 respectively, with different values of C. For each scheme

36

2.3. LINEAR

(reported on x-axis) the total download time of each class with specific

bandwidth ratios is shown.

In both cases, N1 = N2 and N2 = 10N1, for class 1, there are no big

differences among used schemes, so the impact of a helping policy on results

is negligible. For class 2 the Generous with Collaboration scheme performs

near optimally; also Altruistic scheme obtains good results, but with higher

bandwidth ratios.

10-2

10-1

100

101

102

103

Indep. Gener. G.Collab. Altr.

T
ot

al
 d

ow
nl

oa
d

tim
e

[r
ou

nd
s]

b1=5b2 Cl 1
Cl 2

b1=10b2 Cl 1
Cl 2

b1=100b2 Cl 1
Cl 2

(a) C = 102

10-2

10-1

100

101

102

103

Indep. Gener. G.Collab. Altr.

T
ot

al
 d

ow
nl

oa
d

tim
e

[r
ou

nd
s]

b1=5b2 Cl 1
Cl 2

b1=10b2 Cl 1
Cl 2

b1=100b2 Cl 1
Cl 2

(b) C = 103

Figure 2.13: Total download time with Linear architecture achieved by each class with

different schemes (N1 = N2, N = 104)

The case with b1 = 2b2 deserves a separated analysis. In this case the

bandwidth for class 1 becomes b∗1 = b1 − b2 = b2 and class 2 may complete

the download before class 1 (Fig. 2.15). For this reason, helping schemes

should be used only if b1 > 2b2. Nevertheless, when b1 = 2b2, the Generous

with Collaboration scheme, particularly with N2 = 10N1, can be used to

improve the performance of class 2.

Concluding the analysis of the total download time with Linear architec-

ture, for fast peers any helping policy can be adopted without significantly

affecting the class performance, provided that b1 > 2b2. For slow peers,

the Generous with Collaboration scheme works best in most of the cases

37

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

10-2

10-1

100

101

102

103

Indep. Gener. G.Collab. Altr.

T
ot

al
 d

ow
nl

oa
d

tim
e

[r
ou

nd
s]

b1=5b2 Cl 1
Cl 2

b1=10b2 Cl 1
Cl 2

b1=100b2 Cl 1
Cl 2

(a) C = 102

10-2

10-1

100

101

102

103

Indep. Gener. G.Collab. Altr.

T
ot

al
 d

ow
nl

oa
d

tim
e

[r
ou

nd
s]

b1=5b2 Cl 1
Cl 2

b1=10b2 Cl 1
Cl 2

b1=100b2 Cl 1
Cl 2

(b) C = 103

Figure 2.14: Total download time with Linear architecture achieved by each class with

different schemes (N2 = 10N1, N = 104)

10-2

10-1

100

101

102

103

Indep. Gener. G.Collab. Altr.

T
ot

al
 d

ow
nl

oa
d

tim
e

[r
ou

nd
s]

Class 1
Class 2

(a) N1 = N2

10-2

10-1

100

101

102

103

Indep. Gener. G.Collab. Altr.

T
ot

al
 d

ow
nl

oa
d

tim
e

[r
ou

nd
s]

Class 1
Class 2

(b) N2 = 10N1

Figure 2.15: Total download time with Linear architecture in case of b1 = 2b2 (N = 104,

C = 102)

38

2.3. LINEAR

we considered. Note that this scheme is robust to the different values of
N2

N1
, so it is applicable in scenarios where this ratio is not known a priori.

Average Download Time

Figure 2.16 shows the average download time with Linear architecture,

when N1 = N2, with different values of C. The behavior with the help-

ing schemes is similar to that we found with total download time, so the

conclusions we have drawn before still hold.

10-2

10-1

100

101

102

103

Indep. Gener. G.Collab. Altr.

A
ve

ra
ge

 d
ow

nl
oa

d
tim

e
[r

ou
nd

s]

b1=5b2 Cl 1
Cl 2

b1=10b2 Cl 1
Cl 2

b1=100b2 Cl 1
Cl 2

(a) C = 102

10-2

10-1

100

101

102

103

Indep. Gener. G.Collab. Altr.

A
ve

ra
ge

 d
ow

nl
oa

d
tim

e
[r

ou
nd

s]
b1=5b2 Cl 1

Cl 2
b1=10b2 Cl 1

Cl 2
b1=100b2 Cl 1

Cl 2

(b) C = 103

Figure 2.16: Average Download Time with Linear architectures using different schemes

(N1 = N2, N = 104)

Amount of Work

Table 2.1 summarizes the amount of work for each scheme. Linear architec-

ture maintains the amount of work of both classes low. The only exception

is class 1 work with Altruistic scheme. Nevertheless, the Generous with

Collaboration scheme, that obtains the best total download time in most

of the cases, has a little impact on amount of work done by each class.

39

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

Table 2.1: Amount of work with Linear architecture

Schemes Server Class 1 Class 2

Independent
∑

i
tclass i
F/bi

1 1

Generous
tclass 1
F/b1

+ max(0, N1 + N2) 2 0

Gen. Collab.
tclass 1
F/b1

≤ 2 ≤ 1

Altruistic
tclass 1
F/b1

1 + N2/N1 0

2.4 Tree

With Tree architecture it is possible to have parallel uploads. In the general

case, it is possible to specify different outdegrees: k, the outdegree of a fast

peer toward fast peers; f , the outdegree of a fast peer toward slow peers;

s the outdegree of a slow peer toward slow peers. Thanks to these design

parameters, it is possible to organize the peers such that they all finish the

download at the same time: this optimizes the total download time that is

our main performance index.

As in the Linear architecture, it is possible to identify different cases.

In the following paragraphs we analyze them.

2.4.1 Independent

Total download time. Each class builds its own tree and evolves indepen-

dently; no chunks are exchanged between the two trees. The total download

time is the time necessary to the first chunk to reach the leaves plus the time

to upload the file to the leaves using a bandwidth bi/k for each upload5. The

number of levels l in a tree with Ni nodes6 can be found considering that

the first level contains k nodes (the level 0 is the server itself), the second

k2 nodes and so forth; so Ni =
∑l

j=1 kj = k kl−1
k−1

and l = logk

(
Ni

k−1
k

+ 1
)
.

5For simplicity, we use the notation with k for both fast and slow trees.
6Without loss of generality, for notation simplicity we consider a full tree.

40

2.4. TREE

A single chunk reaches the leaves at time F/C
bi/k l = F

bi

k
C logk

(
Ni

k−1
k + 1

)
, so

the total download time is

T Class i

Tree, Lin(bi, C, k, Ni) =
F

bi
k +

F

bi

k

C

(
logk

(
Ni

k − 1

k
+ 1

)
− 1

)
(2.17)

where we subtract 1 to the number of levels because the time to upload

the first chunk to the leaves is included in the time to upload the whole

file. If class 2 is considered, the parameter k has to be substituted by

the parameter s. Since there are no chunk exchanges between trees, the

parameter f is zero.

For the optimization problem of the outdegrees k and s, with this scheme

it is not possible to adjust the parameters in order to obtain the same

download time for the two classes: in fact, since they are independent, the

modification of download time of one class does not influence the perfor-

mance of the other class. This means that in this case we have to optimize

the parameters independently, with the methodology proposed in [18]; then

the optimal values are k = s = 2.

Figure 2.17 shows the total time against the number of peer n with two

classes with the same number of peers (N1 = N2 = N/2, where N =

104), and different bandwidth ratios. Differently for Linear architecture,

the influence of the number of chunks C on the total download time is

negligible, since C appears only in the logarithmic term of (2.17) that is

much smaller than the linear term.

Average download time. We consider the sum of the times necessary to

complete the download of each peer and then we divide it by the number

of peers. At time F
bi/k

the first k peers complete; at time F
bi/k

+ F
Cbi/k

other k2

peers complete; at time F
bi/k +2 F

Cbi/k other k3 peers complete. Generalizing

41

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

10-2

10-1

100

101

102

103

 0 2000 4000 6000 8000 10000

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Number of served peers (n)

b1 = 2b2
b1 = 5b2
b1 = 10b2
b1 = 100b2

(a) C = 102

10-2

10-1

100

101

102

103

 0 2000 4000 6000 8000 10000

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Number of served peers (n)

b1 = 2b2
b1 = 5b2
b1 = 10b2
b1 = 100b2

(b) C = 103

Figure 2.17: Tree architecture with independent classes: time necessary to complete the

download (N1 = N2 = N/2, N = 104)

we have

Di =

logk(Ni(1−1/k)+1)∑

j=0

kj+1

(
Fk

bi
+ j

Fk

Cbi

)
. (2.18)

The above formula is valid for class 1; for class 2 instead of k the outdegree

s has to be considered. The average download time is Di/Ni for each class

and (D1 + D2)/(N1 + N2) globally.

Amount of work. The number of copies distributed by the server is equal

to the number of started roots for each class, i.e., k + s. As regards peers,

each interior node uploads k (fast peers) or s (slow peers) times, whereas

each leaf node does not upload.

2.4.2 Generous

Slow peers do not upload any chunk, they only download from fast peers.

Fast peers evolve according to a Tree architecture with outdegree k and

capacity b∗1 = b1−fb2; at the same time, they upload the chunks in parallel

to f slow peers with bandwidth b2 each. This means that, once the leaves

42

2.4. TREE

of the tree formed by fast peers are reached, the time necessary to fast

peers to complete is kF
b∗1

rounds, while the time needed for slow peers to

finish is equal to F
b2

, without the factor k that slows down the performance.

For the optimization problem, we have to find the best value for k and

f (in this case s = 0). The optimum value k for the tree built by fast peer

is independent from the fact that part of the bandwidth is dedicated to

slow peers, so k = 2. The optimum value f must be chosen considering

that we minimize the total download time if all the peers finish as much

as possible together: to do so, all the N1 generous fast peer must upload

to all the N2 slow peers, so f =
⌈

N2

N1

⌉
. Nevertheless, if f is sufficiently big,

the bandwidth for class 1 (b∗1 = b1 − fb2) could be smaller than b2 (or, in

the worst case, negative) and the total download time would be greater

than in the Independent case: this result is due to the non-collaborative

behavior of class 2. We can conclude that b1 − fb2 should be greater than

b2, i.e. f < b1

b2
− 1 or equivalently b1 > (N2

N1
+ 1)b2.

Total download time. Class 1 evolves with bandwidth b∗1 = b1 − fb2. The

total time for this class can be found simply by substituting the value of

the bandwidth in (2.17), obtaining

T Class1
Tree, Gen(b

∗
1, C, k, N1) = F

b∗1
k + F

b∗1

k
C

(
logk

(
N1

k−1
k + 1

)
− 1
)

given that b1 >
(

N2

N1
+ 1
)

b2 .
(2.19)

For class 2, the download completes after F/b2 rounds the first chunk of

class 1 has been completely uploaded to the leaves of the fast tree, so

T Class2
Tree, Gen(b2, C, k, N2) = F

b∗1

k
C logk

(
N1

k−1
k + 1

)
+ F

b2

given that b1 >
(

N2

N1
+ 1
)

b2 .
(2.20)

Figure 2.18 shows the total time against the number of peer n when N1 =

N2.

43

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

10-2

10-1

100

101

102

103

 0 2000 4000 6000 8000 10000

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Number of served peers (n)

b1 = 2b2
b1 = 5b2
b1 = 10b2
b1 = 100b2

(a) C = 102

10-2

10-1

100

101

102

103

 0 2000 4000 6000 8000 10000

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Number of served peers (n)

b1 = 2b2
b1 = 5b2
b1 = 10b2
b1 = 100b2

(b) C = 103

Figure 2.18: Tree architecture: system evolution with Generous scheme (N1 = N2, N =

104)

Average download time. The metric can be found with (2.18). For class 1

we substitute bi = b∗1, finding D1. For class 2, the average is equal to the

average of class 1 added with a term F
b2

+ F
b∗1

k
C − F

b∗1
k that is the delay that

each slow peer experiments with respect to a peer of class 1.

Amount of work. The number of copies distributed by the server is equal to

the number of fast roots, i.e., k. As regards peers, each fast peer uploads

at most k + N2

N1
times, whereas slow peers do not upload. In particular,

interior nodes of fast peer upload in parallel to k fast peers and to N2

N1
slow

peers and leaf nodes upload to N2

N1
slow peers.

2.4.3 Leaves Only Generous

With Tree architecture leaf nodes of fast tree do not upload to other fast

peers, but only to slow peers. The unused capacity of leaf nodes (b1) can

be exploited using an alternative Generous scheme. We can force interior

nodes of a fast tree to upload only to other k fast nodes, whereas leaf

nodes, as soon as they receive the first chunk, upload to all the slow peers.

44

2.4. TREE

The number of leaves in a full tree is kl, i.e., k−1
k N1. Each leaf node of the

fast tree has to upload to k
k−1

N2

N1
slow peers with bandwidth b2. This means

that this alternative scheme is not applicable with good performance if

b1 < k
k−1

N2

N1
b2. With respect the previous Generous scheme, this constraint

imposes higher capacity b1 when the ratio between the number of peers of

each class grows. If the constraint is satisfied, the total download time for

class 1 is equal to the total download time in the Independent case, since

interior nodes can use all the capacity. So

T Class1
Tree, LeavGen(b1, C, k, N1) = F

b1
k + F

b1

k
C

(
logk

(
N1

k−1
k

+ 1
)
− 1
)

given that b1 > k
k−1

N2

N1
b2 .

(2.21)

For class 2, it is sufficient to substitute b1 to b∗1 in (2.19), obtaining

T Class2
Tree, LeavGen(b2, C, k, N2) = F

b1

k
C
logk

(
N1

k−1
k

+ 1
)

+ F
b2

given that b1 > k
k−1

N2

N1
b2 .

(2.22)

This scheme could be interesting if the constraint b1 > k2

k−1
N2

N1
b2 is not

satisfied and class 2 collaborates in distributing the content: in this case,

leaf nodes upload to as many as possible slow peers and each served slow

peer starts a chain as soon as it receives the first chunk. Each leaf node

serves b1/b2 slow peers, so the total number of chains is (at least) k−1
k2 N1

b1

b2

and the content is then rapidly distributed to all the slow peers.

Average download time. The metric can be found with (2.18). For class

1 we substitute bi = b1, finding D1. For class 2, the average is simple the

total download time, since all the slow peers start and finish together 7.

Amount of work. Interior nodes upload k times, whereas leaf nodes upload

up to k
k−1

N2

N1
times.

7Even if leaf nodes in the fast tree can stay in different levels, the difference in terms of delay is not

significant, provided that C ≫ 1.

45

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

2.4.4 Generous, with Collaboration

Total download time. With this scheme, we try to exploit the unused ca-

pacity of the slow peers already served: once a slow peer has received a

chunk, it starts to redistribute it. The optimal outdegree s of slow peer

trees is 1: in fact, from (2.17), the time necessary to complete a tree is at

least equal to F
b2

s and a value of s greater than 1 implies that collabora-

tion would not have effect, as it becomes evident through the comparison

between (2.17), with s > 1, and (2.20)8. Figure 2.19 shows an example of

the scheme.

Figure 2.19: Tree architecture: tree building in case of k=2, s=1 and f=1

It is important to note that introducing collaboration influences class 1

performance, but has only a little impact on class 2 results. In fact collab-

orative behavior diminishes the parameter f and the capacity b∗1 becomes

greater; nevertheless the capacity b∗1 is present only in the logarithmic term

of (2.20) that gives the smallest contribution to the total time.

In order to reduce the number of parameters, we can choose k consid-

ering that fast trees evolve independently (so k = 2), having only the rate

of creation of slow chains (the parameter f) to find. We start from the

maximum value of f , i.e., f = N2/N1 and we calculate the total download

time in this case (that is the Generous case, without collaboration, since

fast peers help all the slow peers); we then iteratively reduce the value of

8If b1 ≃ b2 and logk(N1) ≫ logs(N2) this could not be true, but these degenerate cases are not

considered.

46

2.4. TREE

f calculating if, with the collaboration of slow peers, it is possible to reach

all the slow peers in lower time (with respect to the previous iteration).

Once the value f is found, class 1 total download time is given by (2.17)

with bi = b∗1 = b1 − fb2, so

T Class1
Tree, GenColl(b

∗
1, C, k, N1) = F

b∗1
k + F

b∗1

k
C

(
logk

(
N1

k−1
k

+ 1
)
− 1
)

given that b1 >
(

N2

N1
+ 1
)

b2 .
(2.23)

Even if slow peers collaborate in distributing the content, all the fast peers

upload the content to a subset of slow peers (each fast peer uploads to f

slow peers), so the bandwidth b∗1 does not change during the download.

As concerns class 2, we have to analyze the behavior in detail. At the

beginning, the first k fast peers finish to upload the first chunk to the

k · f slow peers at time kF
Cb∗1

+ F
Cb2

(the first term is the time necessary

to download the first chunk and the second term is the time necessary

to upload it with bandwidth b2). Therefore the k · f slow peers become

heads of Linear chains that distribute the content with bandwidth b2. The

number of peers in these chains at time t is kf(1 + t−(kF/Cb∗1+F/b2)
F/Cb2

). In the

meanwhile the second level of the fast tree uploads the content to new slow

peers: we obtain k2f new slow peers. The number of slow peers in these

chains is k2f(1 + t−(2kF/Cb∗1+F/b2)
F/Cb2

). Generalizing we obtain the number of

slow peers (n2(t)) in time

n2(t) =

logk(N1(1−1/k)+1)∑

j=1

kjf

(
1 +

t − (jkF/Cb∗1 + F/b2)

F/Cb2

)
. (2.24)

From this relation, it is possible to find

T Class2

Tree, GenColl(b2, C, k, N2) such that n2(T
Class2

Tree, GenColl) = N2 (2.25)

The evolution of the system with this scheme is similar to the Generous

case, since collaboration does not greatly improve the performance, and

the results are similar to what shown in Figure 2.18.

47

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

Average download time. As regards the average download time, for class

1 we can use (2.18) with b∗1 = b1 − fb2. For class 2, we can apply the

procedure used to find (2.3), deriving

D2 =

logk(Ni(1−1/k)+1)∑

l=1

klf

tclass2−(lkF/Cb∗1+F/b2)

F/Cb2∑

j=0

(
l
kF

Cb∗i
+

F

b2
+ j

F

Cb2

)
(2.26)

where tclass2 is the time necessary for class 2 to complete.

Amount of work. The number of copies distributed by the server is equal

to the number of fast roots, i.e., k. Each fast peer uploads at most k + N2

N1

times, whereas each slow peer uploads at most once.

2.4.5 Altruistic

As in the Linear case, we remove the hypothesis that peers leave the system

as soon as they complete. Each fast peer, after uploading the content to k

fast peers, stays on-line and starts to serve slow peers; we consider that the

number of slow peers is smaller than b1

b2
N1 and slow peers do not collaborate

(these hypotheses simplify the calculation, without loss of generality).

Total download time. Class 1 evolve independently, so

T Class1
Tree, Altr(b1, C, k, N1) = F

b1
k + F

b1

k
C

(
logk

(
N1

k−1
k + 1

)
− 1
)

given that N2 < b1

b2
N1 .

(2.27)

It is straightforward to see that the time necessary for class 2 to complete

is
T Class2

Tree, Altr(b2, C, k, N2) = F
b2

+ T Class1
Tree, Altr(b1, C, k, N2

b2

b1
)

given that N2 < b1

b2
N1

(2.28)

where the last term is the time necessary to reach a number of fast peers

that is able to serve all the slow peers (since every fast peer serves b1

b2
slow

peers, N2
b2

b1
fast peer are needed).

48

2.4. TREE

Figure 2.20 shows the total time against the number of peer n, with

N1 = N2 = N/2, where N = 104.

10-2

10-1

100

101

102

103

 0 2000 4000 6000 8000 10000

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Number of served peers (n)

b1 = 2b2
b1 = 5b2
b1 = 10b2
b1 = 100b2

(a) C = 102

10-2

10-1

100

101

102

103

 0 2000 4000 6000 8000 10000

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]
Number of served peers (n)

b1 = 2b2
b1 = 5b2
b1 = 10b2
b1 = 100b2

(b) C = 103

Figure 2.20: Tree architecture: system evolution with Altruistic scheme (N1 = N2, N =

104)

Average download time. The metric can be found with (2.18). For class 1

we substitute bi = b1, finding D1. For class 2 the average is equal to the

average of a fast tree with N2
b2

b1
nodes plus F

b2
.

Amount of work. The number of copies distributed by the server is equal

to the number of fast roots, i.e., k. Each fast peer uploads at most k + N2

N1

times, whereas slow peers do not upload. In this case leaf nodes may not

contribute, depending on the number of slow peers and on the bandwidth

ratio. In fact, if the number of interior nodes is sufficient and have sufficient

bandwidth to serve all the slow peers, leaf nodes may not upload.

2.4.6 Comparative Analysis for Tree Architecture

As numerical example we consider the same set of number of peers and

bandwidth ratios described in Sect. 2.3.5. We consider the same helping

49

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

scheme of the Linear architecture, i.e., Independent, Generous, Generous

with Collaboration and Altruistic. The Leaves only Generous scheme has

significant results when the difference between b1 and b2 is small (b1 =

2b2) and this case is treated separately. In all the other cases the results

obtained with such a scheme are equal to those obtained with the Generous

scheme.

Total Download Time

Figure 2.21 shows the system evolution using different schemes, with b1 =

5b2 (Fig 2.21(a)) and b1 = 10b2 (Fig 2.21(b)). Also with Tree architecture,

helping schemes can improve class 2 performance without greatly affecting

class 1 performance.

10-2

10-1

100

101

102

103

 0.2 0.4 0.6 0.8

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Class 1 Completed peers [%] Class 2

Ind
Gen
G.Coll
Altr

 0.2 0.4 0.6 0.8

(a) b1 = 5b2

10-2

10-1

100

101

102

103

 0.2 0.4 0.6 0.8

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Class 1 Completed peers [%] Class 2

Ind
Gen
G.Coll
Altr

 0.2 0.4 0.6 0.8

(b) b1 = 10b2

Figure 2.21: System evolution with Tree architecture (N1 = N2, N = 104, C = 102)

Figure 2.22 reports the whole set of results, for N1 = N2 and N2 = 10N1.

In case of N2 = 10N1 we use a different set of bandwidth ratios, since, with

Tree architecture, helping schemes can be applied only if b1 >
(

N2

N1
+ 1
)

b2;

we use class 1 capacity 20, 50 and 100 times greater than class 2 capacity.

The Generous scheme performs optimally for both classes regardless of

bandwidth ratios. The collaboration, in this case, has no influence, since

50

2.4. TREE

fast peers are able to help all the slow peers before the collaboration of slow

peers can have effect. The Altruistic scheme obtains also good results, but

slightly worse when N1 = N2, because each fast peer has to complete the

download before starting to help slow peers (when N2 = 10N1 there are

few fast peers and this effect is not visible).

10-2

10-1

100

101

102

103

Indep. Gener. G.Collab. Altr.

T
ot

al
 d

ow
nl

oa
d

tim
e

[r
ou

nd
s]

b1=5b2 Cl 1
Cl 2

b1=10b2 Cl 1
Cl 2

b1=100b2 Cl 1
Cl 2

(a) N1 = N2

10-2

10-1

100

101

102

103

Indep. Gener. G.Collab. Altr.

T
ot

al
 d

ow
nl

oa
d

tim
e

[r
ou

nd
s]

b1=20b2 Cl 1
Cl 2

b1=50b2 Cl 1
Cl 2

b1=100b2 Cl 1
Cl 2

(b) N2 = 10N1

Figure 2.22: Total download time with Tree architecture achieved by each class with

different schemes (N = 104, C = 102)

The case with b1 = 2b2, when N1 = N2, needs a separated analysis. The

bandwidth for class 1 becomes b∗1 = b1 − b2 = b2 and class 2 may complete

the download before class 1 (Fig. 2.23(a)). In this situation, the Leaves

only Generous scheme can be used to improve the performance of class 1.

Figure 2.23(b) show the results that can be obtained when class 1 adopts

a Leaf only Generous scheme.

Average Download Time

Figure 2.24 shows the average download time with Tree architecture, when

N1 = N2. The behavior with the different schemes is similar to that we

found with total download time, so the conclusions we have drawn before

still hold.

51

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

10-2

10-1

100

101

102

103

Indep. Gener. G.Collab. Altr.

T
ot

al
 d

ow
nl

oa
d

tim
e

[r
ou

nd
s]

Class 1
Class 2

(a) Generous scheme

10-2

10-1

100

101

102

103

Indep. L-Gen. L-G.Coll. Altr.

T
ot

al
 d

ow
nl

oa
d

tim
e

[r
ou

nd
s]

Class 1
Class 2

(b) Leaves only Generous scheme

Figure 2.23: Total Download Time in case of Tree architecture, with b1 = 2b2, using

different Generous schemes (N1 = N2, N = 104, C = 102)

10-2

10-1

100

101

102

103

Indep. Gener. G.Collab. Altr.

A
ve

ra
ge

 d
ow

nl
oa

d
tim

e
[r

ou
nd

s]

b1=5b2 Cl 1
Cl 2

b1=10b2 Cl 1
Cl 2

b1=100b2 Cl 1
Cl 2

(a) N1 = N2

10-2

10-1

100

101

102

103

Indep. Gener. G.Collab. Altr.

T
ot

al
 d

ow
nl

oa
d

tim
e

[r
ou

nd
s]

b1=20b2 Cl 1
Cl 2

b1=50b2 Cl 1
Cl 2

b1=100b2 Cl 1
Cl 2

(b) N2 = 10N1

Figure 2.24: Average Download Time with Tree architectures using different schemes

(N = 104, C = 102)

52

2.5. PTREE

Amount of Work

Table 2.2 summarizes the amount of work. Tree architecture presents dif-

ferences among peers of the same class: in fact interior nodes upload much

more than leaf nodes. It is important to note that unfairness among peers

does not mean that scheme is not applicable. In fact, there are situa-

tions where peers are not able to upload (e.g., nodes behind a firewall or a

NAT device). An asymmetric distribution architecture or scheme assumes

a different meaning in such scenarios.

Table 2.2: Amount of work with Tree architecture

Schemes Server Class 1 Class 2

Independent k + s k s

Generous k k + N2/N1 0

Gen. Collab. k ≤ (k + N2/N1) 1

Altruistic k k + N2/N1 0

2.5 PTree

As in the Tree architecture it is possible to specify different outdegrees: k,

the outdegree of a fast peer toward fast peers; f , the outdegree of a fast

peer toward slow peers; s the outdegree of a slow peer toward slow peers.

Note that the PTree distribution architecture is designed to exploit all the

peer capacities, so the gain that is possible to achieve with a collaboration

policy in negligible. This consideration is confirmed also by the analysis:

the adoption of a scheme has impact only on the logarithmic term of the

formula obtained in the Independent case, that is much smaller than the

linear term of the same formula. In the following paragraphs we analyze

the different schemes.

53

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

2.5.1 Independent

Total download time. Each class builds its own tree and evolves indepen-

dently; no chunks are exchanged between the two trees. The server starts

k different distribution trees and each tree contains Ni nodes. The number

of levels l in a tree with Ni nodes9 can be found considering that the first

level contains 1 node, the second k nodes, the third k2 nodes, and so forth;

so Ni =
∑l

j=0 kj = kl+1−1
k−1 and l = logk

(
Ni(k−1)+1

k

)
. The total download

time is then

T Class i

PTree, Ind(bi, C, k, Ni) =
F

bi
+

F

bi

k

C

(
logk

(
Ni

k − 1

k
+

1

k

)
− 1

)
(2.29)

where we subtract 1 to the number of levels because the time to upload

the first chunk to the leaves is included in the time to upload the whole

file. If class 2 is considered, the parameter k has to be substituted by

the parameter s. Since there are no chunk exchanges between trees, the

parameter f is zero.

Also for this case the optimization problem is solved independently for

the two classes (see [18]), leading to optimal values k = s = 3.

Figure 2.25 shows the total time against the number of peer n with two

classes (N2 = 10N1, where N1 + N2 = N = 104) with different bandwidth

ratios.

Average download time. The average download time, with this architec-

ture, is trivial: since all the peers belonging to the same class finish at the

same time, the average for each class is equal to the total download time

and the global average is T mean-indep

PTree = (N1 · T Class1
PTree + N2 · T Class2

PTree)/(N1 + N2).

Amount of work. The number of copies distributed by the server is equal

to the number of started roots for each class; since each root download

9Without loss of generality we consider a full tree.

54

2.5. PTREE

10-2

10-1

100

101

102

103

 0 2000 4000 6000 8000 10000

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Number of served peers (n)

b1 = 2b2
b1 = 5b2
b1 = 10b2
b1 = 100b2

(a) C = 102

10-2

10-1

100

101

102

103

 0 2000 4000 6000 8000 10000

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Number of served peers (n)

b1 = 2b2
b1 = 5b2
b1 = 10b2
b1 = 100b2

(b) C = 103

Figure 2.25: PTree architecture with independent classes: time necessary to complete the

download (N2 = 10N1, N = 104)

only a fraction of the file, the server uploads the whole file only twice. As

regards fast and slow peers, each node uploads once.

2.5.2 Generous

Slow peers do not upload any chunk; they only download from fast peers;

fast peers upload in parallel the chunk to k fast peers and to f slow peers.

Here the bandwidth imposes more constraints: each fast peer, in fact,

receives and distributes a fraction 1/k of the file F to k peers, while re-

ceiving in parallel the other k − 1 fractions. The maximum bandwidth

allowed toward a peer is then a fraction 1/k of its capacity (since the peer

receives up to k different chunks in parallel). Fast peers upload to f slow

peers with bandwidth b2/k for each slow peer. The remaining bandwidth

(b∗1 = b1 − fb2/k) is then used for fast peers.

Total download time. For the optimization problem, we have to find the

best value for k and f (since there is no collaboration, s = 0). The optimum

value k for the tree built by fast peers is independent from the fact that part

55

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

of the bandwidth is dedicated to slow peers, so k = 3. The optimum value f

must be chosen considering that we minimize the total download time if all

the peers finish as much as possible together: to do so, all the N1 generous

fast peer must upload to all the N2 slow peers, so f =
⌈

N2

N1

⌉
. Again, if f is

sufficiently big, the bandwidth for class 1 (b∗1) could be smaller than b2 or, in

the worst case, less than zero, and the total download time would be greater

than in the Independent case (since class 2 is non-collaborative). We can

conclude that b1 − fb2/k should be greater than b2, i.e. f <
(

b1

b2
− 1
)

k;

this means that, if b1 < (1
k

N2

N1
+1)b2 the scheme is not applicable with good

performance.

The total download time for class 1 is given by (2.29), where bi = b∗1,

obtaining

T Class1
PTree, Gen(b

∗
1, C, k, N1) = F

b∗1
+ F

b∗1

k
C

(
logk

(
N1

k−1
k + 1

k

)
− 1
)

given that b1 <
(

1
k

N2

N1
+ 1
)

b2 .
(2.30)

Looking at class 2, the download completes after F/b2 rounds class 1 has

reached the leaves of the fast tree, so

T Class2
PTree, Gen(b2, C, k, N2) = F

b∗1

k
C logk

(
N1

k−1
k + 1

k

)
+ F

b2

given that b1 <
(

1
k

N2

N1
+ 1
)

b2 .
(2.31)

Figure 2.26 shows the total time against the number of peer n when N2 =

10N1, N1 + N2 = N = 104, with different bandwidth ratios.

Average download time. The average download time depends on the total

download time for each class and is equal to (N1·tclass 1+N2·tclass 2)/(N1+N2).

Amount of work. The server uploads the whole file only once to class 1.

As regards peers, each fast peer uploads 1+ 1
k

N2

N1
times, whereas slow peers

do not upload at all.

56

2.5. PTREE

10-2

10-1

100

101

102

103

 0 2000 4000 6000 8000 10000

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Number of served peers (n)

b1 = 5b2
b1 = 10b2
b1 = 100b2

(a) C = 102

10-2

10-1

100

101

102

103

 0 2000 4000 6000 8000 10000

D
ow

nl
oa

d
tim

e
[r

ou
nd

s]

Number of served peers (n)

b1 = 5b2
b1 = 10b2
b1 = 100b2

(b) C = 103

Figure 2.26: PTree architecture: system evolution with Generous scheme (N2 = 10N1,

N = 104)

2.5.3 Generous, with Collaboration

In this case, slow peers are helped by fast peer, but here each served slow

peer starts a new tree with degree s. In order to reduce the number of

parameters, we can choose k and s considering that trees evolve indepen-

dently (so k = s = 3), having only the rate of creation of slow trees

(the parameter f) to find. We start from the maximum value of f , i.e.,

f = N2/N1 and we calculate the total download time in this case (that

is the Generous case, without collaboration, since fast peers help all the

slow peers); we then iteratively reduce the value of f calculating if, with

the collaboration of slow peers, it is possible to reach all the slow peers in

lower time (with respect to the previous iteration). In particular we start

from the total download time for class 1, i.e.,

T Class1

PTree, GenColl(b
∗
1, C, k, N1) =

F

b∗1
+

F

b∗1

k

C

(
logk

(
N1

k − 1

k
+

1

k

)
− 1

)
(2.32)

Starting from the maximum value of f , we can find tmax
class1, maximum down-

load time for class 1, and, with (2.31), tmax
class2, maximum download time for

class 2 without collaboration. If we introduce collaboration, new slow trees

57

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

have a time lapse equal to tmax
class2 subtracted by the delay necessary to start

the slow tree.

At the beginning, the first f slow peers have tmax
class2 −

kF
Cb∗1

rounds to dis-

tribute the content. From (2.29) it is possible to find the number n′ such

that TPTree, Ind(b2, C, s, n′) = tmax
class2 −

kF
Cb∗1

. In the meanwhile the second level

of the fast tree uploads the content to new slow peers: we obtain kf new

slow peers that have tmax
class2 − 2 kF

Cb∗1
rounds to distribute the content. Again,

we can find n′′ such that TPTree, Ind(b2, C, s, n′′) = tmax
class2 − 2 kF

Cb∗1
. At the end

the sum of n′, n′′, n′′′, ... is the total number of slow peers that have com-

pleted the download with the Generous with Collaboration scheme. If this

number is greater than N2, we repeat the procedure decrementing f . The

minimum f found with this procedure is the value we finally use in (2.32)

to find the total download time of class 1. We can approximate the total

download time for class 2 with

T Class2
PTree, GenColl(b2, C, k, N2) = F

b∗1

k
C
logk

(
N1

k−1
k

+ 1
k

)
+ F

b2
(2.33)

since, by construction, this is the time limit used in the procedure described

above.

The evolution of the system with this scheme is similar to the Generous

case and the results are similar to what shown in Figure 2.26.

2.5.4 Altruistic

Each fast peer, after uploading the content to k fast peers, stays on-line and

starts to serve slow peers. In this case, we have to wait that all the fast peers

complete the download; after that, N1
b1

b2
parallel copies are distributed to

slow peers. We consider that this amount of copies is sufficient to complete

the number of slow peers, i.e., N2 < b1

b2
N1.

58

2.5. PTREE

Total download time. Class 1 evolve independently, so

T Class1
PTree, Altr(b1, C, k, N1) = F

b1
+ F

b1

k
C

(
logk

(
N1

k−1
k

+ 1
k

)
− 1
)

given that N2 < b1

b2
N1 .

(2.34)

The time necessary for class 2 to complete is

T Class2
PTree, Altr(b2, C, k, N2) = F

b2
+ T Class1

PTree, Altr(b1, C, k, N1)

given that N2 < b1

b2
N1

(2.35)

In this case, before starting to serve slow peers, all the fast peers must

finish: in fact, once the PTree structure is defined for the N1 nodes, they

complete to download all together. Even if a smaller number of fast peers

is sufficient to serve slow peers (for instance, if N1 > N2), we have to wait

for all the fast peers to complete.

The evolution of the system does not greatly change with respect to what

shown in Fig 2.26, as becomes evident from the comparison of formulas

(2.31) and (2.35).

Average download time. Again, the metric depends on the total download

time for each class and is equal to (N1 · T Class1
PTree + N2 · T Class2

PTree)/(N1 + N2).

Amount of work. The server uploads the whole file only once to class 1.

As regards peers, each fast peer uploads at most 1 + N2

N1
times, whereas

slow peers do not upload.

2.5.5 Comparative Analysis for PTree Architecture

As numerical example we consider the same set of number of peers and

bandwidth ratios described in Sect. 2.3.5.

59

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

Total Download Time

Figure 2.27 shows the results with PTree architecture. PTree architecture

imposes that helping schemes can be applied only if b1 >
(

1
k

N2

N1
+ 1
)

b2.

As we noted in Sect. 2.5, the different schemes do not improve the perfor-

mance: in fact PTree obtains near-optimal performance for each class and

a help from the other class has a little impact (only the logarithmic term

is diminished, but this term is much smaller than the linear term).

10-2

10-1

100

101

102

103

Indep. Gener. G.Collab. Altr.

T
ot

al
 d

ow
nl

oa
d

tim
e

[r
ou

nd
s]

b1=2b2 Cl 1
Cl 2

b1=5b2 Cl 1
Cl 2

b1=10b2 Cl 1
Cl 2

b1=100b2 Cl 1
Cl 2

(a) N1 = N2

10-2

10-1

100

101

102

103

Indep. Gener. G.Collab. Altr.

T
ot

al
 d

ow
nl

oa
d

tim
e

[r
ou

nd
s]

b1=5b2 Cl 1
Cl 2

b1=10b2 Cl 1
Cl 2

b1=100b2 Cl 1
Cl 2

(b) N2 = 10N1

Figure 2.27: Total Download Time with PTree architecture using different schemes (N1 +

N2 = N = 104, C = 102)

Concluding on PTree, since this distributing architecture exploits almost

completely the bandwidth resources, helping schemes simply reduce the

performance of class 1 without improving the performance of class 2. With

PTree architecture, then, the best scheme that can be chosen is to proceed

independently.

Average Download Time

With PTree architecture the average download time is equal to the total

download time, so the analysis does not change.

60

2.6. OVERALL COMPARATIVE ANALYSIS

Amount of Work

Table 2.3 summarizes the amount of work. If we consider the Independent

scheme, that obtains the best performance, the amount of work of both

classes remains at the lowest possible value.

Table 2.3: Amount of work with PTree architecture

Schemes Server Class 1 Class 2

Independent 2 1 1

Generous 1 1 + N2/kN1 0

Gen. Collab. 1 ≤ (1 + N2/kN1) 1

Altruistic 1 1 + N2/N1 0

2.6 Overall Comparative Analysis

As overall comparative analysis we focus our attention on the total down-

load time. After analyzing the single architectures, we can compare them

finding some insights on the system. We normalize all the total download

times using the optimal download time, i.e., the time it would take to

download via unicast at rate b1, b2 respectively. The new metric is then

Normalized Total Download Time =
Total Download Time

F/bi
.

This means that the optimum achievable is equal to one, regardless of

architecture, scheme or bandwidth ratios.

Figure 2.28 shows the results with different architectures when b1 = 5b2

and N1 = N2, for different values of C. Looking at class 1, as obtained

in the analysis made in [18], the more complex the architecture is (Linear,

Tree and PTree), the more the download time approaches to the optimum.

The results are slightly influenced by the adopted helping scheme, since

part of the bandwidth is dedicated to help slow peers.

61

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

Results obtained for class 2 are completely different: a Generous scheme

can greatly improve slow peer performance, obtaining, regardless of archi-

tecture, a near-optimal download time. Particularly for Linear architec-

ture, the difference between Independent and Generous with Collaboration

schemes is almost an order of magnitude.

100

101

102

Indep. Gener. G.Collab. Altr.

N
or

m
al

iz
ed

 to
ta

l d
ow

nl
oa

d
tim

e

Linear Cl 1
Cl 2

Tree Cl 1
Cl 2

PTree Cl 1
Cl 2

(a) C = 102

100

101

102

Indep. Gener. G.Collab. Altr.

N
or

m
al

iz
ed

 to
ta

l d
ow

nl
oa

d
tim

e

Linear Cl 1
Cl 2

Tree Cl 1
Cl 2

PTree Cl 1
Cl 2

(b) C = 103

Figure 2.28: Total Download Time with different architectures and different schemes

(N1 = N2, N = 104, b1 = 5b2)

The same results are confirmed when using b1 = 100b2 and N2 = 10N1.

Few very fast peers can help a lot of slow peers, with total download time of

slow peers that approaches to the optimum. This means that a very simple

distribution architecture with a simple helping scheme (download from a

fast or slow peer and upload to a slow peer) can be as effective as a complex

and structured distribution architecture such as PTree. It is important to

note that a Linear architecture with Generous with Collaboration scheme

is equivalent to a mesh topology with indegree equal to one.

62

2.7. LESSON LEARNED: CONCLUSIONS ON THE 2-CLASS ANALYSIS

100

101

102

Indep. Gener. G.Collab. Altr.

N
or

m
al

iz
ed

 to
ta

l d
ow

nl
oa

d
tim

e

Linear Cl 1
Cl 2

Tree Cl 1
Cl 2

PTree Cl 1
Cl 2

(a) C = 102

100

101

102

Indep. Gener. G.Collab. Altr.

N
or

m
al

iz
ed

 to
ta

l d
ow

nl
oa

d
tim

e

Linear Cl 1
Cl 2

Tree Cl 1
Cl 2

PTree Cl 1
Cl 2

(b) C = 103

Figure 2.29: Total Download Time with different architectures and different schemes

(N2 = 10N1, N = 104, b1 = 100b2)

2.7 Lesson Learned: Conclusions on the 2-Class Anal-

ysis

Heterogeneity introduces a set of degrees of freedom in designing distribu-

tion policies even in very simple cases. The interaction between the two

classes, with different bandwidths we considered, can result in global per-

formance improvement for simpler distribution architectures and schemes.

The different cases we analyzed show that, when we consider heterogene-

ity, slow peers may not negatively affect the system, provided that the

difference in terms of capacities (and the associated constraints on number

of peers) is sufficiently big (the ratio between fast peer capacity and slow

peer one should be at least three-four). Collaborative distribution of a file

can obtain as good performance as in the ideal distribution10.

With the Linear architecture, provided that the bandwidth of fast peer

is sufficiently big, a Generous scheme with a collaborative behavior of slow

peers obtains near-optimal performance.

10The ideal distribution is when there is a number of available copies in the network equal to the

number of peers that wants to download the content, so that the time for downloading is F/bi.

63

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

With the Tree architecture, with the same hypothesis and scheme, we

can also have near-optimal performance. The only constraint is that the

capacity must be sufficiently large to serve all the N2 slow peers, i.e., b1 >(
N2

N1
+ 1
)

b2.

PTree architecture is a scheme that reaches near optimal performances

even when two classes operate independently: this means that it is not

possible to find a policy that significantly improves further the results.

The best trade-off between complexity and performance is obtained by

simply letting classes evolve separately. In general, we can conclude that

the simpler the distribution architecture is, the more improvement can be

obtained with a helping scheme; the more complex the scheme is, the less

the gain we have.

An important lesson learned is relative to the Altruistic scheme: even

if all the fast peers upload indefinitely to slow peers, the performance that

can be obtained is worse than in a collaborative scheme. This means that

collaboration of slow peers is necessary in order to achieve good results, no

matter how small is bandwidth.

The simplicity of Linear and Tree architectures makes them good candi-

dates for implementation in a mesh topology. For the Linear architecture

is sufficient to impose that each fast peer must upload to a fast peer and

to a slow peer and each slow peer must upload to another slow peer11. For

the Tree architecture, it is sufficient to impose that each fast peer has to

upload to k fast peers in parallel and concurrently to f slow peers (f can

be set by the user or estimated during the previous downloads); slow peers

may or not upload to other slow peers. A problem that has to be solved is

the global view of the network, i.e., peers have to upload choosing among

their neighbors and not among all the peers in the network: the analy-

11The obvious constraints is that a peer can start to upload only to a peer that has not yet received

any chunk.

64

2.7. LESSON LEARNED: CONCLUSIONS ON THE 2-CLASS ANALYSIS

sis of the performance with this limited network knowledge is provided in

Chapter 4.

65

CHAPTER 2. DETERMINISTIC ANALYSIS OF FILE DISTRIBUTION

66

Chapter 3

Stochastic Analysis of Simple

Distribution Architectures

The deterministic analysis, when the knowledge about neighbor character-

istics is complete, shows that it is possible to define simple collaboration

policies that allow to obtain near optimal results for slow peers without

affecting significantly fast peers. The analysis of more than two classes be-

comes only a matter of cumbersome calculations, but does not increase the

insight in the problem. Additionally, the hypothesis of complete knowledge

is unrealistic, not to mention that there are a lot of situations where the

knowledge about neighbor characteristics is not available or is changing too

fast to be used. Most probably in real scenarios nodes will be randomly

chosen with respect to the considered characteristic.

In this chapter we remove the hypothesis that peers are able to know the

neighbor bandwidths. We propose an analytical solution of the distribution

process that not only yields the mean download time but also the distri-

bution of the download times. We validate the analytical model against

simulations, which can also be used to analyze scenarios where correlation

and dynamic behavior make the theoretical analysis too approximate.

67

CHAPTER 3. STOCHASTIC ANALYSIS OF SIMPLE DISTRIBUTION
ARCHITECTURES

3.1 Introduction

Consider the problem described in the previous chapter, i.e., distributing

a file in a heterogeneous environment. We focus on a single file with size F

that must be delivered to all peers in the network, assuming a BitTorrent-

like distribution protocol [41], where the file is broken up into C pieces

called “chunks,” and peers that have received a chunk are able to upload

it to other peers.

The time it takes to download the file to all peers depends on how the

chunks propagate between peers, which is referred to as peer organization

strategy, or distribution architecture. We consider the distribution archi-

tectures identified in [18], briefly summarized in Sect. 2.2.1, and derive a

stochastic model for the download performance in presence of peers with

heterogeneous bandwidth. One of the aims of the analysis is to obtain

insights that can help in designing more efficient distribution protocols.

We derive an approximated analytical model that yields the stochastic

distribution of the file delivery performance as a function of the distribution

of the peer bandwidth. The model allows to assess the impact of slow peers

on the delivery and gives enough insight in the problem to devise dynamic

distribution strategies to overcome the impact of slow peers. In tree based

architectures, the model yields a lower bound on performance, thus it is

suited for design and dimensioning.

We develop an overlay network simulator to validate the model results

and to analyze distribution architectures where the tree degree can vary

dynamically based on locally available resources. In particular, we analyze

the effect of bounds of the node outdegree (the tree degree local to a given

node) on global performance.

The simulator is used to assess the performance of the distribution in

presence of selfish or malfunctioning peers as a function of the distribution

68

3.2. THE ANALYTICAL MODEL

architecture. Results shows that selfish peers have no great impact and

the results on performance we obtain considering no selfish peer still hold.

This chapter is organized as follows. Sect. 3.2 describes the analytical

model and the approximations introduced. In Sect. 3.3 we introduce the

simulator and validate the analytical model. Sects. 3.4 and 3.5 discuss

results in different networking scenarios and in presence of selfish peers.

Sect. 3.6 ends the chapter with some additional discussions.

3.2 The Analytical Model

Consider a scenario where peers have different symmetric access link band-

widths (we discuss implications of asymmetric bandwidths in Sect. 3.5).

There is only one server in the system with bandwidth at least equal to

the highest peer bandwidth. All peers are independent, so we can describe

the system through a random variable bp i, the bandwidth of peer i, having

a known density, which is identically distributed for all peers. The density

function of bp i summarizes the fact that peers in the network might dedi-

cate only part of the bandwidth for file distribution and also the fact that

there could be peers with different access technologies. The bandwidth of

a peer stays constant during the whole file transfer.

We assume that the file is partitioned into C independent chunks. Each

peer can start serving the file to another peer once it has completely re-

ceived the first chunk. The file size is F ; the time needed to download

the complete file at the lowest bandwidth in the network is referred to as

TR = F
min(bp i)

and is also called one round.

Initially, we suppose that peers remain on line till the end of the distri-

bution process. The relaxation of this hypothesis is discussed in Sect. 3.5.

The signaling messages necessary to manage the dynamics of the over-

lay structure (join, leave, synchronization with neighbors, message used to

69

CHAPTER 3. STOCHASTIC ANALYSIS OF SIMPLE DISTRIBUTION
ARCHITECTURES

build the distribution architecture) are negligible with respect to the file

size, and no errors, failures or other bottlenecks other than the peer access

link are present.

The delivery process is distributed and the topology (chain, tree, . . .)

is built step-by-step. Each peer has a (possibly partial) list of the peers

involved in the distribution process and contacts a node in the list ran-

domly, checking that it has not yet been contacted. The optimization of

this process is beyond the scope of this contribution.

3.2.1 Single Chain Analysis

Similarly to a normal multi-link transmission, the total download time,

for a given n, number of peers, can be divided into two terms: the time

necessary to reach the n-th peer and the time necessary to upload the

whole file to that peer. We obtain

t
(n)
total = t

(n)
reach + t

(n)
dwnl-file (3.1)

From the probability distribution of the random variable b we can derive

the probability distribution of the download time for a single peer, i.e.,

ftdwnl-file
(τ), with tdwnl-file = F

b
, where the file size F is a constant. The file is

divided in C chunks and we can derive ftdwnl-chunk
(τ), with tdwnl-chunk = F

Cb .

Figure 3.1: File transfer over a single chain

The time to reach the n-th peer is the time to transmit the single chunk

through the chain. The transmission rate at each step is determined by the

70

3.2. THE ANALYTICAL MODEL

minimum capacity between the uploading and the downloading peer and

corresponds to the maximum transfer time. The probability distribution

of a single transfer can be found through the cumulative distribution of a

single chunk download time:

ttransfer = max
node−u,node−d

(tdwnl-chunk)

Fttransfer
(τ) = F 2

tdwnl-chunk
(τ) (3.2)

where Ftdwnl-chunk
is the cumulative distribution function (CDF) of tdwnl-chunk.

Equation (3.2) is correct as far as peers are i.i.d. Since we suppose that

the transfer time on each link is independent with respect to previous

links, the probability distribution of n transfers is the convolution of the

distributions:

t
(n)
reach =

n times︷ ︸︸ ︷
ttransfer + ttransfer + · · · + ttransfer

ftreach|n(τ) =

n times︷ ︸︸ ︷
fttransfer

(τ) ∗ · · · ∗ fttransfer
(τ) (3.3)

where the symbol ‘∗’ defines convolution.

The time necessary to transmit the whole file, once a peer is reached,

depends on the capacity of all the previous nodes. Let bi be the capacity of

node i and b(i) be the capacity used to transmit. By construction bi ≥ b(i−1),

since the transmit rate b(i−1) includes the capacity of node i and node i

receives a chunk every F
Cb(i−1) . The transfer rate to the node i + 1 depends

on the capacity bi+1. Node i will upload chunks with a rate that is the

minimum between the rate it receives the chunks and the rate node i + 1

can accept chunks. In formulas

b(i) = min(b(i−1), bi+1)

or, equivalently, the time necessary to transmit the file at step i, t(i), is

t(i) = max(t(i−1), ti+1)

Ft|i(τ) = Ft|i−1(τ)Ftdwnl-file
(τ) = F i+1

tdwnl-file
(τ) (3.4)

71

CHAPTER 3. STOCHASTIC ANALYSIS OF SIMPLE DISTRIBUTION
ARCHITECTURES

where Ft|i(τ) defines the conditional CDF of the file distribution after i

peers have been reached, and Ftdwnl-file
(τ) is the CDF of the file download

of a single peer and the last equality is obtained by iteration.

With (3.3) and (3.4) we have the distributions of t
(n)
reach and t

(n)
dwnl-file re-

spectively. Unfortunately these variables are not independent; however,

since we are interested in large n and large C to exploit parallelism, the

distribution of tdwnl-file tends rapidly to the maximum download time Td, so

that

fttotal|n(τ)
n≫1
−→ ftreach|n(τ − Td) . (3.5)

Eq. (3.5) has been validated by simulation. With the probability distribu-

tion we can calculate the mean time necessary to reach n peers and then

we can build a graph of time versus the number of peers and study how the

chain evolves with different bandwidth distributions as input. For notation

simplicity we set t = ttotal.

Starting from Eq. 3.5, with simple stochastic manipulation we can also

obtain fn|t(η), which describes, at a given time instant, the distribution of

the number of reached peers.

Figure 3.2 shows the conditional distributions, ft|n(τ) and fn|t(η), for

different values of n and t respectively, obtained with the bandwidth dis-

tribution in Table 3.1.

3.2.2 Multiple chains

With a chain based architecture, the server, as soon as it finishes uploading

the file to a peer, starts to upload to another peer, creating a new chain. A

new chain is created every ∆ = F
bfast

seconds. Considering that the system

has started the distribution at time t = 0, given a instant of observation

t, we know exactly how many chains are present in the system and the

probability distribution fn|t(η) of the number of peers in each chain. The

72

3.2. THE ANALYTICAL MODEL

ft|n(τ)

 20 40 60 80 100 120 140Number of peers (n) 1
 1.1

 1.2
 1.3

 1.4
 1.5

Download rounds

 0

 0.01

 0.02

 0.03

 0.04

 0.05
Probability

fn|t(η)

 20 40 60 80 100 120 140Number of peers (n) 1
 1.1

 1.2
 1.3

 1.4
 1.5

Download rounds

 0

 0.01

 0.02

 0.03

 0.04

 0.05
Probability

Figure 3.2: Example of different conditional distributions obtained with the bandwidth

distribution in Table 3.1

73

CHAPTER 3. STOCHASTIC ANALYSIS OF SIMPLE DISTRIBUTION
ARCHITECTURES

total number of peers in the system at time t is the sum of the peers in

each chain and, from the probability distribution of the number of peers

in each chain, we can find the distribution of the total number of peers.

Since all the chains are independent, we have

fntotal|t(η) = fn|t(η) ∗ fn|t−∆(η) ∗ fn|t−2∆(η) ∗ · · · (3.6)

where the convolution is repeated until t − i∆ > 0. If we are interested

only in the mean number of peers, since the sum is a linear operation, we

can find it from the mean number of peers of a single chain at time t, t−∆,

t − 2∆, ...

3.2.3 Tree Based Architectures

The analytical model defined in the previous section can be extended to tree

architectures. Considering a tree (for instance, a binary tree) and following

a sample-path from the root to a leaf we obtain a chain, as pictorially

represented by the black nodes in Fig. 3.3. We can apply the same analysis

technique used for chains to the tree case, since, in a stochastic sense, the

node in the path at level j of the tree is representative of the whole level.

Figure 3.3: Example of a sample path in a binary tree; black nodes are in the sample

path, gray nodes are those that influence the computation of bj .

In each step we analyze all the children of a node and assign the band-

width of the parent node among children: we define the bandwidth bj used

to calculate the chunk transfer time at the j-th step, as the bandwidth

74

3.2. THE ANALYTICAL MODEL

assigned according to the max-min fairness criterion. Given the outdegree

and the pdf of bp i, the fbj
(b) can be easily computed with combinatorial

techniques, analyzing the possible permutations of children bandwidths.

Given the pdf fbj
(b) the term t

(n)
reach is computed with (3.3).

Now, the term t
(n)
dwnl-file must consider the brother nodes (gray circles in

Fig. 3.3). In fact, considering a path, the interval between chunks not only

depends on the bandwidths of the peers belonging to the path, but also on

the bandwidths of the peers branching from the path. Due to this depen-

dence, (3.5) is not valid anymore. Nevertheless, with the approximation of

independent transfer times we have

t
(n)
dwnl-file = max

(
t
(n−1)
dwnl-file, (C − 1)

F

Cbn

)

= (C − 1) max

(
F

Cb1
,
F

Cb2
, . . . ,

F

Cbn

)
(3.7)

Equation 3.7 still allows for an iterative solution, with the only drawback

that we consider twice the bandwidth of each node, which leads to over-

estimate the transfer time as we can see in the simple example of Fig. 3.4.

We assume a binary tree and let pF be the probability to have a fast

node. The maximum rate in a step is bj max = (bfast − bslow), where bfast and

bslow are the bandwidths of fast and slow peers respectively. To have two

consecutive maximum rate steps we need three fast and two slow nodes

involved (left hand side of Fig. 3.4), so that the probability of this event

is p2f = p3
F (1 − pF)2. Assuming instead that steps are independent, is

equivalent to “duplicating” nodes, as in the right hand side of the figure,

which implies that the approximated probability of having two consecutive

maximum rate steps is p′2f = p4
F (1 − pF)2 < p2f. Repeating the operation

for any number of fast steps yields that the probability of fast (not only

the fastest) paths is underestimated when we assume independent steps.

On the other hand, to have a slow path we just need a single slow

75

CHAPTER 3. STOCHASTIC ANALYSIS OF SIMPLE DISTRIBUTION
ARCHITECTURES

step, which occurs with probability p1f = (1 − pF)3 and is unchanged by

the independence approximation. This simple induction implies that the

download time computed assuming independence is an upper bound to the

real download time.

Figure 3.4: Real distribution tree (left) and equivalent tree with “duplicated” nodes

considering independent steps (right).

The analysis of PTrees is surprisingly trivial, with the assumption that

each node gives priority to the download of the stripe for which it is an

interior node (say stripe m), and starts downloading the other stripes (for

which it is a leaf) only after it finishes downloading stripe m. This assump-

tion is reasonable because the order of stripe downloads does not affect the

total download time for a node. Therefore, a node has thus no reason to

delay the delivery of the stripe for which it is an interior node. The upload

of stripe m to other peers does not affect the download of the other stripes.

In PTree, every peer is interior node in one tree and leaf node in other

r − 1 trees; this implies that (i) the total download time is dominated by

the stripes received as leaf node, and (ii) all peers are equal, i.e., they have

the same pdf of the total download time. The rate at which the file arrives

at leaf nodes is determined by the slowest bandwidth encountered in the

path; the probability that this rate is equal to the lowest bandwidth in

the system (bslow
k , since the bandwidth is divided among the k children)

76

3.2. THE ANALYTICAL MODEL

increases rapidly with the depth of the tree. We approximate the pdf to a

single Dirac’s delta, obtaining (we recall that each stripe is F/r bits)

t
(l)
total =

k

r

F

bslow

+ t
(l)
reach (3.8)

where t
(l)
reach is the time necessary to reach leaf nodes when the tree depth

is l. The term t
(l)
reach grows logarithmically with n, number of peers, and we

can suppose that is equal to l times the mean chunk transfer time between

two peers. If we set k = r we obtain that all peers terminate approximately

at F
bslow

+ l · tCslow, where tCslow is the chunk transfer time for the slowest peer.

3.2.4 Results of the Analytical Model

As numerical example we consider two different density functions for the

peer bandwidth, summarized in Table 3.1. The distribution in the upper

table is taken from [34]. The other one is an example that aims at studying

the interaction among high speed peers that reserve a percentage of their

bandwidth for other tasks. We assume that the bandwidth available for the

file distribution process is uniformly distributed between 80% and 100% of

the peer bandwidth.

When reporting results, we normalize the data such that TR = F
min(bp i)

=

1 round. We use a number of chunks C equal to 100, but a sensitivity anal-

ysis with different values of C indicates a qualitative behavior independent

of C, as far as 1 ≪ C ≪ N , where N is the total number of peers.

Fig. 3.5 shows how the pdf of tdwnl-file evolves along different levels of

the same tree. In this case we consider a binary tree with input pdf A

from Table 3.1. Initially (we show here the 8-th level of the tree) the

contribution of the three classes of peers is clear (continuous lines); the

maximum download time is 2 rounds since the outdegree is 2. As the

number of levels increases (when we reach the 25-th level of the tree), the

77

CHAPTER 3. STOCHASTIC ANALYSIS OF SIMPLE DISTRIBUTION
ARCHITECTURES

Table 3.1: Rate distributions used in the examples

Rate distribution A

Rate Weight

56 kbit/s 13%

640 kbit/s 23%

1.2 Mbit/s 64%

Rate distribution B

Rate Density Weight

640 kbit/s Uniform(80%-100%) 30%

2 Mbit/s Uniform(80%-100%) 70%

distribution starts to concentrate on the maximum download time (dashed

line), because the minimum bandwidth dominates.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2 2.5

Pr
ob

ab
ili

ty

Download rounds

distrib. after 8 levels
distrib. after 25 levels

Figure 3.5: Evolution of the pdfs of the download time for two different tree heights.

Fig. 3.6 shows results of chain architecture and the tree with outdegree 2

and 3, using the density A of Table 3.1. We compare the heterogeneous case

with the homogeneous one: the comparison considers for the homogeneous

case an equivalent bandwidth equal to the mean transfer bandwidth of a

single step. We do not present here results for PTree for clarity, since its

78

3.2. THE ANALYTICAL MODEL

behavior is clear from Fig. 3.7.

 0

 0.5

 1

 1.5

 2

 2.5

 3

100 101 102 103 104 105 106 107

M
ea

n
do

w
nl

oa
d

ro
un

ds

Number of peers (n)

tree, heterog., outdegree 3
tree, homog., outdegree 3
tree, heterog., outdegree 2
tree, homog., outdegree 2
chain, heterog.
chain, homog.

Figure 3.6: Mean completion time for a given number of peers: comparison between

chain based and tree based architecture, heterogeneous peers (rate distribution A) and

homogeneous with average bandwidth.

A detailed analysis of the results for homogeneous case can be found

in [18]. Here we report a few essential observations. In a tree architec-

ture, each peer uploads with bandwidth bp/k, so the minimum necessary

download time is kF/bp. The time to receive the first chunk grows loga-

rithmically in the number of peers since in a homogeneous environment all

the transfers occur with the same rate and the only difference in the total

download time is the time necessary to reach the l-th level.

The performance degradation in case of heterogeneous bandwidth is

clearly due to the fact that a slow peer influences all the downstream nodes,

regardless of their bandwidths. For instance, in case of tree architecture,

the subtree under the slow peer proceeds slowly, so the number of peers

that are forced to continue with low rate grows exponentially. The results

of these dynamics are the convergence of the curve to k rounds. After

few levels, the total download time of each peer, kF/bp i, tends to become

kF/bslow = k rounds. The chain based architecture has the same behavior.

In general, the heterogeneous case converges, as the number of peers in-

79

CHAPTER 3. STOCHASTIC ANALYSIS OF SIMPLE DISTRIBUTION
ARCHITECTURES

creases, to the homogeneous case, with the homogeneous bandwidth equal

to the minimum bandwidth. As is clear from the analysis of the chains,

the download time increases polynomially with the number of peers.

We observe the same behavior with different input pdfs. Fig. 3.7 presents

the results using the density B of Table 3.1. We remark only a slight

difference due to higher percentage of slow peers than in the previous case,

so the curves converge faster to k rounds. For PTree architecture, results

converge to the maximum download time for all peers. Note that results

are normalized using the smallest bandwidth in the system: in the two

cases (with input pdf A and B) the normalization factors are different and

so the absolute times.

 0

 0.5

 1

 1.5

 2

 2.5

 3

100 101 102 103 104 105 106 107

M
ea

n
do

w
nl

oa
d

ro
un

ds

Number of peers (n)

tree, outdegree 3
tree, outdegree 2

chain
ptree, outdegree 3

Figure 3.7: Mean completion time for a given number of peers: comparison between chain

based and tree based architecture (rate distribution B).

From the study of the analytical results it is possible to draw some

observations. As the number of peers grows, tree-based architectures are

obviously faster than chain based ones, but tree-based architecture pay an

initial cost due to the multiplication of the download time by the outdegree

k. Therefore, initially, short chains are faster than small trees. Biersack

et al. [18] demonstrated that the cross point between chain and binary

tree in the homogeneous case is a function of the number of chunks C. In

80

3.3. OVERLAY NETWORK SIMULATOR

the heterogeneous case, we can observe that this cross-over point occurs

for a number of peers that is one order of magnitude greater than in the

homogeneous case. We conclude that short chains are preferable up to

roughly C peers.

3.3 Overlay Network Simulator

In order to evaluate the impact of the independence assumptions made

in solving the analytical model, we developed a simulator that takes into

account all correlations in the different distribution architectures . The

simulator can also handle dynamic distribution Trees and PTrees and other

cases discussed later and can be extended to generic meshes. For the

simulator we use the same general assumptions made for the analytical

model (Sect. 3.2).

3.3.1 Simulator Description

The simulator takes as input any discrete probability density function (pdf)

of peer bandwidths and builds step by step a sample path. By performing

the building process multiple times, it derives a histogram of the pdf of the

relevant performance figures. We terminate the simulations when the mean

and the 90-percentile of the total download time reaches a 99% confidence

level for an interval ±10% of the point estimate. We use the batch means

technique with repeated independent simulations.

The simulations are fast: indeed the transfer rate is dominated by the

lowest bandwidth encountered along the path, and the histogram converges

rapidly. Moreover, if the bandwidth of the peer are sufficiently large, the

tail of the distribution is limited and its upper bound can be easily esti-

mated.

In tree architectures we use a single path in the tree as we did for the

81

CHAPTER 3. STOCHASTIC ANALYSIS OF SIMPLE DISTRIBUTION
ARCHITECTURES

analysis. At each step down the tree, a number of children nodes equal to

the outdegree of the parent tree are randomly chosen, and the bandwidth

is divided among the different children according to the max-min fairness

criterion. The following step in the path is selected choosing randomly one

of the children nodes and repeating the process.

3.3.2 Comparison with the Analysis

Fig. 3.8 compares the results of the analytical model with the ones of the

simulator, using the rate distributions A and B of Table 3.1. The upper

plot refers to distribution A, and the lower one to distribution B. In the

chain and PTree architectures, the analytical model fits the simulation

experiments almost exactly.

 0

 0.5

 1

 1.5

 2

 2.5

 3

100 101 102 103 104 105 106 107

M
ea

n
do

w
nl

oa
d

ro
un

ds

Number of peers (n)

outd. 3, simulation
outd. 3, analytic
outd. 2, simulation
outd. 2, analytic
simulation, chain
analytic, chain
ptree, simulation
ptree, analytic

 0

 0.5

 1

 1.5

 2

 2.5

 3

100 101 102 103 104 105 106 107

M
ea

n
do

w
nl

oa
d

ro
un

ds

Number of peers (n)

simulation, chain
analytic, chain

simulation, outdegree 2
analytic, outdegree 2

simulation, outdegree 3
analytic, outdegree 3

ptree, simulation
ptree, analytic

Figure 3.8: Comparison between analysis and simulations with different architectures; the

upper plot refers to rate distribution A and the lower one to B.

Considering the tree architecture, as discussed in Sect. 3.2.4, the analysis

yields indeed an upper bound of the actual average download time, as is

confirmed by the simulation results. It is interesting to notice that the

bound becomes tighter as the number of peer increases and as the fraction

of slow peer increases (lower plot). This is easily understood considering

82

3.4. IMPROVING THE DISTRIBUTION ARCHITECTURE

that the overestimation comes from underestimating the weight of fast

paths down the tree and thus disappears as the probability of fast paths

tends to zero.

In the following sections we discuss some interesting results in cases

that do not lend themselves to an easy theoretical analysis, and all results

presented are obtained using the simulator.

3.4 Improving the Distribution Architecture

3.4.1 Analysis of Hybrid Architectures

With tree architectures we have a degree of freedom in the design process:

the outdegree. In the homogeneous case, the decision of the outdegree is a

classical optimization problem. In a heterogeneous environment, when it

is not possible to know the bandwidth of the children nodes, the optimal

outdegree does not exist. The best solution is to let the outdegree to

dynamically adapt to the changing conditions.

With a dynamic outdegree, peers need a criterion to set the outdegree.

There are essentially two cases where increasing the outdegree is beneficial:

• The selected children are not able to use all the parent peer’s upload

bandwidth;

• A peer is downloading from a parent with a rate lower than its upload

rate.

The first case is self explanatory. The second case can be explained as

follows. If a peer has a bandwidth b and a number of children equal to k,

it takes tu = chunk size

b/k
= k chunk size

b
to distribute one chunk to all its children.

Let tδ be the download time of a chunk; if tδ > tu the peer can increase

the number of children k until reaching tu ≃ tδ. The value of tδ can be

83

CHAPTER 3. STOCHASTIC ANALYSIS OF SIMPLE DISTRIBUTION
ARCHITECTURES

estimated during the download process, so that a peer can increase its own

outdegree without the risk of becoming a bottleneck.

Fig. 3.9 shows the mean download time, given the mean number of peers.

We consider the mean number of peers since we measure the mean out-

degree at each level and then we accordingly calculate the mean number

of peers in each level. The bandwidth distribution is A, and we consider

different upper limits to the outdegree.

 0

 0.5

 1

 1.5

 2

 2.5

 3

100 101 102 103 104 105 106 107

M
ea

n
do

w
nl

oa
d

ro
un

ds

Mean number of peers (n)

fixed, 2
dynamic, 2~4
dynamic, 2~8
dynamic, 2~12

Figure 3.9: Mean completion time for a given number of peers in a tree based architecture

with dynamic outdegree; rate distribution A.

As the maximum number of allowed children increases, the mean down-

load time decreases. The explanation of such results can be found analyzing

the cumulative distribution of the completion time. We set the same num-

ber of reached nodes and we compare the total download time of trees with

different variable outdegree. Fig. 3.10 shows the percentage of completed

peers as a function of time for n = 107.

Allowing the outdegree to increase, enables more and more peers to be

reached in a given level. Moreover it enhances the probability that one of

the children is fast. This is reflected by a larger fraction of peers ending the

transfer early (thus reducing the average). However, most of the peers still

need 2 rounds to finish, and the gain we have as the maximum outdegree

84

3.4. IMPROVING THE DISTRIBUTION ARCHITECTURE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

%
 o

f
co

m
pl

et
ed

 p
ee

rs

Mean download rounds

fixed, 2
dynamic, 2~4
dynamic, 2~8
dynamic, 2~12

Figure 3.10: Percentage of completed peers at a given time in a tree based architecture

with dynamic outdegree; rate distribution A.

increases becomes progressively smaller.

3.4.2 Changing the Minimum Outdegree

Fig. 3.10 highlights the fact that the performance is dominated by peers

that terminate at time 2 rounds. In a tree with a minimum outdegree

kmin, the minimum time necessary for slow peers to download the file is kmin

rounds. Recall the results obtained in Sect. 3.2.4: short chains are faster

than small trees. If we combine chains and trees, with short chains joining

different parts of the tree, when the tdwnl-file via a tree would be larger than

1 round, we obtain a hybrid distribution architecture that should be faster

than trees. This is readily obtained allowing a lower outdegree equal to 1.

Fig. 3.11 shows an example of tree evolution with two classes of peers.

Fig. 3.12 shows the performance obtained with a minimum outdegree

equal to 1, compared to a minimum outdegree 2, using the input rate

distribution A.

85

CHAPTER 3. STOCHASTIC ANALYSIS OF SIMPLE DISTRIBUTION
ARCHITECTURES

Figure 3.11: Example of evolution of fast hybrid tree.

 0

 0.5

 1

 1.5

 2

 2.5

 3

100 101 102 103 104 105 106 107

M
ea

n
do

w
nl

oa
d

ro
un

ds

Mean number of peers (n)

dynamic, 2~8
dynamic, 1~2
dynamic, 1~4
dynamic, 1~8

Figure 3.12: Mean completion time for a given number of peers in a tree based architec-

ture, with minimum outdegree 1; rate distribution A.

86

3.4. IMPROVING THE DISTRIBUTION ARCHITECTURE

3.4.3 PTree with dynamic outdegree

So far, we have discussed only briefly the performance of PTree, which

is however the best performing architecture, since it fully exploits the re-

sources of all peers. On the other hand, the PTree architecture is also

the most sophisticated one and can be fragile in case of uncertainty and

dynamic behaviors. For example, if the tree grows dynamically and be-

comes unbalanced, it may happen that in one of the sub-trees there are

not enough internal nodes to serve the other peers.

The PTree architecture has two degrees of freedom: the outdegree k

and the number of stripes r a file is divided up. Note that the number

of stripes is not related to the number of chunks C. In fact, usually the

number of chunks is of the order of hundreds to thousands, while the

number of stripes can be in the range of 3-8. Each stripe then contains

C/r chunks. For simplicity, we consider that C is a multiple of r.

With homogeneous nodes and a fixed outdegree k, PTree allows to re-

ceive in parallel r stripes with bandwidth bpeer/k each, obtaining a download

time equal to k
r

F
bpeer

. Choosing k = r, we obtain a minimum download time

tmin
dwnl-file = F

bpeer
, that is the time it takes a node to download the file via

unicast communication, hence the optimal performance.

When we introduce heterogeneity, this equilibrium is broken. If a sin-

gle stripe of the file is downloaded at a smaller rate, say bslow, the whole

performance is dominated by the download of this stripe. Indeed, the

peer terminates the download only when this stripe is completely received,

regardless of the number of stripes that download faster.

Additionally, when introducing a dynamic outdegree, in particular with

a minimum outdegree equal to 1, we have to guarantee a minimum level of

fairness and, at the same time, that there are enough leaf nodes in any tree

to take the role of interior nodes in the remaining r−1 trees. In Sect. 2.2.1

87

CHAPTER 3. STOCHASTIC ANALYSIS OF SIMPLE DISTRIBUTION
ARCHITECTURES

we stated that k ≥ r. We have verified empirically by simulation that a

value of k = 1.5r is sufficient to guarantee that the distribution process

can take place without problems for any reasonable distribution of bp i. The

value of 1.5 is the ratio of data uploaded to data downloaded, which is in

any case better than in a Tree architecture, where half of the peers do not

upload at all.

Fig. 3.13 shows the performance of PTree with r = 3 and rate distribu-

tion A. Decreasing the minimum outdegree, decreases the mean download

time as expected. Surprisingly, the results are only marginally influenced

by the maximum outdegree, provided that the maximum outdegree is suf-

ficiently large to ensure a mean outdegree greater than the number of

stripes. Still, having a higher outdegree has the advantage of reaching a

larger number of nodes for a given number of levels in the tree structure.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

100 101 102 103 104 105 106 107

M
ea

n
do

w
nl

oa
d

ro
un

ds

Mean number of peers (n)

 fixed, 3
dynamic, 3~8
dynamic, 2~4
dynamic, 2~8
dynamic, 1~4
dynamic, 1~8

Figure 3.13: PTree performance with different dynamic outdegrees; r = 3.

Fig. 3.14 shows the cumulative distribution of the completion time of

the peers. Most of the peers terminate roughly at the same time, as they

would in a PTree with only fast peers while the 13% of slow peers terminate

at time equal to 1 round, which is their best possible performance.

Since performances are not influenced by the maximum outdegree and

88

3.4. IMPROVING THE DISTRIBUTION ARCHITECTURE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

%
 o

f
co

m
pl

et
ed

 p
ee

rs

Mean download rounds

 fixed, 3
dynamic, 3~8
dynamic, 2~4
dynamic, 2~8
dynamic, 1~4
dynamic, 1~8

Figure 3.14: Percentage of completed peers at a given time in PTree architecture with

dynamic outdegree; rate distribution A.

the optimal minimum outdegree is 1, the last parameter that can be tuned

is the number of stripes r. Fig. 3.15 shows the total download time when

the file is divided in different stripes. In all cases, we use a tree with

dynamic outdegree in a range of 1 – 8. As expected, the performance

improves with increasing number of stripes. The limit to this gain is given

by the ratio between the bandwidth of the fast nodes and slow nodes: we

can obtain an improvement as long as the bandwidth of the fastest nodes

is r times greater than the one of the slowest node, i.e., it can accept in

parallel all the r stripes (one as interior node, the other as leaf node).

The absolute values of the performances depends also on the specific

rate distribution. However, Fig. 3.16, where rate distribution B is used,

shows that the relative merit of the distribution architecture as a function

of parameters remains unchanged.

89

CHAPTER 3. STOCHASTIC ANALYSIS OF SIMPLE DISTRIBUTION
ARCHITECTURES

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

100 101 102 103 104 105 106 107

M
ea

n
do

w
nl

oa
d

ro
un

ds

Mean number of peers (n)

2 stripes
3 stripes
4 stripes
5 stripes
tree

Figure 3.15: Tree vs. PTree performance with different number of stripes, the outdegree

for all the configurations is 1–8.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

100 101 102 103 104 105 106 107

M
ea

n
do

w
nl

oa
d

ro
un

ds

Mean number of peers (n)

2 stripes
3 stripes
4 stripes
5 stripes
tree

Figure 3.16: PTree performance with different number of stripes, rate distribution B (the

outdegree for all the configurations is 1–8).

90

3.5. ADDITIONAL INSIGHTS

3.5 Additional Insights

3.5.1 Asymmetric Access Bandwidth

Throughout the analysis of the architectures, we have assumed symmetric

bandwidth for upload and download. Recently, asymmetric broadband

access links, like ADSL, have become very popular, and assessing how

ADSL affects the download time is important. As a general consideration,

we observe that a peer with asymmetric bandwidth can increase its own

download performance, but cannot increase the performance of the whole

distribution process that leverages on the upload bandwidths.

Table 3.2: Rate distribution with asymmetric bandwidths

Rate Downlink Rate Uplink Weight

640 kbit/s 128 kbit/s 20%

2 Mbit/s 2 Mbit/s 80%

Consider the pdf of the bandwidth as given in Table 3.2, where one

class has ADSL access. We compare the results with the case when the

ADSL class has symmetric bandwidth equal to the downlink and uplink

bandwidth of the ADSL respectively. Fig. 3.17 shows results for the Tree

architecture. The performance with asymmetric peers is equivalent to the

one with symmetric peers with minimum bandwidth.

We observe a different behavior with PTree (Fig. 3.18). The performance

of asymmetric peers lies between the two symmetric cases. PTree results

depend on parallel downloads, each of the download has a rate equal to the

minimum rate in the system. In this case ADSL users are the slowest peers

and with symmetric bandwidth they can not exploit parallel downloading.

With asymmetric bandwidth, instead, the downloading bandwidth can ac-

cept all the incoming downloading and the total download time decreases.

91

CHAPTER 3. STOCHASTIC ANALYSIS OF SIMPLE DISTRIBUTION
ARCHITECTURES

 0

 0.5

 1

 1.5

 2

 2.5

 3

100 101 102 103 104 105 106 107

M
ea

n
do

w
nl

oa
d

ro
un

ds

Mean number of peers (n)

2-8 symm-high
2-8 asymm
2-8 symm-low
1-4 symm-high
1-4 asymm
1-4 symm-low

Figure 3.17: Mean download time with ADSL (tree architecture) compared with the

symmetric case, where the bandwidth is either set to the minimum or to the maximum

of the ADSL bandwidth.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

100 101 102 103 104 105 106 107

M
ea

n
do

w
nl

oa
d

ro
un

ds

Mean number of peers (n)

2-8 symm-high
2-8 asymm
2-8 symm-low
1-8 symm-high
1-8 asymm
1-8 symm-low

Figure 3.18: Mean download time with ADSL (PTree architecture) compared with the

symmetric case where the bandwidth is either set to the minimum or to the maximum of

the ADSL bandwidth.

92

3.6. DISCUSSION AND CONCLUSIONS

3.5.2 Selfish Peers

The distribution process relies on peer collaboration: the more altruistic

peers are, the faster the distribution. When the file distribution process is

done in the global Internet, it has to face with free-riding. Free riders are

peers that do not contribute by uploading the file, i.e., they are “selfish,”

and stall the distribution process.

The impact of selfish peers has been discussed in many papers (e.g.,

[24] [2]) in generic P2P networks, but not in cooperative content delivery.

We assume that each peer has a probability pselfish to be selfish. When we

build the sample path in the tree, each step selects its children according

to the bandwidths and the outdegree constraints. Since the presence of

selfish peers decreases the number of reached peers at each step, in order

to maintain the same total number of peers that complete the download,

we increase the depth of the tree as pselfish increases.

Fig. 3.19 shows the results for a tree architecture with different percent-

ages of selfish peers and a maximum outdegree of 8. We can note only

slight differences between different curves: in fact the tree structure is

weak during the first steps, but, as soon as the depth, and consequently

the number of peers, increases, the effect of selfish peers becomes smaller

and smaller.

We obtain the same effect for the PTree architecture (Fig. 3.20). Since

we increase the number of levels in each tree to reach the same number

of peers, consequently, as the probability increases, the term t
(l)
reach of (3.8)

increases.

3.6 Discussion and Conclusions

In this chapter we discussed the performance of three simple distribution

architectures in presence of heterogeneous peer bandwidth. We introduced

93

CHAPTER 3. STOCHASTIC ANALYSIS OF SIMPLE DISTRIBUTION
ARCHITECTURES

 0

 0.5

 1

 1.5

 2

 2.5

 3

100 101 102 103 104 105 106 107

M
ea

n
do

w
nl

oa
d

ro
un

ds

Mean number of peers (n)

2-8 p=0.00
 p=0.10
 p=0.30

1-8 p=0.00
 p=0.10
 p=0.30

Figure 3.19: Mean download time with different percentage of selfish peers (tree architec-

ture): the maximum outdegree is 8.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

100 101 102 103 104 105 106 107

M
ea

n
do

w
nl

oa
d

ro
un

ds

Mean number of peers (n)

2-8 p=0.00
 p=0.10
 p=0.30

1-8 p=0.00
 p=0.10
 p=0.30

Figure 3.20: Mean download time with different percentage of selfish peers (PTree archi-

tecture): the maximum outdegree is 8.

94

3.6. DISCUSSION AND CONCLUSIONS

an analytical model that provides a closed form solution assuming no cor-

relation among successive distribution steps. The model proved to be very

accurate due to a weak correlation structure of the distribution process.

The results obtained have been validated against simulations. Both

the analytical model and the simulations yield the pdf of the distribution

process, as a function of time and as a function of the number of nodes

reached.

The insight given by the model has been used to devise a modified dy-

namic distribution architectures that enable the delivery to “get around”

slow peers even when the knowledge about the peer bandwidth is limited

or null. Even if the solution of dynamically modifying the degree of the

distribution tree is not entirely novel (it has been used in many applica-

tions, mainly, protocols for streaming services), we have exactly quantified

its impact as a function of the upper and lower bounds of the degree and

a thorough analysis has been carried out.

Finally the presence of free-riders has been taken into account, showing

that the selfish peers have not a great impact on performances. Although

this might be intuitive, the quantitative analysis gives a robust method to

evaluate whether it is necessary to introduce countermeasures in the ap-

plication or the basic distribution architecture is robust enough to tolerate

some misbehavior.

95

CHAPTER 3. STOCHASTIC ANALYSIS OF SIMPLE DISTRIBUTION
ARCHITECTURES

96

Chapter 4

Stochastic Graph Processes

The analysis on more sophisticated architectures, that comprises additional

constraints such as a maximum number of neighbors, requires improved

analytical tool: this chapter proposes a new methodology to model the

distribution of finite size content to a group of users connected through an

overlay network.

The methodology describes the distribution process as a constrained

stochastic graph process (CSGP), where the constraints dictated by the

content distribution protocol and the characteristics of the overlay net-

work define the interaction among nodes. A CSGP is a semi-Markov pro-

cess whose state is described by the graph itself. CSGPs offer a powerful

description technique that can be exploited by Monte Carlo integration

methods to compute in a very efficient way not only the mean but also the

full distribution of metrics such as the file download times or number of

hops from the source to the receiving nodes.

We model several distribution architectures based on trees and meshes

as CSGPs and solve them numerically. We are able to study scenarios with

a very large number of nodes and we can precisely quantify the performance

differences between the tree- and mesh-based distribution architectures.

97

CHAPTER 4. STOCHASTIC GRAPH PROCESSES

4.1 Introduction

In this chapter we develop a new model for file distribution processes. We

do not attempt to model a specific file-distribution system, although this

task may be possible using the proposed methodology. We are also not

proposing yet-another file swarming application or a specific file distribu-

tion protocol. Rather, we propose a methodology to capture general prop-

erties of distribution protocols and algorithms in the attempt of providing

guidelines for the protocol and system design.

We formalize the problem of building a content distribution overlay as

a Constraint Stochastic Graph Process (CSGP), which is a discrete time

Markov chain whose states are graphs with additional constraints describ-

ing the features of the distribution system. The graphs we are interested

in are directed acyclic graphs, such as trees or meshes. Depending on how

we define the transition rules from one state of CSGP to the next one,

we get different content distribution overlays. We consider three different

overlays, two of which are trees (hop-driven and cost-driven trees) and the

third one is a mesh.

We then explain in detail the solution approach and the motivations

underlying the use of the proposed methodology. We show how to use

the formalism of CSGP to compute the metrics of interest for the content

distribution such as the file download times, and the percentage of upload

bandwidth left unused. Numerical results are obtained solving the stochas-

tic process via Monte Carlo integration. Monte Carlo integration converges

very quickly allowing to obtain results for very large overlays with up to

a million of nodes, where standard event-driven simulations would fail for

lack or time or memory. Monte Carlo integration has been used in other

fields such as physics and chemistry, but, to the best of our knowledge,

it has never been applied to modeling overlay or P2P networks. We also

98

4.2. PROBLEM FORMULATION

briefly discuss, in Appendix A the similarity between modeling the content

propagation across an overlay and the modeling of chemical reactions of a

set of molecules.

The results we obtain precisely quantify the impact of the minimum

outdegree and the improvement of mesh-based overlays as compared to

tree-based overlays and provide important practical insights into how con-

tent distribution overlays should be constructed.

4.2 Problem Formulation

The novel methodology to model and analyze file distribution is based

on a class of semi-Markov processes whose state is described through a

graph. This property allows adding a reward structure to the process

that is related to the topological properties of the graph, which enables

the computation of the performance metrics and gives deep insight in the

behavior of the file distribution systems.

4.2.1 Content Distribution

The aim of the service is the delivery of a given finite size content F to

a set of users N . The only requirement of the service is content integrity.

The main performance metrics are the download time T of the content,

either for a given user i (Ti), or for the whole community (Tt). We also

consider the mean T of all the individual download times Ti.

We assume that each node knows a subset of the whole set of users, i.e.,

a node has a finite number of neighbors.

The content F is divided in C pieces called chunks. A chunk represents

a basic unit of transmission that can be distributed independently. During

the distribution of F , a node that has started to download F can in turn

start to upload F after entirely receiving the first chunk. The order in

99

CHAPTER 4. STOCHASTIC GRAPH PROCESSES

which the chunks are received by a node is not important. However, the

transfer is not complete until all chunks have been received by all interested

nodes.

For each node i, we define bu
i and bd

i as the upload and download band-

width respectively, which can be either symmetric, asymmetric or corre-

lated, e.g., bu
i + bd

i constant, as in a shared medium based access. The

bandwidths are random variables described by a probability density func-

tion (pdf) that is known (e.g., derived from measurement studies).

When a node starts uploading chunks of F , the effective rate used to

transfer the chunks to each child is computed according to the max-min

fairness criterion. The effective rate depends on multiple factors, such as

the number of children of the uploading node, the rate the uploading node

is receiving, etc. While the bandwidths (upload and download) are a given,

the effective rates are computed during the distribution process.

We define the eligibility time tel

i of node i as the time at which node i

can start uploading chunks to other nodes, i.e., it has completely received

the first chunk. If a node j is child of node i and receives at an effective

rate rij, its eligibility time is tel

j = tel

i + tstep

ij , where tstep

ij

△
= F

C
1
rij

. Knowing the

eligibility time and the rate at which a node j receives chunks, the total

download time can be computed as Tj
△
= tel

j + (C − 1)tstep

ij (at the end of the

eligibility time the first chunk is received, so there are C − 1 chunks left).

As a last assumption we suppose that node i chooses its children j uni-

formly at random among all its neighbors, not taking into account upload

and download bandwidths.

4.2.2 General definitions

The distribution of a content within a community of users can be formalized

as the propagation of the content across a graph of nodes and edges with

some stochastically defined characteristics. Nodes are the users and edges

100

4.2. PROBLEM FORMULATION

summarize all the characteristics of the communication paths between the

users.

Let N be the set of nodes, i.e., the vertices of the graph, and A the

set of all the arcs that connect pairs of nodes, A ⊆ N × N . We only

consider connected networks with bidirectional connections, so that A can

be represented by an irreducible, symmetric adjacency matrix. Bi is the

set of neighbors of user i, i.e., all those nodes in N that are known and

directly reachable from node i, with
⋃

i∈N

Bi = N , since the network is fully

reachable. Bi is represented also by row i of the adjacency matrix A.

Figure 4.1: Overlay and distribution graphs

The graph G(N ,A) represents the overlay network created, for instance,

by a P2P network (see Fig. 4.1). In general, G(N ,A) is time varying, i.e.,

nodes and edges can change in time, and even appear or disappear. The

overlay layer is the basis on top of which the distribution graph is built. We

define the distribution graph G∗(N , E) as a directed subgraph of G(N ,A),

with E ⊆ A. G∗ is a directed graph, since, from the content distribution

point of view, the content propagates from the source to the destinations.

4.2.3 Stochastic Graph Processes for Content Distribution

How to obtain the distribution graph G∗ from G is determined by the rules

implemented in the specific content distribution protocol. In general, we

can assume that the distribution graph G∗ is built step by step following

101

CHAPTER 4. STOCHASTIC GRAPH PROCESSES

a given protocol. The building process can be modeled as a discrete time

Markov chain, since the distribution graph G∗ at step i contains all the

information required to (stochastically) define the distribution graph G∗ at

step i+1. Let N ∗
n be the set of nodes that belong to the distribution graph

at step n, and N ∗
n its complement with respect to N . The distribution

graph G∗
n+1 at step n+1 is obtained from G∗

n by adding new edges ∈ A from

nodes in N ∗
n to nodes in N ∗

n . The complete distribution graph G∗(N , E) is

obtained when N ∗
n = N , and N ∗

n is the empty set.

The dynamic behavior of the distribution graph can be modeled as a

stochastic graph process. We recall here the general definition of stochastic

graph processes [20], while in Sect. 4.3, we specialize them for the analysis

of content distribution.

Definition 4.2.1 A stochastic graph process (SGP) on a set of nodes N

is a discrete time Markov chain (DTMC) whose states are graphs on N .

Even if not stated in the definition, two observations are in order:

• nodes can be connected only through edges that belong to A (in the

next definitions, we state explicitly this dependence);

• the SGP is embedded in a continuous time semi-Markov chain that is

sampled at the instants of adding nodes and arcs to obtain the SGP.

Adhering to the definition given in [20], the focus is the building process

and the evolution of the SGP implies that the graph is built step by step

by adding nodes and edges at each step.

In content distribution, the distribution graph is naturally built step

by step, so using the graph G∗(N , E) as a formal representation of the

state of the system is appropriate and complete: i.e., that state contains

all the information required to define (stochastically) the next state of the

evolution. The time between two steps depends on the sojourn time of

102

4.2. PROBLEM FORMULATION

the state. If sojourn times are exponentially distributed, then we obtain

a Markov chain. However, in general, this assumption is not true and in

continuous time we have a semi-Markov chain.

Definition 4.2.2 A constrained stochastic graph process (CSGP) on a

graph G(N ,A) is a semi-Markov chain whose states are subgraphs on G.

The semi-Markov chain embeds a Discrete Time Markov chain (DTMC)

obtained by sampling the process exactly at transition instants. The “con-

straints” limit the degrees of freedom during state transitions and ‘govern’

the evolution of the process.

A CSGP is a precise representation of the content distribution process.

Given G∗
n, the next state G∗

n+1 depends only on the eligibility times of

the nodes in N ∗
n , and the transition probabilities can be easily defined

step-by-step.

The eligibility times tel

j influence the semi-Markov process in two differ-

ent ways. In the general case of randomly varying tstep

ij , they define both

the transition probabilities between states and the state sojourn times. In

the particular case of deterministic tstep

ij (e.g., when the bandwidth is only

determined by access links), sojourn times are deterministic, and the tel

j

define only the state transition probabilities. Notice, however, that the file

distribution is entirely described by the embedded DTMC, so that only

transition probabilities are important.

The DTMC that describes a CSGP is a transient chain with a set of

adsorbing states G∗(N , E) that are reached when N ∗
n = N , i.e. all nodes

interested in the content are reached.

The way we defined a CSGP implies that nodes are stable and collab-

orative, and that the networking infrastructure is reliable enough to allow

edge stability. Clearly there is the possibility of extending the analysis to

cases where nodes (or edges) can disappear during the distribution process,

103

CHAPTER 4. STOCHASTIC GRAPH PROCESSES

so that G∗
n is derived from G∗

n−1 not only by adding an edge and a node,

but also by removing one node and all the edges relative to it.

A well known class of CSGP are the random graph processes studied

back in the ’50s by Erdös and Renyi in [21]. In random graph processes,

edges are added uniformly at random, which does not capture the propa-

gation of the data blocks in content distribution graph.

4.3 Content-Delivery CSGP

In the following, we refine the CSGP by adding constraints. These con-

straints concern the minimal and maximal outdegree and also the depth

of graph. We define three different distribution architectures, referred to

as ‘Content-Delivery constrained stochastic graph processes’, or CD-CSGP

for short. Two of the CD-CSGP form trees and the third one a mesh. We

have seen that the distribution graph as defined by a CD-CSGP grows step

by step by connecting each time a new node to a node n in the existing

graph. As we will see for the two tree-based distribution architectures, the

final distribution tree will be very much affected by the way we select the

node n in the graph to which the new node will be attached. The mesh-

based distribution graph will be obtained by first constructing a tree-based

distribution graph, which will then be augmented by additional links orig-

inating at the leaves of the tree. The advantage of a mesh is that the leaf

nodes of a tree, which do not at all contribute to the distribution of the

content, will now help distribute the file content.

4.3.1 Content-Delivery Related Definitions

Before we introduce the ‘Content-Delivery constrained stochastic graph

processes,’ or CD-CSGP, we need some additional definitions that will

simplify the characterization of each CD-CSGP.

104

4.3. CONTENT-DELIVERY CSGP

Each node has a constraint on maximum and minimum number of active

uploads that limit the possible outdegree of the node: kmax

i is the maximum

outdegree and and kmin

i is the minimum outdegree.

Definition 4.3.1 (saturated node) A node i ∈ N ∗
n is called saturated

if it

• has kmax

i outgoing edges that belong to G∗
n or

• has at least kmin

i outgoing edges and fully uses bu
i to transmit chunks to

neighboring nodes that belong to G∗
n.

Definition 4.3.2 (interior subset) The subset In ⊆ N ∗
n of nodes that

are saturated at step n is called the interior node subset at step n.

Definition 4.3.3 (leaf subset) The set of nodes Ln ∈ N ∗
n that are not

interior nodes is called the leaf node subset at step n, with Ln = N ∗
n \ In.

We consider a single node as a root of the stochastic graph. We define a

distance measure based on the number of hops from the root to any node

i.

Definition 4.3.4 (step distance) The number of hops from the root to

a node i following the shortest path is called step distance or step depth,

d(i).

In a tree, maxi(d
(i)) is the tree depth.

4.3.2 Cost-driven and Hop-driven Trees

We now define the precise steps that must be executed in building the

content distribution tree. The exact rules for building the tree have a

big impact on the shape (number of hops, outdegree) of the final content

distribution tree. In the following, we will introduce two different trees

called cost-driven and hop-driven trees.

105

CHAPTER 4. STOCHASTIC GRAPH PROCESSES

CD-CSGP 1 A constrained stochastic graph process on graph G(N ,A) is

called tree-based and cost-driven if

1. G∗
0 is a node, called root, randomly chosen in N .

2. G∗
n is obtained from G∗

n−1 as follows

(a) Choose the node i from Ln−1 with the smallest eligibility time:

tel

i = minj(t
el

j); if several nodes have the same eligibility time, one

of the nodes is chosen randomly;

(b) Add edges from node i to nodes randomly chosen from Bi

⋂
N ∗

n−1,

until node i becomes saturated.

Figure 4.2 shows an example with few states of the DTMC generated by

a CD-CSGP 1 process. In this case, we have only two possible bandwidths

(slow nodes with black circles, fast nodes with white ones, with slow band-

width less than half of the fast bandwidth) and kmax

i = 2 and kmin

i = 1.

Starting, for instance, from a state where the server is uploading to a slow

and to a fast node, the fast node has the smallest eligibility time and there

are only three next possible states:

(i) the fast node selects a fast node among its neighbors and becomes

saturated; alternatively, the fast node chooses a slow node so it has

to select another node,

(ii) the selected node is fast and we have bandwidth saturation, or

(iii) the node chosen is slow and we have saturation because kmax is reached.

Note that in case (i) the node becomes saturated since the rate of the

content it is receiving is high. If, for instance, the rate were slow (consider

the fast node under the slow node in the shadowed state), the number of

children would be always two, since the rate to each child is at most equal

to the rate it is receiving.

106

4.3. CONTENT-DELIVERY CSGP

Figure 4.2: Sample of the embedded DTMC for a CD-CSGP1 process; states are graphs

built on G, black and white circles represent slow and fast nodes respectively, kmax

i = 2

and kmin

i = 1.

The resulting tree is called “cost-driven” since, in general, the nodes in

the leaf set Ln do not all have the same step distance from the root. As

the speed of growth of the different branches is not the same, the deeper

branches will contain faster nodes, i.e., nodes with smaller eligibility times

tel (eligibility times represent the costs).

There is a vast literature on tree-based distribution architectures and

their performance. The majority of the proposals consider trees where

leaves have the same step distance from the root (the model introduced

in the previous chapter falls in this category). We call such trees “hop-

driven”1.

We define a special stochastic graph process for this type of tree. To do

so, we consider a subset of the leaf set Ln.

Definition 4.3.5 Let dMAX

n = max
j

(d(j)
n) be the maximum step distance of

the nodes j ∈ Ln. The subset L̃n ⊆ Ln is defined as follows: L̃n = { i ∈

Ln | d
(i)
n < dMAX

n }.

1Hop-driven are not necessarily balanced, since we have a variable outdegree.

107

CHAPTER 4. STOCHASTIC GRAPH PROCESSES

Now we can define the process that leads to hop-driven trees.

CD-CSGP 2 A constrained stochastic graph process on graph G(N ,A) is

called tree-based and hop-driven if

1. G∗
0 is a node, called root, randomly chosen in N .

2. G∗
n is obtained from G∗

n−1 as follows

(a) Choose a node i from L̃n−1 if not empty, otherwise from Ln−1, with

the smallest eligibility time; if several nodes have the eligibility

time, one of the nodes is chosen randomly;

(b) Add edges from node i to nodes randomly chosen from Bi

⋂
N ∗

n−1,

until the node becomes saturated.

Since we are interested in the file download time, it is worth to look

at a weighted graph where the weight associated to a directed edge is

given by the difference between the download times of the nodes connected

by the edge. Considering hop-driven trees, this representation shows the

disparity in terms of download time among leaf nodes that have the same

step distance. In Fig. 4.3 the weight is represented by the edge length.

Conversely, in cost-driven trees, leaf nodes are at different step distances

and the weighted graph gives a pictorial illustration why the tree grows in

this way: a new edge is added only after a node becomes eligible and this

forces a uniform growth of the weighted graph.

The difference between hop- and cost-driven trees is significant. A node

N in the tree will influence the reception speed of all nodes in the subtree

with N as root. A slow node S will slow down the reception of the chucks

for all the nodes in the subtree with S as root . Since slow nodes become

eligible later than fast nodes, in the case of cost-driven tree, a subtree with

a slow node as its root will grow much slower, i.e. have fewer nodes than

108

4.3. CONTENT-DELIVERY CSGP

Figure 4.3: Difference between hop- and cost-driven trees, considering the corresponding

weighted graphs where the length of edge between nodes i and j is given by tstep

ij

a subtree consisting of fast nodes, which will help to “limit” the impact of

slow nodes (see the leftmost branch of Fig. 4.3)

We will show in Sect. 4.5 how the choice of the tree — hop- or cost-driven

— affects the performance.

4.3.3 General Mesh Architecture

Tree based architectures allow the content to rapidly diffuse to nodes. How-

ever trees also have known shortcomings. Each node has only one ancestor

and in case of a node failure, the entire subtree will stop receiving data.

Each node must divide the upload bandwidth among its children, so chil-

dren use only a fraction of their download bandwidth for receiving chunks;

if we consider the case of asymmetric capacities, where the upload band-

width is smaller than the download bandwidth (as in the case of ADSL),

the percentage of unused download bandwidth increases even further. Fi-

nally, the leaf nodes of a tree receive the entire file without uploading a

single chunk.

109

CHAPTER 4. STOCHASTIC GRAPH PROCESSES

Mesh based architectures are meant to overcome these problems. In

addition, if the direction of the content diffusion within the structure is

random, the number of leaf nodes can be reduced to a single node given a

perfect knowledge of the network [18].

Nevertheless, the mesh architecture introduces a new problem: the

chunk selection strategy. A node i can help another node j if i has parts of

F not yet received by j, i.e., if it has ‘fresh’ information. We are not con-

cerned here on how freshness is checked and/or imposed, see for instance

[35, 36] for work on the topic. We assume an ideal situation where if a

node has received only part of F and it is contacted by another node that

is not already its ancestor, then all the information it can provide is either

completely fresh or completely stale. Any impairment can be easily taken

into account with a probabilistic approach.

Allowing the generation of mesh topologies means that a node i already

included in G∗
n may be contacted by other nodes j, also in G∗

n to receive

parts of F it does not already have. If j only has information that is not

fresh for i, then the ‘delivery connection’ is not established.

The building process of a mesh architecture can be divided into two

phases: diffusion and interconnection. In the first phase, we assume that

the root node uploads the chunks to its k children in different orders. For

instance, child i will first receive the chunk j with j ∈ {1, ..., C} and j

mod k = i. This means that each child receives the whole file, but the

first C/k chunks are disjoint with respect to the content received by the

other children2. Each of the children generates its own diffusion subtree

FG, where new nodes not yet reached by the content (untouched nodes)

are added to the subtrees. Once no more untouched nodes are available,

subtrees start to interconnect. Leaf nodes of a subtree upload chunks to

2Other techniques such as network coding could also be used to assure that different children receives

different chunks, but these details do not impact the performance of distribution architectures.

110

4.3. CONTENT-DELIVERY CSGP

nodes belonging to different diffusion subtrees, providing up to C/k dis-

joint chunks. In the final configuration, we obtain a mesh, where each

nodes receives from up to k nodes (belonging to distinct diffusion sub-

trees) and uploads to other nodes according to the saturation rules. This

constrained mesh diffusion process is depicted in Fig. 4.4. Note that the

diffusion direction is ‘reverted’ at leaves, ensuring a better spreading of the

content.

Figure 4.4: Mesh topologies obtained from interconnection of different diffusion subtrees

We can formally define the CSGP that leads to these architectures.

CD-CSGP 3 A constrained stochastic graph process on graph G(N ,A) is

called constrained mesh-based if

1. G∗
0 is a node, called root, randomly chosen in N .

2. G∗
1 consists of the root node and the k nodes randomly chosen in N \

{root} called the first generation nodes, where and each of them will

generate a subtree FG.

3. G∗
n is obtained from G∗

n−1 as follows

(a) Choose a node i from Ln−1 with the smallest eligibility time; if

several nodes have the same eligibility time, one of the node is

chosen randomly; FGi denotes the subtree to which i belongs;

111

CHAPTER 4. STOCHASTIC GRAPH PROCESSES

(b) Add edges from node i to nodes randomly chosen from Bi

⋂
N ∗

n−1,

until the node becomes saturated and N ∗
n−1 is not empty;

(c) If Bi

⋂
N ∗

n−1 is empty and node i is not saturated, add edges from

node i to nodes randomly chosen from Bi

⋂
N †

n−1 until the node

becomes saturated, where N †
n−1 is the set of nodes in the subtree

FGi at step n − 1.

CD-CSGP 3 can describe construction processes such as SplitStream [14]

and PTree [18]: both of the schemes use a fixed outdegree k and partition

the file in exactly k stripes, where each stripe is distributed along one of

the k diffusion trees. The process we define is more general since we do

not impose any fixed outdegree and allow that nodes upload the whole file,

however in different order.

4.4 Solution of the CD-CSGP

The CD-CSGPs defined in Sect. 4.3 describe the evolution over time of the

underlying Markov process: the Markov chain that models the process is

a transient chain and its absorbing states are the states where the final

graph contains all the nodes. So, we are interested in the analysis of the

transient behavior of the system, i.e., we focus on time necessary to reach

an absorbing state, or, given a time bound, the mean number of nodes

contained in the distribution graph.

The transient analysis of a Markov process can be done considering the

well known Kolmogorov forward (or backward) equations, coupled with

the Chapman-Kolmogorov Equations, which lead to a set of differential

equations that describe how the probabilities to be in a given state change

over time. A closed form solution of these equations is not feasible unless for

very small number of nodes, so we need to resort to numerical integration.

112

4.4. SOLUTION OF THE CD-CSGP

A numerical solution of the Markov process equations can be done using

different methodologies. Direct methods that approximate numerically the

equations have similar problems as the closed form solution: the equations

can be written only for a small number of nodes.

However, the structure of the transition matrix that describes the stochas-

tic process, is extremely suited for an efficient numerical solution based on

Monte Carlo techniques [30][31][32]3.

Monte Carlo integration is basically a random walk in the state space of

the process. The convenience of the methodology is given by the fact that

it is very simple to build a random walk following the process definitions

given in Sect. 4.3. Each random walk starts from the initial empty state

and finishes in an absorbing state. At each step, we generate transition

probabilities at run-time when hitting a state.

These samples are, by construction, independent and identically dis-

tributed, so we can compute the average characteristics of these random

walks, along with the confidence interval given a desired confidence level.

Monte Carlo integration is efficient for a number of reasons.

• The small number of transitions from each state, all of them with

non-vanishing probability, so that rare paths are non existing.

• The reward structure defined on the DTMC (see Sect. 4.4.2 for the

definition of the metrics we use) ensures that there are no dominating

rewards associated to low probability states (no ‘rare event’ syndrome

is present in the problem), and that the coefficient of variation (stan-

dard deviation divided by the average value), of all output metrics

decreases as the number of nodes increases. In fact, the variance

remains bounded while the mean download time increases monoton-

ically as we add more and more nodes. The consequence is that the
3In physical and chemical sciences this technique is often called Stochastic Simulation Algorithm or

Gillespie Algorithm, but we prefer to stick to the term ‘Monte Carlo’ normally used in computer science.

113

CHAPTER 4. STOCHASTIC GRAPH PROCESSES

numerical results yielding the histograms of the distribution converges

(almost surely) more and more rapidly to the exact distribution as the

number of nodes increases.

• The difference between the estimates and the exact value can be eval-

uated with standard stochastic means [33] yielding a powerful tool to

stop the solution iteration.

The Monte Carlo integration we propose is not a ‘generic’ event driven

simulation, but the mere numerical solution technique for the analytical

model. The definition of the problem as a CSGP ensures that the numeri-

cal solution generates all and only the states that are relevant to compute

the performance metrics. A generic event driven simulator, written with-

out formally defining the underlying stochastic process, may end up in

exploring a state space where interesting states are sparse in the middle of

states that are not useful to find the metrics of interest.

4.4.1 Detailed Description

The results of the Monte Carlo integration are an approximated solution

of the differential equations that describe the process, but with a known

error. All the probabilities that we compute are estimations of the real

probabilities. For instance, when we find performance metrics as described

in Sect. 4.4.2, we consider the probabilities of the absorbing states: actually

these probabilities are the estimated probabilities, with an error bound

given by confidence intervals.

The fast convergence of the integration using Monte Carlo is due to the

fact that we look for node properties that are not necessarily related to

the graph structure: for instance, given a time t and a specific number

of nodes Nt that have completed the download, there are many different

possible graphs that contain Nt nodes at time t. Another example can

114

4.4. SOLUTION OF THE CD-CSGP

be the download rates of nodes in the absorbing states: there are many

graph structures where the number of nodes that complete the download

with the slowest rate is the same. Thanks to these aggregate measures, the

convergence of the distribution is fast.

4.4.2 Computation of the Performance Metrics

In order to compute the mean download time T we assign to each absorbing

state Sk ∈ Sa (Sa is the set of absorbing states, i.e., the states where all

elements of N have downloaded F and no further transitions are possible)

a reward T k equal to the mean download time of the nodes in the state,

T k =
1

|N |

∑

i∈N

Ti ; Sk ∈ Sa

where Ti are the individual download times defined in Sect. 4.2.1. The

mean download time T is the reward of a DTMC obtained by adding a

deterministic transition from all the absorbing states to an initial state

represented by the empty graph ∅.

T =

∑
k∈S

a T kπk∑
k∈S

a πk
.

where πks are defined as the steady state probabilities of the support

DTMC.

Another performance measure easily defined as a reward is the wasted

upload bandwidth wu (in percentage). Let wu
i = 100

(
1 − max(ru

i)
bu
i

)
be the

wasted upload bandwidth of node i, where max(ru
i) is the maximum upload

rate ever reached by the node in any visited state. Considering again

the modified DTMC and letting Sa be the set of absorbing states in the

unmodified DTMC we have

wu
k =

1

|N |

∑

i∈N

wu
i ; Sk ∈ Sa

115

CHAPTER 4. STOCHASTIC GRAPH PROCESSES

and

wu =

∑
k∈Sa

wu
kπk∑

k∈Sa
πk

.

If we fix the number of nodes and let the time to go to infinity, we

obtain the probability density function (pdf) of the download rates and the

number of nodes that download at each possible rate normalized by the

total number of nodes. This representation enables the comparison of the

input pdf of the bandwidths with the output pdf of the rates, obtaining

a direct measure of the impact of different policies (e.g., constraints on

outdegree) on the performance.

4.4.3 The Numerical Solver

The numerical solver GROOVER (stochastic Graph pROcess sOlVER)

implements a Monte Carlo integration in form of an algorithmic imple-

mentation of the content distribution processes defined as CD-CSGPs. It

simulates the stochastic process and computes multiple realizations of that

process. GROOVER has several input parameters and the outputs are the

rewards associated with the process.

Algorithm 1 gives a high level view of GROOVER for the case of a tree-

based architecture as defined in CD-CSGP 1. GROOVER first builds the

diffusion sub-trees and then analyzes the mesh approach starting from the

leaf nodes of each diffusion tree. It is possible to block the connections

among diffusion trees, obtaining the performance of tree based architec-

tures. The following paragraphs give a detailed description of the basic

behavior.

Input parameters

The main input is the pdf of the node bandwidths. Other input parameters

of interest are the number of nodes in N , the number of neighbors in Bi, the

116

4.4. SOLUTION OF THE CD-CSGP

Algorithm 1 Basic structure of GROOVER for tree based architectures

input: pdf of node bandwidth; total number of nodes; desired confidence level

output: pdf of download times;

initialization;

repeat

while (#nodes < tot.nodes) do {build (diffusion) trees}

extract the node i with (tel

i = min
j

(tel

j)) and (#levels < max level);

repeat

select randomly a neighbor from the Bi not yet reached by any other node;

until node i is saturated

if (#children = 0) or (node not saturated) then

put node in leaf set

else

compute the rate rk to each children according to

the max min fairness criterion;

for k = 1 to #children do

assign tel

k ;

compute tdownload

i = tel

k + F

C
(C − 1)/rk ;

end for

end if

end while

update histograms (time, wasted bandwidth, etc.);

until stop criterion not met

stop criterion:

update the confidence interval for the histogram including the last realization;

stop if desired confidence level is reached;

117

CHAPTER 4. STOCHASTIC GRAPH PROCESSES

outdegree constraints kmax

i and kmin

i , and the number of chunks. Finally, it is

possible to specify the maximum step distance allowed for the architecture.

Imposing a strict bound on the distance, we can obtain hop-driven trees.

Initialization

The root and the first generation of children are deterministically assigned

the highest bandwidth. If F is distributed in ko different orders to obtain

a mesh, then the root selects exactly ko children to fairly compare results

with different ko. For each child, GROOVER computes the eligibility time

and assigns the download rate.

Diffusion

Each node i at level 1 (level 0 is the server) randomly selects nodes to

upload to in Bi until its upload bandwidth is saturated, i.e., the sum of

the download bandwidths of its children is greater than 80% of its up-

load bandwidth, or no nodes without chunks are left, provided that the

constraints kmax

i and kmin

i are met. We use the threshold of 80% to avoid

the selection of a new node, that can be a fast node, when the node re-

sources are sufficiently exploited (otherwise the sum of the downloading

bandwidths would be much greater than the upload bandwidth and each

children would receive a small fraction of it.) Once the list of children is

created, the ancestor calculates for each child i the eligibility time tel

i and

the rate ri (the dimension of a chunk divided the time necessary to down-

load it) according to the max-min fairness criterion. From the eligibility

time (i.e., the time a peer finishes to download the first chunk) and the

rate, we can compute the total download time of each child i:

tdownload

i = tel

i +
F

C
(C − 1)ri .

If the node has no children, it is placed in a list for next rounds analysis.

118

4.4. SOLUTION OF THE CD-CSGP

Cross connections

Leaf nodes in the diffusion subtree are those that find no untouched nodes

in Bi. Leaves start to help their neighbors in the overlay, provided that

they belong to different diffusion subtrees. The process of neighbor selec-

tion is done as in the previous case, but here the spare upload bandwidth of

the ancestor and the spare download bandwidths of the neighbors are con-

sidered. For each neighbor, knowing the eligibility time and the additional

rate radd

i , we can calculate the new, reduced download time

tdownload

i = tel

i +
F

C
(C − 1)(ri + radd

i) .

We suppose C sufficiently high so that the difference among the starts of

different contributions is not significant. Additional cross connections are

realized respecting the usual constraints.

End of the realization

The realization stops when an adsorbing state is reached. In this state all

the download times can be computed, as well as other rewards.

Stop criterion

The performance indices at the end of each realization are samples of known

i.i.d. random variables and standard techniques can be used to estimate

the confidence intervals of the whole histograms (see for instance [33]).

GROOVER stops when all bins of the histograms have a ±10% relative

confidence interval with a 0.99 confidence level.

Solution Complexity

We have not attempted to compute a-priori the number of necessary re-

alizations to obtain the given confidence level and interval, although it

119

CHAPTER 4. STOCHASTIC GRAPH PROCESSES

may be possible exploiting the properties of the DTMC. We use instead

a-posteriori evaluation of the distributions accuracy using standard meth-

ods (see [33]). As expected, the number of realizations needed to reach a

desired accuracy decreases with the number of nodes.

For instance, in the numerical examples presented in Sect. 4.5 conver-

gence is obtained in less than 1,000 realizations for 104 nodes, less than 500

realizations for 105 and less than 200 realizations for 106. For 106 nodes and

a mesh-based architecture this means 4-5 hours of CPU on a standard PC,

10–20 minutes for 105, while for a smaller number of nodes the execution

time becomes negligible.

For tree-based architectures we also implemented a much faster algo-

rithm that exploits the properties of the paths within the tree: we only

realize a single path from the source to a leaf within the tree and use the

properties of the DTMC to derive the metrics for the entire tree directly

in form of aggregate histograms. For more details on this method see [27].

This further reduces the solution time by more than one order of magni-

tude, allowing the evaluation of tree architectures for up to 108 nodes. To

the best of our knowledge numerical results on P2P based content distri-

bution networks rarely extend beyond 103–104 nodes.

4.5 Numerical Results

To obtain our results, we use as input probability density function for the

node bandwidth the pdf taken from [34], summarized in Table 4.1.

When reporting results, we normalize the data such that |F|
min(bi)

= 1

‘round’, where |F| is the content size in bits and min
i

(bi) is the minimum

bandwidth of the input pdf in bits/s. We use a number of chunks C equal

to 100, but a sensitivity analysis with different values of C indicates a

qualitative behavior independent of C, as long as C ≫ 1. All results

120

4.5. NUMERICAL RESULTS

Table 4.1: Bandwidth distribution used in the examples

Bandwidth % nodes

56 kbit/s 13%

640 kbit/s 23%

1.2 Mbit/s 64%

have a confidence level 0.99 and confidence interval ±10% on the whole

distribution.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ili

ty

Time (rounds)

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014
 0.016

 0.04 0.06 0.08 0.1 0.12

Pr
ob

ab
ili

ty

Time (rounds)

Figure 4.5: Histogram of the estimated pdf of the download time of the nodes with

CD-CSGP3 for 104 nodes.

Figure 4.5 shows the histogram of the estimated pdf of the node down-

load times Ti for a network with 104 nodes. The distribution architecture

is a mesh, modeled with CD-CSGP 3. We see that all nodes complete the

download in at most one round.

While distributions like the one depicted in Fig. 4.5 are the prime output

of GROOVER, we show in the following mostly aggregate results (means),

which are more compact and yet convey the fundamental insights of the

results we obtained.

121

CHAPTER 4. STOCHASTIC GRAPH PROCESSES

4.5.1 Tree Based Distribution Architectures

As we have seen in Fig. 4.1, the content distribution network is built on top

of the overlay network. We start by evaluating the influence of the neighbor

set size in the overlay network on the delay in the content distribution

network. We see in Fig. 4.6 that a neighbor set size of |Bi| = 8 is sufficient

to achieve as good a performance as for the case where in the overlay

network every node knows about every other node, which corresponds to

the case |Bi| = N , ∀i.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

102 103 104 105 106

M
ea

n
do

w
nl

oa
d

ro
un

ds

Number of nodes

|Bi| = 4
|Bi| = 6
|Bi| = 8
Bi = N
unbounded

Figure 4.6: T for different number of neighbors |Bi| in the overlay; CD-CSGP1 with

outdegree between 1 and 4.

If the neighbor set is small (|Bi| = 4), the mean download time grows

for an increasing number of nodes much faster than for the case where

|Bi| = N .

These observations are valid independent from the outdegree constraints

(results are not shown here for space reasons) and the kind of content

distribution tree (hop-, cost-driven). For this reason we assume for the

rest of the chapter that the neighbor set is sufficiently large, i.e., |Bi| ≥ 8.

We first focus on the comparison between hop- and cost-driven trees

and. The difference in the way the trees are built as well as different

constraints for kmax and kmin have a major impact on the shape of the tree

122

4.5. NUMERICAL RESULTS

and on the download performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

102 103 104 105 106

M
ea

n
do

w
nl

oa
d

ro
un

ds

Number of nodes

hop-driven, kmax = 4
hop-driven, kmax = 8
cost-driven, kmax = 4
cost-driven, kmax = 8

(a) kmin = 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

102 103 104 105 106

M
ea

n
do

w
nl

oa
d

ro
un

ds

Number of nodes

hop-driven, kmax = 4
hop-driven, kmax = 8
cost-driven, kmax = 4
cost-driven, kmax = 8

(b) kmin = 2.

Figure 4.7: Mean download time for cost- and hop-driven trees.

Fig. 4.7 shows the mean download time as a function of the total number

of nodes. We see that the mean download time is much lower for cost-

driven trees as compared to hop-driven ones. This is due to fact that the

cost-driven trees use the lowest eligibility time as criterion for selecting the

leaf node to which a new node is attached. Therefore, subtrees with slow

nodes as root will grow much slower, i.e. have very few nodes, as compared

to subtrees with fast nodes. On the other hand, hop-driven trees try to

keep the step distance d(i) of all leaf nodes approximately the same, which

means that subtrees with slow nodes as root are potentially much larger

than in the case of cost-driven trees.

Another parameter that has a major impact on the performance is the

outdegree. We first consider the effect of kmax: a node i can increase its

number of children only if its upload bandwidth is not saturated. This

means that if a node has a high upload bandwidth but receives chunks at a

low rate, it can serve as many nodes as its maximum outdegree kmax allows.

Since in hop-driven trees it is more frequent that fast nodes receive at a low

rate — this concerns all the fast nodes belonging to a subtree rooted at a

123

CHAPTER 4. STOCHASTIC GRAPH PROCESSES

slow node — the possibility to increase the outdegree helps as it allows fast

nodes to use more of their upload bandwidth. In the case of cost-driven

trees, fewer fast nodes will receive chunks at a low rate and the benefit of

an increased outdegree is not visible.

Very interesting is also the impact of the minimum outdegree on the

download performance. If we impose a minimum outdegree kmin = 2, a slow

node will divide its low upload bandwidth available by two to serve each

of the two children, which will affect the speed of content propagation to

the entire subtree rooted at the slow node. If we allow instead a minimum

outdegree of one, this will in the case of hop-driven trees cut the mean

download time into half (see Fig. 4.7). For cost-driven trees, the value

kmin = 1 will also reduce the mean download time, but not as dramatically

as for hop-driven trees. This is expected, since in cost-driven trees the

overall influence of slow nodes on the download times is reduced as already

explained. To the best of our knowledge, the impact of the minimum

outdegree on the download performance has not been discussed previously

in the literature.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

Pr
ob

ab
ili

ty

Number of hops

hop-driven, kmax = 4
hop-driven, kmax = 8
cost-driven, kmax = 4
cost-driven, kmax = 8

(a) Minimum outdegree kmin = 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

Pr
ob

ab
ili

ty

Number of hops

hop-driven, kmax = 4
hop-driven, kmax = 8
cost-driven, kmax = 4
cost-driven, kmax = 8

(b) Minimum outdegree kmin = 2.

Figure 4.8: Distribution of the step distance for 106 nodes.

The superior download performance of cost-driven trees as compared to

124

4.5. NUMERICAL RESULTS

hop-driven trees comes at the cost of a greater step distance. In Fig. 4.8 we

report the distribution of the step distance for different cases. As expected,

the mean number of hops in cost-driven trees are higher than hop-driven

tree. However the individual hops are shorter (smaller chunk download

time tstep), so the file download time is smaller.

In the case of hop-driven trees, the choice of the minimum outdegree

(kmin = 1 or kmin = 2) has very little influence on the distribution of the

step distance, while for cost-driven trees a value of kmin = 1 results in a

much larger step distance than a value of kmin = 2. In hop-driven trees the

probability to have many consecutive hops with high rate is very low, so

the outdegree of fast nodes increases after few hops and the total number

of node reached becomes comparable for kmin = 1 or kmin = 2.

Finally, we consider the impact of churn on the file download times. We

assume that when a node starts downloading the file, with a probability

pchurn it will leave the network during the download. The time until a node

leaves is selected uniformly from the interval between the beginning of the

download the and estimated end of the download4. Fig. 4.9 shows the cu-

mulative distribution function (CDF) of the download times with different

outdegree constraints, using a cost-driven tree architecture. The CDF is

built considering the nodes that have completed the download. Even in

presence of 30% of nodes leaving, the download performance deteriorates

only very little.

We can explain this “surprising” result as follows: In a tree structure,

a high percentage of nodes are leaf nodes. However only internal nodes

that leave will impact on the performance. The download time depends

on the initial delay to get the first chunk and the download rate. When

4We talk here about estimated download time since the distribution structure is not stable and an

ancestor of the node can disappear; this influences the effective download time, so it may happen that a

node selects an instant for leaving the network, but in that instant it has already completed the download

(if, for instance, during the download it has increased its rate).

125

CHAPTER 4. STOCHASTIC GRAPH PROCESSES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

Mean download rounds

no churn
30% churn

(a) outdegree: kmin = 1, kmax = 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

Mean download rounds

no churn
30% churn

(b) outdegree: kmin = 2, kmax = 4

Figure 4.9: CDF of the download times for 104 nodes with a churn probability of 30%.

a node i becomes orphan since its father has left, it searches among its

neighbors for a node that has upload bandwidth and has downloaded a

number of chunks greater than the number of chunks owned by the node

i. This very simple policy automatically selects the “faster” nodes among

the neighbors, preserving the download rate seen by node i. So, if the

new father can offer the same download rate, a small increase in the step

distance will not have a great impact. Consider also that, according to

the distribution of the step distance, most of the nodes have high step

distances, so the absolute difference in terms of delay until the first chunk

is received is most likely low.

4.5.2 Mesh Based Distribution Architectures

Trees based architectures have the disadvantage that the leaf nodes do not

at all contribute to the distribution of the content. However, when the

average outdegree is larger than 2, the leaves make at least 50% of all

the nodes. It is therefore natural to consider mesh based architectures.

Remember that to construct a mesh, we first let the diffusion trees reach

all the nodes, then nodes with spare bandwidth — typically, the leaves of

126

4.5. NUMERICAL RESULTS

the diffusion trees — upload to nodes belonging to different diffusion trees.

Diffusion trees can be hop- or cost-driven. Due to the poor performance of

hop-driven trees, we consider only meshes with cost-driven diffusion trees

only.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

102 103 104 105 106

M
ea

n
do

w
nl

oa
d

ro
un

ds

Number of nodes

tree, cost-driven, kmin = 2 - kmax = 8
tree, cost-driven, kmin = 1 - kmax = 8
mesh, kmin = 2 - kmax = 8
mesh, kmin = 1 - kmax = 8

Figure 4.10: Mean download time T for cost-driven trees and mesh architectures with

different outdegree constraints.

In Fig. 4.10 we compare the mean download time of meshes and cost-

driven trees. We see that meshes improve the download time and that the

improvement is particularly significant when the minimum outdegree is set

to two. We would like to mention that another advantage of meshes over

trees is that meshes are more resilient to node failures.

Table 4.2 compares meshes and cost-driven trees in terms of the amount

of upload bandwidth wasted (wu) and also provides information about the

mean tree depth, i.e., the average step distance. A mesh architecture re-

duces in all the cases we considered the wasted upload bandwidth by more

than 50 percent. Another interesting result in Table 4.2 is the increase in

mean tree depth by 40 to 50 percent when we reduce the minimum out-

degree from two to one. For an operational content distribution system

smaller step distances are attractive: At a given node churn rate, smaller

step distances reduce the likelihood that a node will be get disconnected

127

CHAPTER 4. STOCHASTIC GRAPH PROCESSES

due to such an event. If we take into consideration good download per-

formance and robustness in case of node churn the mesh architecture with

minimum outdegree two is very attractive (see also Fig. 4.11).

Table 4.2: Comparison of cost-driven trees and meshes.

Mean Tree Upload Bandwidth Wasted

Outdegree #Nodes Depth Cost-driven Tree Mesh

1 - 8 105 17.2 46.9% 13.3%

1 - 8 106 21.4 47.5% 13.1%

2 - 8 105 12.2 66.2% 26.8%

2 - 8 106 14.3 68.9% 29.3%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

Mean download rounds

hop-driven
cost-driven
mesh

(a) Set of 105 nodes with outdegree 1-8.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

Mean download rounds

hop-driven
cost-driven
mesh

(b) Set of 105 nodes with outdegree 2-8.

Figure 4.11: Comparison of the Cumulative Distribution Function of the mean download

time between hop-driven tree, cost-driven tree and mesh.

Looking not only at the mean download time but also at the distribution

of the download times of individual nodes can give valuable insights. We

can, for instance, see to what degree the slow nodes affect the download

times of the faster nodes. We consider that only 13% of the nodes are slow

nodes (see Table 4.1). In Fig. 4.11 we see that for the cost-driven and mesh

architecture the slow nodes do not negatively affect the download time of

128

4.6. PRACTICAL ASPECTS

the other nodes. On the other hand, in the case of hop-driven trees the

slow nodes affect negatively the download times of about 50% of the other

nodes.

The performance comparison of the different distribution architectures

for a heterogeneous peer population gives some very interesting insights

that we have not seen published elsewhere.

• Cost-driven trees and meshes allow to avoid any negative impact of

slow nodes on the download performance of the other nodes. This

is due to the fact that the construction process of a cost-driven tree

assures that subtrees rooted at a slow node remain very small.

• A minimum node degree of one allows a slow node to achieve twice the

upload rate to its only child as compared to the case where a slow node

would upload to two children. While kmin = 1 reduces the download

times for all three distribution architectures, the improvement is most

pronounced for hop-driven trees.

4.6 Practical Aspects

We have studied three different content distribution architectures and eval-

uated their performance. We think that our findings can greatly help in-

form and improve the design of content distribution architectures. We

therefore discuss briefly how our findings can be put into practice in a real

content distribution system where the distribution graph is constructed by

a distributed algorithm and where some of the assumptions made (e.g., up-

load/download bandwidth of node is known) may not hold. In the follow-

ing, we will sketch out the basic operation of such a distributed algorithm

for tree construction that is in fact quite simple.

Since the cost-driven tree and its extension to a mesh was the most

promising architecture, we will only discuss how to build in a distributed

129

CHAPTER 4. STOCHASTIC GRAPH PROCESSES

way a cost-driven tree as defined in CD-CSGP-1 . We assume that the

overlay layer (see Fig. 4.1) has been constructed and each node i knows its

neighbors Bi. Assume that the root has been selected and the root has

chosen some of the nodes in its neighbor set to which it starts transmitting

chunks.

If a node i gets contacted and starts receiving the first chunk, it will

wait until this chunk is completely received. At that point, node i will

select among its neighbors a subset of candidates:

Node i will contact the nodes in Bi and retain the ones that do not yet

receive chunks from any other node in his candidate set Ci ⊆ Bi. Let

assume for the moment that node i knows his upload bandwidth bu
i and

the download bandwidths bd
j , j ∈ Ci. Node i will open connections to its

neighbors in Ci until it is saturated (i.e., his upload bandwidth is all used

up or the constraint on the maximum number of outgoing connections is

reached). It can be easily seen that this algorithm implements CD-CSGP-

1, where the next node to extend the tree is the node with the minimal

eligibility time, i.e. the node that just finished receiving the first chunk.

There are quite a few cases where the up- and download bandwidth may

in fact be known, for instance, in a corporate environment or even in an

Internet-wide P2P system. Today, many of the file-sharing tools such as

BitTorrent or Edonkey allow the user to limit the upload bandwidth. In

this case, one can set both, the available up- and download bandwidth to

that value.

However, if the available up- and download bandwidth of node i are not

known, node i could proceed as follows: It first opens only kmin connections

and starts transmitting to kmin neighbors. If, after some time, node i

observes that its upload bandwidth is not fully utilized, it can send down

the subtree rooted at node i a message searching for a candidate node

j whose download bandwidth is not fully utilized. The tree would be

130

4.7. CONCLUSIONS

reorganized as follows: node j disconnects from its current father and

becomes a direct child of node i.

4.7 Conclusions

While the use of trees for content distribution has been studied intensively

in the literature, important details such as bandwidth heterogeneity and

varying node outdegrees as well as different minimum and maximum out-

degrees have received very little attention, probably due to the difficulty

of finding closed form results. In this chapter we have made several contri-

butions concerning (i) the formalism to describe the content distribution

graph, (ii) the methodology to compute the relevant performance metrics,

and (iii) the performance results themselves.

We have defined a new formalism called Constrained Stochastic Graph

Processes that is suitable for the description of content distribution archi-

tectures based on trees or meshes. This formalism specifies the evolution

of the content distribution process as a semi-Markov process. To the best

of our knowledge, up to now stochastic graph processes were only used

to study connectivity properties and have not been applied to the perfor-

mance analysis of content distribution networks. We have developed a new

methodology for the performance evaluation of these Constrained Stochas-

tic Graph Processes. Our numerical solver GROOVER emulates a random

walk on the DTMC embedded in the semi-Markov process. GROOVER

allows for a very efficient computation of the performance metrics even for

very large number of nodes, which is clearly not feasible using standard

discrete event simulation. On a PC, we can use GROOVER to evaluate

distribution architectures of a million of nodes and more in just a few hours,

which makes our approach very attractive for the evaluation of large P2P

files distribution systems.

131

CHAPTER 4. STOCHASTIC GRAPH PROCESSES

Using GROOVER we have obtained a number of novel results:

1. For tree-based topologies, we show that in case of bandwidth hetero-

geneity it is important that the nodes with low bandwidth are not

at the root of large subtrees of nodes, leading to poor efficiency and

higher download times. For this purpose, we formally introduce two

types of trees, cost-driven and hop-driven trees and show that cost-

driven trees perform much better than hop-driven trees, since they

succeed at placing slow nodes mainly at the leaves.

2. Another parameter that has not been considered before is the mini-

mum node outdegree. Allowing for a minimum node outdegree of 1 as

compared to 2 can cut the download time into half, as it is the case

for hop-driven trees.

3. Leaves do not contribute at all the to file distribution and this is

normally one of the rationales to use mesh-based topologies. We have

extended the tree architecture to a mesh that involves leaf nodes in

the file distribution, which helps to significantly reduce the download

time of high bandwidth nodes.

132

Chapter 5

Mesh based Streaming Services

Stochastic graph processes represent a powerful tool in analyzing P2P

overlay systems. Within content distribution we can identify streaming

systems, where the problem is not the minimum download time, but the

distance, in terms of delay, of the nodes from the streaming source. In

this chapter we apply the SGP formalism in such a context. The model

captures the fundamental properties of the streaming system, such as the

number of active connections, the different play-out delays of nodes and the

probability of not receiving the stream due to nodes failures/misbehavior.

Besides the static properties, the model is able to capture the transient

behavior of the distribution graphs, i.e., the evolution of the structure over

time, for instance in the initial phase of the distribution process.

5.1 Introduction

The recent success of streaming based on peer-to-peer (P2P) applications

seems to achieve what traditional streaming and multicasting applications

have never achieved: distributed video-on-demand and live broadcasting on

the Internet. Tree based systems [7][8][9] that have been proposed earlier

coexist now with more advanced mesh-based systems [10][11][12] that are

more resilient to node dynamics and bandwidth variations as seen in the

133

CHAPTER 5. MESH BASED STREAMING SERVICES

Internet.

In spite of the success of P2P streaming, the fundamental properties

of such systems have not been investigated in depth. In this chapter we

develop a mathematical model based on stochastic graph theory that can

be used to analyze fundamental performance issues of overlay streaming

services. The level of abstraction of the model allows to study the fun-

damental behavior under different conditions, yet maintaining a limited

complexity. Many studies analyze a static graphs that captures the prop-

erties of a snapshot of the network (see [37] and the references therein). In

our work, instead, we study the dynamics of the graphs, i.e., the evolution

of the structure over time.

We derive the master equations (MEs) that define the evolution of the

streaming system in time. The MEs take into account the fundamental

characteristics of the streaming protocol as well as the bandwidth available

at nodes for the streaming application. The model allows assessing the

impact of different protocol choices and of bandwidth heterogeneity on the

delivery process and provides insights in how to improve existing streaming

strategies.

The results obtained by the systematic study of different configura-

tions show that performance is mainly influenced by the policies related

to content format (how much redundant information is sent). Mesh based

architectures are very robust to failures, even in presence of high churn and

the delay experienced by nodes stays bounded.

The remainder of this chapter is structured as follows. Sect. 5.2 intro-

duces mesh based streaming systems. In Sect. 5.3 we describe in detail the

analytical model. Sect. 5.4 discusses the solution approach. We present

the results in Sect. 5.5, and we compare them with simulations in Sect. 5.6.

We conclude the chapter with some additional discussion in Sect. 5.7.

134

5.2. MESH-BASED OVERLAY STREAMING SYSTEMS

5.2 Mesh-based Overlay Streaming Systems

We do not consider here any specific system, but we identify common basic

characteristics of recent proposals, focusing on hybrid approaches, such as

[11][12], where the mesh is built as superposition of trees, obtaining a struc-

tured mesh. Consider an overlay network built by a P2P application. Once

the overlay layer is built, paths between the source and the destinations

are created following the rules of the distribution protocol. At each hop,

nodes both receive the stream and contribute uploading it to other nodes,

i.e., they work as content relay. Since nodes in such networks can appear

or disappear frequently, the set of nodes from which a node is downloading

changes over time.

5.2.1 System parameters

The content is distributed using R different stripes. Each stripe contains

part of the stream (coded, for instance, using MDC techniques [39]). A

node needs R′ < R out of R stripes to achieve a target quality, while the

remaining R − R′ stripes contain redundant information. We assume that

each node downloads a specific stripe Ri from a single node. Downloading

the same stripe from multiple parents does not increase the quality of the

received stream. Moreover, each node downloads only a single stripe from

a given parent, even if the parent could provide multiple stripes, which

limits the impact of a parent that leaves.

Even if the structure is a mesh, looking at the system at a specific instant

t, it is possible to identify sub-structures inside the mesh. If we consider

the graph at time t and we consider the nodes that are downloading stripe

Ri, it is possible to construct a tree that connects these nodes. We call such

a tree “diffusion tree.” The whole mesh can be seen as a set of overlapping

diffusion trees, which change over time.

135

CHAPTER 5. MESH BASED STREAMING SERVICES

The evolution of the network is subject to two main events: node arrivals

and departures. We assume that arrivals and departures are exponentially

distributed according to rates λ(t) and µ(t) respectively. The dependence

on time makes the model more flexible: for instance, different arrival pat-

terns, such as flash crowds or more smooth arrivals, can be described. Let

Tstr be the duration of the stream and N the mean number of nodes receiv-

ing the stream at steady state. We consider a situation where a fraction

of the nodes joins the stream at time zero, and there is an arrival interval

during which λ(t) > µ(t) until steady state is reached. Fig. 5.1 shows a

sample arrival pattern.

time

nodes

N

nodes
initial

arrival
interval

Figure 5.1: Sample arrival pattern of nodes joining a stream.

The departure rate µ(t) is the inverse of the mean time spent in the

system (sojourn time). λ(t) at steady state compensates departures. For

a given time interval T , the ratio between the cumulative number of nodes

that left and the mean number of active nodes during T is defined as the

churn of the system. A 100% churn means that during T the number of

the departed nodes is equal to the mean number of nodes in the system,

i.e., there is on average a complete change of the nodes during T .

Nodes are divided into different classes according to their bandwidth.

Each class j has an upload bandwidth b
(j)
u and a download bandwidth

b
(j)
d , which can be either symmetric, asymmetric or correlated, e.g., bu

i + bd
i

136

5.2. MESH-BASED OVERLAY STREAMING SYSTEMS

constant, as in a shared medium access. The bandwidths are random

variables described by a probability density function (pdf) that is known

(e.g., derived from measurement studies).

The rate of the streaming is rstr. We suppose that all nodes have a

download bandwidth at least equal to the streaming rate. Each stripe has

a rate equal to rstr/R
′, and we assume that the server is able to upload all

the R stripes, i.e., it has a bandwidth greater than Rrstr/R
′. Each node

has a constraint on maximum and minimum number of active uploads that

limit the possible outdegree of the node: kmax is the maximum outdegree

and and kmin is the minimum outdegree.

Each node has B overlay neighbors. Among its neighbors the node

selects its parent nodes, i.e., those from which it downloads. R′ parents

are called active; the remaining are called standby, since they are used as

a backup in case of an active parent failure.

5.2.2 Join, Update and Leave Procedures

Nodes belonging to the initial set start building a diffusion tree for each

stripe. The number of nodes in each diffusion tree depends on the char-

acteristics of the nodes involved such as the bandwidth. Each node is

involved in multiple diffusion trees.

When a new node arrives, it randomly chooses an active node as first

contact and then builds its neighbor list with the help of this node. From

the neighbor list, the node selects its parents and connects to them.

With rate λup nodes periodically search among their neighbors for new

connections in order to increase their indegree. For standby parents, the

bandwidth is not reserved, so the total number of parents can exceed the

ratio between the stripe rate and the node download bandwidth.

When a node leaves, all the inbound and outbound connections are

canceled. Orphan nodes try to replace the parent that has left. If the

137

CHAPTER 5. MESH BASED STREAMING SERVICES

parent that has left was in the standby set, the node does not react (it

simply loses a backup parent). If the parent that has left was in the active

set, the node tries to switch the state of a standby parent, i.e., it starts

downloading from the standby parent that has enough available upload

bandwidth. If a node has no backup parents, there will be a temporary

loss of quality whose extent depends on the time necessary to search for a

new parent.

5.3 System Model

The network of contacts among users of a P2P networks can be modeled

as a graph, where nodes represent the users and edges the neighborhood

relationship. When the users start exchanging data (in our case, they start

receiving and distributing the stream) they use a subset of the available

outgoing/incoming edges. The number of neighbors that are uploading to

a node, for instance, represents the number of parents from which the node

downloads the content, and it can be considered as a metric to measure

the total rate received, and consequently the quality of the streaming.

The focus of our analysis is the characteristics of the distribution graph

(see Fig. 5.2), i.e., the subgraph of the overlay graph, where edges are the

connections effectively used by nodes.

Overlay Layer

Distribution Layer

Figure 5.2: Overlay and distribution graphs

138

5.3. SYSTEM MODEL

In general, the distribution graph is time varying, i.e., nodes and edges

can appear or disappear in time. The evolution of the graph can be seen

as a stochastic process with Markovian properties, since the graph at time

t + dt depends only on the graph at time t and the event (join or leave of

a node) occurred during dt.

5.3.1 Formal Description of the System

Considering the system at a specific instant t, we can identify for each node

two types of relationship: parents (or, equivalently, children) and neigh-

bors. For parents we can associate an identifier of the stripe exchanged —

different identifiers are selected in case of active or standby stripe.

Let αk and σk be the identifier of stripe k, when it is active and standby

respectively. Let η be the identifier that indicates that two nodes are

neighbors in the overlay. The overlay graph and the distribution graph

can thus be described by the connectivity matrix S, where each element

sij describes the relationship between node i and node j:

sij =

0 nodes i and j are not neighbors

η nodes i and j are neighbors and do not exchange stripes

αk nodes i and j are neighbors and i is active parent of j

with stripe k

σk nodes i and j are neighbors and i is standby parent of j

with stripe k

(5.1)

Since each parent can upload only a single stripe to a node, sij can assume

only the above values. Along with the connectivity matrix, each node has

a upload bandwidth that can be represented, for a given stripe rate, as the

maximum number of active children a node can have.

State transitions are determined by the events join, leave, and update

described in Sect. 5.2. We assume that the rates of these events are expo-

139

CHAPTER 5. MESH BASED STREAMING SERVICES

nentially distributed with parameters λ, µ and λup respectively. For each

event it is possible to find the transition probabilities from a state S to a

state S′ that describes the new connectivity matrix. We will see that each

event corresponds to a set of operations. As a consequence, the correspond-

ing transition is not simple and more than one element in the connectivity

matrix may change.

Join and Update

The join procedure is composed by two steps: node arrival and connection

to stripes, with the latest being equivalent to an update procedure.

In the arrival procedure the arriving node b builds the neighbor set. The

number of initial neighbors is equal to B. Since neighbors are randomly

chosen, the new state will have a new row and a new column filled with η

for each neighbor relationship. The possible transitions are given by the

combination of B elements out of N total nodes with equal probability.

In the update step, a node receives from each neighbor i a vector Vi,b

containing the (active) stripes the neighbor can provide. The vector has

R elements and element k contains the value of αk if the neighbor has

the stripe, otherwise it contains zero. Within each of the vectors received,

the node selects randomly one of the available stripes, independently for

each parent. Given the vectors, it is possible to build all the possible

combinations of stripes downloadable from the whole neighbors’ set. Since

the selection is random and done independently neighbor by neighbor,

each combination has equal probability. In the Appendix B we give the

procedure that finds all the possible combinations. In the following we

present a small example with R = R′ = 3, αk = α1, α2, α3 and a network

with 5 nodes. Assume that node 5 has just arrived and built its neighbor

set: the overlay and the diffusion trees are the ones depicted in Fig. 5.3.

The connectivity matrix built upon node 5 joining the stream is repre-

140

5.3. SYSTEM MODEL

25

1

4 3

2

43

1

1

32

3

41

2

α
1

α
2

α
3

b) stripe b) stripe b) stripea) neighbor relationships

Figure 5.3: Neighbor relationships and diffusion trees of the example when node 5 joins

the stream.

sented below, where column 5 identifies that node 5 is still not receiving

any stripe.

S =

0 α1 α1 η η

η 0 α2 α2 0

α3 η 0 α3 η

α2 α3 η 0 η

η 0 η η 0

From the definitions in (5.1), row b represents the children of node b, while

column b represents the parents of node b. Node 5 now receives from

its neighbors the following vectors: V1,5 = [0, α2, α3] from node 1, V3,5 =

[α1, α2, 0] from node 3, and V4,5 = [0, α2, α3] from node 4. Table 5.1 reports

in the first row the three vectors Vi,5 received by node 5 from its neighbors 1,

3, and 4. The following rows in Table 5.1 are the four possible combinations

(see Appendix B for details) of downloadable stripes.

The selection strategy depends on the protocol. Here for the sake of

simplicity we assume that the node b selects randomly the stripe within

the vector Vi,b immediately upon receiving it, so the combinations are all

equal likely.

Supposing that node 5 selects the last row of Table 5.1, [0, α2, α3] (i.e.,

node 5 will download the stripe α2 from node 3 and the stripe α3 from

141

CHAPTER 5. MESH BASED STREAMING SERVICES

Table 5.1: Stripes node 5 can select

[0, α2, α3] [α1, α2, 0] [0, α2, α3]

from node 1 from node 3 from node 4

α2 α1 α3

α3 α1 α2

α3 α2 0

0 α2 α3

node 4) then the following state will be S′:

S′ =

0 α1 α1 η η

η 0 α2 α2 0

α3 η 0 α3 α2

α2 α3 η 0 α3

η 0 η η 0

The transition probability is P (S, S′) = 1
4. Defining the other 3 possible

states is trivial. The last row of S′, without αk or σk identifies 5 as a leaf

node, a state (of the node) that can be left only as a consequence of update

procedures of other nodes.

Leave

The leave procedure involves multiple interactions of several nodes. When

node b leaves the stream it disappears from all neighbors: the connectivity

matrix S′ will have all zeros in row and column b.

Each node i that was receiving an active stripe k from the node that

has left tries to switch to a standby parent j (that has stripe h): the

corresponding value of the connectivity matrix will change from σh to αh.

This is done if the standby node j can upload more stripes. Otherwise the

corresponding value is switched from σh to zero. The identifiers αk or σk

142

5.3. SYSTEM MODEL

of the disappeared stripe will be set to zero wherever it appears in row i.

The grandchildren of the node that has left will then try to switch standby

parents too. At the end of this composition of steps, the connectivity

matrix reaches a stable state that is the final transition. Note that each

step is independent, so the final transition probability is easily computed.

5.3.2 Applicability of the Model

The system described in Sect. 5.2 is not meant as a proposal for a new

P2P streaming protocol, but it is an abstract representation of the key

features of many protocols like [11][12]. In fact all these system share a

common idea of “striping” the distribution and building a structured mesh

composed of the distribution trees of the single stripes. Moreover, the

choice of the neighborhood and of the parents is, up to a certain degree,

random, so that considering a purely random choice captures the common

behavior and represents (most probably) a lower bound of performances.

The description of the overlay graph through the connectivity matrix is

able to capture the essential features of overlay streaming protocols. The

details of a protocol may influence different aspects of the model: (i) a

protocol may impose different constraints on the structure (e.g., maximum

number of neighbors, i.e. maximum number of non null elements per row);

(ii) it may influence, given a state, the possible states that can be reached;

(iii) it may change the transition rates. Nevertheless, the basic structure

of the proposed model, the connectivity matrix and its evolution accord-

ing to the protocol policies, remains unchanged. By properly translating

the protocol policies and constraints into the connectivity matrix proper-

ties and transition rates, the methodology is able to provide insights into

the fundamental performances that can be obtained by different overlay

protocols.

143

CHAPTER 5. MESH BASED STREAMING SERVICES

5.3.3 Master Equations

The evolution of the graph that describes the overlay streaming systems is

a Markov process with state space and transitions defined above. The tem-

poral behavior can be described using the differential form of the Chapman-

Kolmogorov equations, known as Master Equations (MEs) [37].

Let P (Si, t) be the probability to be in state Si at time t. The variation

of the probability P (Si, t) in time can be expressed as

∂

∂t
P (Si, t) =

∑

Sj

wSj ,Si
(t)P (Sj, t) (5.2)

where wSj ,Si
(t) represents the transition rates from the state Sj to the

state Si at time t. The general formulation of the Master Equations must

be specialized for our problem: the transition rates are closely related to the

streaming protocol policies and can be found as described in the previous

section.

5.3.4 Distribution Graph Properties

The information given by the MEs are relative to the whole overlay and

distribution graph. In order to analyze the system independently from the

size of the network, it is useful to reorganize the information contained in

state S. We consider the distribution of two main performance indexes

that summarize the structural characteristics of a distribution graph: the

degree distribution and the delay distribution [37].

The degree distribution Pb(d, t) is the probability that node b has d

connections at the distribution layer at time t. We can identify both inde-

gree and outdegree distributions (Pb(di, t) and Pb(do, t) respectively, with

di + do = d), that represent the number of children and the number of

parents of node b. The outdegree (indegree) distribution of a node b is

144

5.3. SYSTEM MODEL

derived from the correspondent row (column) b of the connectivity matrix

S. We can also determine the total degree distribution defined as

P (d, t) =
1

N(t)

N(t)∑

b=1

Pb(d, t) (5.3)

where N(t) is the number of nodes attached to the stream at time t.

The delay distribution represents the distance of the node from the

source of the stream considering all the active stripes the node is receiving.

We define Pb(ℓ, t) as the probability that node b is ℓ hops away from the

source at time t, where ℓ is the maximum among all the stripes. Similarly

to the degree distribution, we can derive the total delay distribution

P (ℓ, t) =
1

N(t)

N(t)∑

b=1

Pb(ℓ, t) . (5.4)

The probability Pb(ℓ, t) can be obtained from S in the following way: given

a node b and a stripe k, we can recursively find the parent that is providing

the stripe (through σk or αk), counting the number of recursions, until we

reach the root. In Appendix B we give the procedure that can be used to

obtain the number of steps from S.

5.3.5 Rate Equations

The MEs fully determine the evolution in time of the stochastic system.

Considering the degree and delay distributions, it is also useful to have the

equations for the average value. The correspondent equations are called

Rate Equations (REs):

∂

∂t
d =

∂

∂t

∑

d

dP (d, t) (5.5)

The REs express deterministically the behavior of the system, since they

are a set of differential equations describing the evolution of the mean

145

CHAPTER 5. MESH BASED STREAMING SERVICES

properties. Figure 5.4 shows the relationship between the results of the

MEs and the result of the REs for a given observed random variable. REs

are a fluid approximation of the system. As the time goes to infinity,

MEs converge to the steady state distribution if it exists, otherwise yield

the transient over any given interval. REs converge to the mean value if

steady state exists, otherwise they are meaningless.

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

time

random variable
values

probability

result of

results of
the MEs

the RE

Figure 5.4: Results of the Master Equations and the Rate Equations

The methodology we propose provides the solution for the MEs, and

hence the complete system characterization.

5.4 Monte Carlo Integration of the Master Equations

The set of MEs derived in the previous section are solved with the same

technique based on Monte Carlo integration presented in Sect. 4.4.

The key strength of the methodology is not only its efficient numeri-

cal solution: indeed, this method provides great flexibility in the system

description and specification. On the one hand, this is like a generic simu-

lation approach, but, being based on formal definitions, avoids the risk of

incomplete or bugged specifications; on the other hand, assumptions made

in fluid models can be avoided, since we can describe the system behavior

in full detail.

146

5.4. MONTE CARLO INTEGRATION OF THE MASTER EQUATIONS

5.4.1 Comparison with Fluid Models

We consider a very simple case in order to show the differences between

ME and RE based approaches. Consider the case where a node updates

its indegree only during update events. We assume infinite upload and

download bandwidths and no constraints on the maximum outdegree. If

di(t) is the indegree at time t, at every update event the node will add

R− di(t) parents. In fact, under these assumptions the probability to find

all the necessary parents to obtain all the stripes is 1, since there is always

a node that is able to provide a connection. The differential equation that

describes the evolution can be written as

d

dt
di(t) = λup(R − di(t)) − di(t)µ (5.6)

The second term considers the fact that the di(t) parents can leave with

rate µ each. Actually, not only parents can leave, but any ancestor of

the node may disappear, thus the rate µ should consider also this aspect.

Since we are looking for a simple closed form solution to this example, we

assume that each node is able to build any stripe k starting from the set

of stripes it is receiving. This assumption is unrealistic, but it simplifies

the example since the failure of a node has impact only on children, not

on the whole subtree. Eq.(5.6) describes the evolution of the indegree for

this system. We have also modified our numerical solution including the

same hypothesis in order to compare the results.

Considering the initial condition di(0) = 1 (we suppose that all nodes

are present at the beginning with exactly one parent each) the solution of

(5.6) is

di(t) =
λupR

λup + µ

(
1 − e−(λup+µ)t

)
+ e−(λup+µ)t (5.7)

In Fig. 5.5 we compare the analytical solution of this very simple case

with the solution of the Rate Equations (5.5) derived from our model. We

147

CHAPTER 5. MESH BASED STREAMING SERVICES

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1

m
ea

n

of
 p

ar
en

ts

time

λup = 5/Tstr
λup = 3/Tstr
λup = 2/Tstr

Figure 5.5: Solution of the differential equation and the Rate Equation.

set R = 10 stripes, µ = 1/Tstr and λup = 5
Tstr

, 3
Tstr

and 2
Tstr

. We normalize

the time with respect to Tstr. The numerical solution follows closely the

analytical one. But the results obtained from our model give more insight.

In fact, we can observe how the full indegree distribution changes over

time.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10

pr
ob

ab
ili

ty

indegree

(a) λup = 5
Tstr

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10

pr
ob

ab
ili

ty

indegree

(b) λup = 3
Tstr

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10

pr
ob

ab
ili

ty

indegree

(c) λup = 2
Tstr

Figure 5.6: Indegree distribution at time Tstr/2 obtained from the solution of the MEs.

Fig 5.6 shows for instance the distribution of the number of parents

(indegree) at time Tstr/2 for different values of λup.

Notice that there is a non-null probability that a node remains without

parent, thus being disconnected entirely from the distribution process, a

148

5.5. APPLICATION OF THE METHODOLOGY

phenomenon that a fluid approach analyzing the means entirely disregards,

while in most cases it is one of the most important performance.

5.5 Application of the Methodology

5.5.1 System Description

We use a configuration with N = 104 nodes, but we have also checked

some configurations with 105 nodes obtaining similar results. We use the

input bandwidth distributions reported in Tables 5.2 and 5.3; bandwidths

are expressed as a multiple of the streaming rate rstr. The streaming rate

is divided into R′ stripes and the source generates R stripes. Results are

obtained for R = 12 and R′ = 3, 6, 9.

Table 5.2: Upload bandwidth distribution A (normalized w.r.t. rstr)

Bandwidth % nodes

1 20%

2 40%

5 40%

Table 5.3: Upload bandwidth distribution B (normalized w.r.t. rstr)

Bandwidth % nodes

1 40%

2 60%

We consider an observation time equal to Tstr (stream length). We con-

sider two arrival patterns, with an initial number of nodes equal to N
10

and
N
2 respectively; the remaining nodes arrive within Tstr/5. The mean sojourn

time is set to 0.5Tstr, Tstr, and 2Tstr.

149

CHAPTER 5. MESH BASED STREAMING SERVICES

Each node can have up to 60 neighbors in the overlay graph (the actual

number of neighbors depends on dynamics of the nodes); among these

relationships, while uploading a node can have a maximum outdegree that

is limited only by its bandwidth1.

The stream is chunk based (e.g., few video frames or a slice of a few tens

of milliseconds of sound) and we normalize the dimension of the chunk, U ,

such that U
rstr

= 1 unit. A node can upload the content after a delay equal

to the download time of a single chunk. So the delay can be considered as

the “distance” (relative delay) of the node from the source of the stream.

The length of the stream, Tstr, is set to 10000 U
rstr

= 10000 units.

Besides degree and delay properties, we consider also the quality of the

mesh: when a node remains orphan of an active parent, it switches to

one of its standby parents: if they have enough bandwidth to help the

node, the node has no service disruption; if no standby parent is able to

help the node, it must search for a new parent, with a possible service

disruption. We measure the quality of the mesh as the percentage of nodes

that successfully switch to standby parents.

5.5.2 Analysis of the Indegree

Analyzing the indegree we examine whether the subdivision in stripes helps

the distribution process or not. On one hand, more stripes means that each

stripe has a lower rate, so the loss of a single stripe has less impact. On

the other hand, each node must maintain more active connections and the

probability that any one of these connections fails increases.

Figure 5.7(a) shows the indegree distribution of the nodes at time t =

Tstr, computed with Eq. (5.3) using distribution A. In this case we have an

initial number of nodes equal to N/10 and mean sojourn time Tstr. The

1The bandwidth is not necessarily the physical bandwidth, but can be the amount of resources willingly

shared with the stream.

150

5.5. APPLICATION OF THE METHODOLOGY

distribution tends to peak around R independently from R′. This means

that all the nodes in the network are able to receive the full quality, since

the degree is always greater or equal to R′. Note that with R′ = 9 there is a

fraction of the nodes with exactly 9 parents: this means that, in case of one

parent that has left, the quality received by the node may be temporarily

affected. For smaller values of R′ all nodes always receive at least one

redundant stripe, which makes them less vulnerable to disruptions.

 0

 0.2

 0.4

 0 2 4 6 8 10 12

Indegree

R’ = 3
 0

 0.2

 0.4

Pr
ob

ab
ili

ty

R’ = 6
 0

 0.2

 0.4

R’ = 9

(a) Prob. Distr. at Tstr

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.1 0.2 0.3 0.4

m
ea

n

of
 p

ar
en

ts

time (Tstr)

R’ = 3
R’ = 6
R’ = 9

(b) Evolution in time

Figure 5.7: Solution of the MEs for the indegree (initial number of nodes: N/10; sojourn

time: Tstr, bandwidth distribution A).

The temporal behavior of the indegree can be analyzed looking at the

results of the rate equations (Fig. 5.7(b)) computed with Eq. (5.5). A stable

value is reached quickly with the only exception of R′ = 3: this means that

the structure, even in presence of high churn is able to maintain a high

quality of the stream.

Figure 5.8 shows the indegree distribution of the nodes at time t = Tstr

using distribution B. Besides the case with R′ = 3, the distribution is

151

CHAPTER 5. MESH BASED STREAMING SERVICES

 0

 0.2

 0.4

 0 2 4 6 8 10 12

Indegree

R’ = 3
 0

 0.2

 0.4

Pr
ob

ab
ili

ty

R’ = 6
 0

 0.2

 0.4

R’ = 9

Figure 5.8: Probability Distribution of the indegree at Tstr for different R′ (initial number

of nodes: N/10; sojourn time: Tstr, bandwidth distribution B).

very similar to the case with input bandwidth distribution A; this means

that the architecture is very robust with respect to the input bandwidth

distribution.

5.5.3 Analysis of the Delay

The delay, expressed as time units, represents the number of hops from the

source. We plot the probability density function of the delay. We consider

R′ = 6 and we set different sojourn times (µ). Fig. 5.9(a) shows the case of

initial number of nodes equal to N/2 and bandwidth distribution A. The

distribution is not affected by the different values of µ. Similar results are

obtained with the other configurations.

In Fig. 5.9(b) we show in details the tails of the distributions (the figure

shows R′ = 3, but similar results are obtained for different configurations):

to this aim we plot the Complementary Cumulative Distribution Function

152

5.5. APPLICATION OF THE METHODOLOGY

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30

pr
ob

ab
ili

ty

delay

µ = 0.5Tstr
µ = Tstr

µ = 2Tstr

(a) R′ = 6, distribution

10-3

10-2

10-1

100

 0 5 10 15 20 25 30

C
C

D
F

delay

µ = 0.5Tstr
µ = Tstr

µ = 2Tstr

(b) R′ = 3, CCDF

Figure 5.9: Distribution of the delay with different sojourn times (initial number of nodes:

N/2, bandwidth distribution A).

(CCDF). The behavior of the tails does not depend on the sojourn time.

In Fig. 5.10 we show the impact of R′ on the delay. Increasing the

number of stripes has a price: since each node needs all the R′ stripes to

correctly play the stream, the absolute delay is given by maximum delay

among the stripes. By increasing the number of stripes, the probability

to have higher delays increases, since we have to compute the maximum

among an increased number of stripes.

The same analysis is made for input bandwidth distribution B. In Fig. 5.11

we show in details the CCDF for different values of R′. It is possible to

note that results are similar to those obtained with input bandwidth dis-

tribution A.

5.5.4 Analysis of the Quality

Aggregate results for the indegree and the delay are not able to capture

all the aspects related to the quality of the received stream by a generic

node i. In Table 5.4 we summarize other results that can be obtained from

153

CHAPTER 5. MESH BASED STREAMING SERVICES

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30

pr
ob

ab
ili

ty

delay

R’ = 3
R’ = 6
R’ = 9

Figure 5.10: Distribution of the delay for different R′ (initial number of nodes: N/2,

bandwidth distribution A).

10-3

10-2

10-1

100

 0 5 10 15 20 25 30

C
C

D
F

delay

µ = 0.5Tstr
µ = Tstr

µ = 2Tstr

(a) R′ = 6

10-3

10-2

10-1

100

 0 5 10 15 20 25 30

C
C

D
F

delay

µ = 0.5Tstr
µ = Tstr

µ = 2Tstr

(b) R′ = 9

Figure 5.11: CCDF of the delay with different sojourn times (initial number of nodes:

N/2, bandwidth distribution B).

154

5.5. APPLICATION OF THE METHODOLOGY

the solution of the MEs. The value of the churn is computed according

to the arrival pattern: arrivals and departures are Poisson processes with

rate λ(t) and µ(t) respectively, so we can calculate the cumulative number

nodes that have left at time Tstr and consequently the value of churn.

Table 5.4: Other statistics.

distr. A distr. B

R′ 1/µ % Churn %Switch % Churn %Switch

6 0.5Tstr 186.8% 99.6% 186.3% 97.8%

6 Tstr 93.5% 99.7% 93.5% 97.9%

6 2Tstr 46.8% 99.8% 46.8% 97.5%

9 0.5Tstr 187.3% 94.7% 186.4% 87.2%

9 Tstr 93.2% 97.9% 93.4% 90.1%

9 2Tstr 46.7% 99.1% 46.8% 91.1%

One of the performance index monitored is the probability to switch to a

standby parent if an active parent leaves. This is given by p(ki, t) with ki <

R′. Integrating over time t we are able to compute the switch probability

(see columns 4 and 6 of Table 5.4). With a small R′, the percentage of

switches is very close to 1, i.e., the received stream is stable. On the other

hand, with R′ near to R, with high churn, if the number of parents of a

node n drops below R′, the probability to switch to a standby parent is

94% for bandwidth distribution A, and 87% for bandwidth distribution B.

This means that the quality temporarily decreases, as expected looking at

degree distribution (Fig. 5.7(a) for bandwidth distribution A). Note that,

with R′ = 9, even with stable nodes, the configuration with bandwidth

distribution B has a probability to switch significantly below 1.

155

CHAPTER 5. MESH BASED STREAMING SERVICES

5.6 Comparison with Simulations

In order to validate our analytic model and our assumptions — mainly

exponential distributed times — we implement a simple overlay streaming

protocol on top of the PeerSim P2P network simulator [42]. PeerSim is a

Java based simulator that consists of many configurable components: it has

two types of engines, cycle-based and event-driven, and different modules

that manage the overlay building process and the transport characteristics.

For a more detailed description of PeerSim simulator the interested reader

is referred to [42].

5.6.1 Protocol Description and Simulation Set Up

We implemented the overlay streaming protocol using the event-driven

engine. The protocol does not contain all the features of a real system, but

it captures the essential behavior of the management of the distribution

structure.

In the following we give a high level view of the protocol messages,

leaving out details about the management of all the situations. The basic

control messages exchanged by nodes are:

• Join: when a node joins the network, it obtains a list of neighbors from

a rendevouz server and it sends messages to a subset of the received

list of neighbors asking for stripes; with this message, a node asks to

its neighbors to attach to a stripe.

• Leave: when a node decides to leave, it informs its neighbors; the mes-

sages are sent out after a random interval (different for each neighbor).

This behavior is equivalent to have neighbors that periodically send

to the node ping messages in order to check if it is still online.

156

5.6. COMPARISON WITH SIMULATIONS

• Switch: when a node remains orphan of an active parent, it sends a

message to its standby parents asking to switch the status.

After receiving message, a node processes it determining, for instance,

the availability of the bandwidth or the delay from the source, and replies

with a message containing the requested parameters. Besides these proce-

dures, a node periodically schedules an Update where it sends Join mes-

sages in order to increase its connectivity.

When a node joins the network, it selects a lifetime uniformly distributed

between zero and twice the sojourn time used in the model, i.e. with a mean

equal to the sojourn time used in the model. This distribution is used to

check the impact of the hypothesis of exponentially distributed sojourn

times we made in the model. At the transport layer, each message experi-

ences an end-to-end delay that is uniformly distributed between a minimal

and maximal value. The other constraints concerning the minimum and

maximum number of children, number of stripes, or initial number of nodes

are the same as in the model.

5.6.2 Simulation Results

We consider the impact of the number of stripes on the connectivity, i.e.,

how many stripes a node is able to receive when stripes have different sizes.

Figure 5.12(a) shows the probability density function of the indegree at the

end of the stream, compared with the results obtained with the model. We

observe that results are very close, i.e., the impact of the assumption we

made in the model is low.

Looking at the evolution in time of the outdegree, in Fig. 5.12(b) we

compare the mean number of parents obtained from the model and the

number of parents of a realization obtained from a simulation. As we can

see, the model is able to closely predict the behavior of the system.

157

CHAPTER 5. MESH BASED STREAMING SERVICES

 0

 0.2

 0.4

Indegree

R’ = 3
 0

 0.2

 0.4

Pr
ob

ab
ili

ty

R’ = 6
 0

 0.2

 0.4

R’ = 9

(a) Prob. Distr. at Tstr

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

m
ea

n

of
 p

ar
en

ts

time (Tstr)

R’ = 6, model
R’ = 6, simul.

(b) Evolution in time (R′ = 6)

Figure 5.12: Results obtained by simulation for the indegree (initial number of nodes:

N/10).

We then consider the distribution of the delays, i.e., the distance of the

nodes from the source. Figure 5.13 shows the distribution of the delay for

different values of R′: continuous lines are the results predicted by the

model, while dashed lines with points are the results of simulations. It is

possible to see that the behavior of the system remains the same.

For all the experiments, we check also configurations where we add a

delay in the message transfer uniformly distributed between 0 and 1 (1 unit

is the time necessary to transfer a single chunk). This delay (results not

shown here) does not have an impact on the final performance. Moreover,

we consider different scenarios where a node reacts in different ways in case

of an active parent leaves and the node has no standby parents. In this

case, the node, instead of waiting for the next Update event, can look for

new parents. Results shows that the distribution of the number of parents

peaks around the maximum number of parents, and the overall quality

158

5.7. DISCUSSION AND CONCLUSIONS

 0

 0.2

 0.4

 0 10 20

pr
ob

ab
ili

ty

Delay

µ = 0.5Tstr

 0 10 20

µ = Tstr

 0 10 20

µ = 2Tstr

Figure 5.13: Distribution of the delay obtained by simulation with PeerSim (initial number

of nodes: N/2; R′ = 6).

increases. Nevertheless, the number of additional messages represents an

overhead for the network. From the comparison between simulation and

analytic results we can conclude that our analytic model is able to capture

the essential performance characteristics of the overlay streaming systems.

5.7 Discussion and Conclusions

In this chapter we introduced a novel methodology for the high-level rep-

resentation of overlay streaming systems. The proposed methodology does

not represent only a model for a specific protocol. Actually, the general def-

inition of the structure is flexible and can be adapted to a generic overlay

streaming protocol that builds structured mesh.

Based on the use of Master Equations, the solution of the model yields

the entire probability distribution and not only the mean, of the metrics

of interest (node degree or delay) as well as the temporal (transient) dy-

namics.

We have modeled some systems proposed recently obtaining novel in-

sights in the dynamics of self-organizing systems for streaming distribution.

In the following we summarize the main findings that can help in designing

159

CHAPTER 5. MESH BASED STREAMING SERVICES

better P2P streaming systems.

• Redundant stripes play a fundamental role in obtaining good perfor-

mances. Recent proposals [11][13] consider only a small fraction of

redundant information so, in case of node departures, the streaming

is vulnerable to disruptions.

• The delay is influenced by stripe ‘size’: the greater R′ (smaller stripes)

the higher the delay. The number of necessary stripes R′ should be

kept low to keep a low delay. The delay remains low independently

from the dynamics of the network.

• Under medium to high churn, nodes may experience a poor qual-

ity. Only stable nodes can prevent this behavior. This performance

measure cannot be computed with any methodology that only yields

averages.

The model can be extended in different ways in order to study differ-

ent scenarios. For instance, we can consider bandwidth fluctuations, that

model the unstable behavior of nodes. When the bandwidth decreases, a

node simply drops some of the stripes. When the bandwidth increases, the

node can accept new children when other nodes perform the update pro-

cedure. Another interesting extension is considering different policies for

selecting the stripes from neighbors: instead of choosing randomly neigh-

bor by neighbor, a node may collect all the stripes a set of nodes can give,

selecting the combination of nodes that maximize the number of received

stripes.

160

Chapter 6

Conclusions and Perspectives

The self-scaling and self-organizing properties of peer-to-peer networks al-

low the quick and efficient distribution of content to large client popula-

tions. Cooperative distribution techniques capitalize on the bandwidth of

every peer to offer a service capacity that grows linearly with the number

of peers, provided the blocks among the peers are exchanged in such a way

that the peers are busy most of the time.

In this thesis we have analyzed the case of file distribution and streaming

services. In the following we briefly summarize the contribution of the

thesis.

• In case of ideal conditions — with stable peers that know the address

and the bandwidth of the other peers — our results indicate that for

the linear architecture when the fast peers help the slow peers, the slow

peers can achieve close to optimal download times, while the down-

load time of the fast peers will not suffer. It is worth noticing how

different organization schemes are affected by heterogeneity. Linear

architecture, that in the homogeneous case is shown to have poor per-

formances, in the heterogeneous case with helping fast peers obtains

performance near to optimality. In the more sophisticated Tree and

PTree organization schemes, finding appropriate ways for fast peers to

161

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

help slow ones is more difficult. In the PTree architecture in particu-

lar, almost any devised helping scheme leads to poorer performances,

at least for fast peers.

• In case of distribution architectures with constraints, when the neigh-

bor bandwidth is not known, we introduced an analytical model that

provides a closed form solution assuming no correlation among succes-

sive distribution steps. The model proved to be very accurate due to

a weak correlation structure of the distribution process. The results

obtained have been validated against simulations. Both the analytical

model and the simulations yield the pdf of the distribution process, as

a function of time and as a function of the number of nodes reached.

The impact of dynamically modifying the degree of the distribution

tree has been quantified as a function of the upper and lower bounds

of the degree and a thorough analysis has been carried out.

• The most important contribution of the thesis is the definition of a new

analytical technique called Constrained Stochastic Graph Processes,

which can be applied to general distribution architectures, different

protocols, and heterogeneous scenarios to analyze properties and per-

formances. This formalism specifies the evolution of the content dis-

tribution process as a semi-Markov process. To the best of our knowl-

edge, stochastic graph processes were only used to study connectivity

properties and have not been applied to the performance analysis of

content distribution networks. We have developed a new methodology

for the performance evaluation of these Constrained Stochastic Graph

Processes. Our numerical solver GROOVER emulates a random walk

on the DTMC embedded in the semi-Markov process. GROOVER al-

lows for a very efficient computation of the performance metrics even

for very large number of nodes, which is clearly not feasible using

162

standard discrete event simulation.

• We successfully applied the Stochastic Graph process formalisms to

streaming systems: based on the use of Master Equations, the so-

lution of the model yields the entire probability distribution of the

performance metrics (not only the mean values), as well as the tem-

poral (transient) dynamics. We have modeled some systems proposed

recently obtaining novel insights in the dynamics of self-organizing

systems for streaming video.

163

Appendix A

Stochastic Graph Processes and

Chemical Kinetic Systems

A.1 Similarities with Chemical and Physical Systems

and Convergence Properties

Monte Carlo integration method has been widely used in physical and

chemical sciences. Looking at the problems studied by these communities

we can find many similarities with the file distribution problem, opening

new possibilities for the study of complex distributed systems.

Consider for instance these two different systems: a chemical kinetic sys-

tem that contains millions of molecules, and a physical system described by

the positions and the spin of a material composed by millions of particles.

In the chemical system, assume that the system is stable and we in-

troduce a new type of molecule that is able to react with the molecules

present in the system. The perturbation of the system starts to involve

more and more molecules and we reach a new stable situation when all the

reactions have occurred. Besides the macroscopic description of the new

stable state, physical chemistry is interested in the characterization of the

evolution of the system over time. The speed of the evolution depends, for

instance, on physical properties of the molecules and on the single reaction

165

APPENDIX A. STOCHASTIC GRAPH PROCESSES AND CHEMICAL KINETIC
SYSTEMS

speed.

In the physical system, assume that all particles have random spin and

we introduce a small magnetic field in a particular point of the system

space. Under this magnetic field, the spin of the adjacent particles will

start changing the polarization. This in turn will modify the magnetic

field around them and the result is a perturbation that will eventually

reach all the particles. Again, besides the final configuration of the system,

in physics it is also interesting to study the evolution of the polarization.

The speed of the magnetic perturbation depends, for instance, on phys-

ical characteristics of the particles that determine how they interact one

another.

Both examples show how a system with million of elements, molecules

or particles, switches from one stable state to another state and this change

can be observed at microscopic level.

The distribution of a file among users can be modeled as the propagation

of the file over the network. All the nodes will eventually receive the file,

but the interesting problem is the characterization of the time evolution of

the process. We compare the node that has not yet received the file to the

molecule that is not yet involved in the reaction or to the particle that is

not yet reached by the magnetic field.

The methodologies used to analyze chemical and physical systems can

also be applied for the file distribution process. The informal explanation

on how these systems can be compared is made formal in the following

paragraphs. The basic idea is to write formally the state space that de-

scribes the stochastic process. The fact that we are able to obtain a formal

description of the system equivalent to the formal description of a physical

or chemical system makes the systems equivalent and so solvable with the

same methodologies.

166

A.1. SIMILARITIES WITH CHEMICAL AND PHYSICAL SYSTEMS AND
CONVERGENCE PROPERTIES

Formal Description of the System

In order to simplify the description, we made some hypotheses on the

model. We suppose that the network is fully connected, i.e., every node

can reach all the other nodes. We have shown that, if the number of

neighbors is above 10, the performance are equivalent, so this assumption

does not have a great impact.

We discretize the time into equal intervals of width ∆t, which are labeled

with index k (tk is the k-th interval).

We define N(tk, bi, rj) as the number of nodes that in interval tk has

bandwidth bi (we consider here the symmetric case), complete the down-

load of the first chunk with rate rj and has not yet tried to upload to

any other nodes (ready to start uploading). We define N ′(tk, bi, rj) as the

number of nodes with the same characteristics as for N(tk, bi, rj), but they

have already started to upload the content (uploading nodes). As we did

for the time, we discretize the rate, from 0 to bi and we refer to rj as the

j-th rate.

We identify the interval tk with a vector ~rtk that collects all the values

N(tk, bi, rj) and N ′(tk, bi, rj) (ordered according to a simple scheme, from

the lowest bi and rj to the biggest ones).

The complete state space S that describes entirely the system is the set

of vectors that identify intervals, i.e.,

S = {~rt0, ~rt1, ...~rtkMAX
}

It is easy to show that this state is a description of the weighted graph of

tree based architectures (with nodes that do not leave), where the weights

are the eligibility times, here discretized with the intervals tk. Even if

connections among nodes are not taken into account in the description

of the state, there is no loss of information since the connections among

internal nodes do not influence the possible transition among states: in

167

APPENDIX A. STOCHASTIC GRAPH PROCESSES AND CHEMICAL KINETIC
SYSTEMS

fact, the evolution of the chain depends on the leaf nodes that, when they

become eligible, involve other nodes. The already established connections

do not influence this evolution.

Let P (Si) be the probability to be in state Si. We consider the transi-

tion probability matrix Q whose elements Q(Si, Sj) represent the transi-

tion probability from state Si to state Sj.

The Chapman-Kolmogorov equations, which are called Master Equa-

tions in chemical and physical sciences, of the system are:

P (Si, t+1) = P (Si, t)

1 −

M∑

k=1
k 6=i

Q(Si, Sk)

+

M∑

j=1
j 6=i

P (Sj , t)Q(Sj, Si) (A.1)

In each state, the one-step transition probabilities are determined by the

building rules (in- out- degree constraints, etc.). The transition probability

matrix Q is the collection of all the state transition probabilities.

For a given state Si, for each of the vectors ~rtk with the smallest tk,

we can find all possible transitions, with the corresponding probabilities.

In order to show how these probabilities can be found, we introduce the

following operator W derived from [30]

W l
N(tk,bi,rj)

S = W l
N(tk,bi,rj)

(. . . , N(tk, bi, rj), . . .) = (. . . , N(tk, bi, rj) + l, . . .)

which means that the number of nodes with bandwidth bi that at time tk

are downloading at rate ri increases by l (l can be positive or negative).

As an example, consider a two-class network with minimum and maximum

outdegree equal to kmin = 1 and kmax = 2. Denote r1 = bF (fast) , r2 =

bF − bS (medium), and r3 = bS (slow) . Assume that F
Cri

= δi, where F

is the file size, C is the number of chunks, and δi is the time necessary for

downloading the chunk at rate ri, i.e., the one step eligibility time at rate

ri. Consider this transition

W+1
N(tk+δ1,bF ,r1)

W+1
N ′(tk,bF ,r1)

W−1
N(tk,bF ,r1)

S

168

A.1. SIMILARITIES WITH CHEMICAL AND PHYSICAL SYSTEMS AND
CONVERGENCE PROPERTIES

This means that a fast node successfully uploads to another fast node:

there is a decrease in the number of N and an increase in the number of

N ′ and a new fast node that will become ready to start uploading at time

tk + δ1.

For completeness, we write here all the remaining transitions, omitting

the transition to non-active nodes for notation simplicity.

W+1
N(tk+δ3,bS,r3)

W+1
N(tk+δ2,bF ,r2)

W−1
N(tk,bF ,r1)

S

W+2
N(tk+δ3,bS ,r3)

W−1
N(tk,bF ,r1)

S

W+1
N(tk+δ2,bF ,r2)

W−1
N(tk,bF ,r2)

S

W+1
N(tk+δ3,bS,r3)

W+1
N(tk+δ2,bF ,r2)

W−1
N(tk,bF ,r2)

S

W+2
N(tk+δ3,bS ,r3)

W−1
N(tk,bF ,r2)

S

W+2
N(tk+δ3,bF ,r3)

W−1
N(tk,bF ,r3)

S

W+1
N(tk+δ3,bS,r3)

W+1
N(tk+δ3,bF ,r3)

W−1
N(tk,bF ,r3)

S

W+2
N(tk+δ3,bS ,r3)

W−1
N(tk,bF ,r3)

S

W+1
N(tk+δ3,bF ,r3)

W−1
N(tk,bS ,r3)

S

W+1
N(tk+δ3,bS ,r3)

W−1
N(tk,bS ,r3)

S

The probability associated to these transitions can be simply derived from

the input pdf of the bandwidths. If more than one node is active in the

same interval tk we have a complex simultaneous transition toward all pos-

sible states generated by the nodes. Nevertheless, since each transition is

independent from the others, we can compose them using simple transition

considering a single node at a time.

The above formulation of the system completely describes the stochas-

tic process. The interested reader can verify that, by assigning different

variable meanings, the problem formulation becomes one that has been

studied in natural sciences. We use a similar notation and approach to

system description as presented in [30] (with some little extensions) so it

is simple to compare the two systems.

169

APPENDIX A. STOCHASTIC GRAPH PROCESSES AND CHEMICAL KINETIC
SYSTEMS

170

Appendix B

Overlay Streaming Systems:

Procedures

This appendix contains the formal definition of the procedures used to find

the transitions between a state S and a new state S′ in case of Join or

Update event, as well as the procedure to find the delay of a node b given

a connectivity matrix S.

B.1 Join and Update

A node receives the vectors containing the stripes of its neighbors. The

output of the decision process is a vector of R elements (R is the number

of stripes), where element k contains the neighbor from which the node

download stripe k (the first R′ will be active, the remaining standby).

In order to find all the possible combinations of neighbors that can

provide the stripes, we use as a basic building block the procedure that is

able to find all the permutations of R objects taken from a set of B objects,

where B is the number of neighbors. The number of available permutations

is (B)R = B!/(B − R)!, so the output is a matrix E with (B)R rows and R

columns. Each element eij contains the neighbor that will provide stripe

j in the combination i. If, looking at the vector provided by neighbor eij,

171

APPENDIX B. OVERLAY STREAMING SYSTEMS: PROCEDURES

we found a zero at position j, then the element eij is set to NULL. After

this operation we obtain a new matrix M ′.

The matrix M ′ is then reduced eliminating all the rows that are equiv-

alent or contained in other rows. Row a is equivalent to row b if they

have exactly the same non-null elements in the same positions. Row a is

contained in row b if row b has the same non null elements of row a (in the

same positions) and one or more other non null elements that row a does

not have.

The final matrix M ′′ contains all the possible combinations neighbor-

stripe that the node can select. Note that, with the Monte Carlo integration

methodology we use, it is not necessary to compute the entire matrix M ′′

(it would be computationally expensive): since we perform a realization of

the process, it is sufficient to generate a random row of the matrix for each

realization1.

B.2 Computing the Delay

In order to find the delay, in terms of number of steps from the root, we

start from the connectivity matrix S. Given a node i the procedure to find

the delay is described in Algorithm 2. The procedure “find stripes(stripe id,

column index)” returns the row index where the stripe is. The source node

has index zero, so when we reach the source the procedure stops. This pro-

cedure is done for all nodes except the source.

1Consider the equivalent problem of generating all the possible permutations of a set of B elements,

compared to the cost of generating a random permutation.

172

Algorithm 2 Procedure for finding the number of steps
input: connectivity matrix S, initial node i;

output: number of steps from root;

#steps = 0;

#parents = 0;

for αk = α1, α2, ..., αR do

j = find stripe(αk, i);

while j ≥ 0 do

#parents++;

i = j;

j = find stripe(αk, i);

end while

#steps = max(#steps, #parents);

end for

return(#steps);

Bibliography

[1] A. Parker, “True Picture of File Shar-

ing”, Cache Logic Report 2004, Available:

http://www.cachelogic.com/home/pages/research/p2p2004.php

[2] Z. Ge, D. Figueiredo, S. Jaiswal, J. Kurose, and D. Towsley, “Model-

ing Peer-Peer File Sharing Systems,” in Proc. IEEE INFOCOM, San

Francisco, California, USA, Mar. 2003.

[3] X. Yang and G. de Veciana, “Service Capacity of Peer-to-Peer Net-

works,” in Proc. IEEE INFOCOM, Hong Kong, Mar. 2004.

[4] F. Clevenot and P. Nain, “A Simple Fluid Model for the Analysis of

the Squirrel Peer-to-Peer Caching System,” in Proc. IEEE INFOCOM,

Hong Kong, Mar. 2004.

[5] S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: a Decentralized

Peer-to-Peer Web Cache,” in Proc. ACM Symposium on Principles of

Distributed Computing (PODC 02), Monterey, California, 2002.

[6] D. Qiu and R. Srikant, “Modeling and Performance Analysis of

BitTorrent-Like Peer-to-Peer Networks,” in Proc. ACM SIGCOMM,

Portland, OR, Sept. 2004.

[7] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, “ALMI: An Ap-

plication Level Multicast Infrastructure,” in Proc. of the 3rd Usenix

Symposium on Internet Technologies & Systems (USITS), Mar. 2001.

175

BIBLIOGRAPHY

[8] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable Appli-

cation Layer Multicast,” in Proc. SIGCOMM 2002, Aug. 2002.

[9] AD. A. Tran, K. A. Hua, and T. T. Do, “A Peer-to-Peer Architecture

for Media Streaming,” in IEEE JSAC: Special Issue on Advances in

Overlay Networks, Vol.22, N.1, Jan. 2004.

[10] Y.-H. Chu, S. G. Rao, and H. Zang, “A Case for End System Multi-

cast,” in Proc. of ACM SIGMETRICS 2000, June 2000.

[11] X. Zhang, J. Liu, B. Li, and T. S. P. Yum, “DONet/CoolStreaming:

A Data-driven Overlay Network for Live Media Streaming,” in Proc.

IEEE INFOCOM 2005, Miami, Mar. 2005.

[12] N. Magharei, R. Rejaie, “Understanding Mesh-based Peer-to-Peer

Streaming,” in Proc. NOSSDAV 2006, Newport, Rhode Island, May

2006.

[13] F. Pianese, J. Keller, and E. W. Biersack, “PULSE, a Flexible P2P

Live Streaming System,” in Proc. 9th IEEE Global Internet Sympo-

sium 2006, Bascelona, Spain, Apr. 2006.

[14] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A. Rowstron,

and A. Singh, “Splitstream: Highbandwidth Multicast in a Coopera-

tive Environment,” in Proc. ACM Symposium on Operating Systems

Principles (SOSP 03), The Sagamore, New York, USA, Oct. 2003.

[15] L. Massoulie and M. Vojnovic, “Coupon Replication Systems,” in

Proc. ACM Sigmetrics 2005, Banff, Alberta, Canada, June 2005.

[16] D. Stutzbach, D. Zappala, and R. Rejaie, “The Scalability of Swarming

Peer-to-Peer Content Delivery,” in Proc. of Networking 2005, Water-

loo, Ontario, Canada, May 2005.

176

BIBLIOGRAPHY

[17] S.-W. Tan, A. G. Waters, and J. Crawford, “Meshtree: A Delay opti-

mised Overlay Multicast Tree Building Protocol,” Univ. of Kent, Tech.

Rep. 5-05, April 2005.

[18] E. W. Biersack, D. Carra, R. Lo Cigno, P. Rodriguez, and P. Felber,

“Overlay Architectures for File Distribution: Fundamental Perfor-

mance Analysis for Homogeneous and Heterogeneous Cases” in Com-

puter Networks Journal - Elsevier, to appear.

[19] F. Baccelli, A. Chaintreau, Z. Liu, A. Riabov, S. Sahu “Scalability

of Reliable Group Communication Using Overlays,” in Proc. IEEE

INFOCOM 2004, Hong Kong, Mar. 2004.

[20] S. Nikoletseas, J. Reif, P. Spirakis and M. Young, “Stochastic Graphs

Have Short Memory: Fully Dynamic Connectivity in Poly-Log Ex-

pected Time,” in Proc. of the 22nd ICALP, pp. 159-170, 1995

[21] P. Erdös and A. Renyi, “On random graphs,” Publ. Math. 6:290–297,

1959.

[22] The Octave Web Page. Available: http://www.octave.org.

[23] Top applications (bytes) for subinterface: Sd-nap traffic,

in CA/DA workload analysis of SD-NAP data. Available:

http://www.caida.org/analysis/workload/byapplication/ sd-

nap/index.xml, 2002.

[24] E. Adar, and B. A. Huberman, “Free Riding on Gnutella,” in First

Monday, Vol. 5, No. 10, October 2000.

[25] D. Carra, and R. Lo Cigno, “Stochastic Analysis of Chain Based File

Distribution Architectures with Heterogeneous Peers,” in Proc. WCW

2005 (WCW 2005), Sophia Antipolis, Nice, France, Sept. 2005.

177

BIBLIOGRAPHY

[26] D. Carra, R. Lo Cigno, and E. W. Biersack, “Content Delivery in Over-

lay Networks: a Stochastic Graph Processes Perspective,” in Proc.

IEEE GLOBECOM 2006, Nov. 27 – Dec. 1, San Francisco, CA, USA.

[27] D. Carra, R. Lo Cigno, and E. W. Biersack, “Fast Stochastic Ex-

ploration of P2P File Distribution Architectures,” in Proc. IEEE

GLOBECOM 2006, Nov. 27 – Dec. 1, San Francisco, CA, USA.

[28] D. Carra, R. Lo Cigno, and E. W. Biersack, “Stochastic Graph

Processes for Performance Evaluation of Content Delivery Applica-

tions in Overlay Networks,” submitted for publication. Available:

www.dit.unitn.it/locigno/preprints/CaLoBi TPDS V1.0.pdf

[29] D. Carra, R. Lo Cigno, and E. W. Biersack, “On the Fundamen-

tal Properties of Mesh-Based Overlay Streaming Systems,” Tech-

nical Report DIT-06-043, Univ. of Trento, July 2006. Available:

http://www.dit.unitn.it/locigno/preprints/DIT-06-043.pdf

[30] H. P. Breuer and F. Petruccione “On the numerical integration

of Burgers’ equation by stochastic simulation methods,” Computer

Physics Communications, Vol. 77, Pages 207-218, 1993.

[31] J. Honerkamp, “Stochastic Dynamical Systems: Concepts, Numerical

Methods, Data Analysis,” 1994, VCH, New York.

[32] D.T. Gillespie, “Exact Stochastic Simulation of Coupled Chemical Re-

actions,” Journal of Physical Chemistry, Vol. 63, Issue 25, Pages 2340-

2361, 1977.

[33] S. M. Ross, “Introduction to Probability and Statistics for Engineers

and Scientists,” Academic Press, 8th edition, Dec. 2002.

[34] R. Gaeta, M. Gribaudo, D. Manini, and M. Sereno, “Analysis of Re-

source Transfer in Peer-to-Peer File Sharing Applications using Fluid

178

BIBLIOGRAPHY

Models,” Performance Evaluation: an International Journal. Peer-to-

Peer Computing Systems, Vol. 63, Issue 3, Pages 147-264.

[35] C. Gkantsidis, and P. Rodriguez, “Network Coding for Large Scale

Content Distribution,” in Proc. IEEE INFOCOM 2005, Miami, Mar.

2005.

[36] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High

Bandwidth Data Dissemination Using an Overlay Mesh,” in Proc.

SOSP 2003, Oct. 2003.

[37] S. N. Dorogovtsev, and J. F. F. Mendes, “Evolution of Networks: From

Biological Nets to the Internet and WWW,” Oxford University Press,

Oxford, January 2003.

[38] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over Time: Den-

sification Laws, Shrinking Diameters and Possible Explanations,” in

Proc. 11th ACM SIGKDD 2005, Chicago, IL, USA, Aug. 2005.

[39] V. K. Goyal, “Multiple Description Coding: Compression Meets the

Network,” in IEEE Signal Processing Magazine, pp. 7493, Sept. 2001.

[40] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “PROMISE:

peer-to-peer media streaming using Collect-Cast,” in Proc. ACM 2003,

Berkeley, CA, Aug. 2003.

[41] B. Cohen, “Incentives build robustness in BitTorrent,” 2003.

[42] PeerSim: A Peer-to-Peer Simulator,

http://peersim.sourceforge.net/

179

