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Abstract. With the introduction of the new generation high speed
routers, it becomes possible to improve the Quality of Service, the Qual-
ity of Experience for users and the network efficiency for ISPs with the
help of “flow-aware” traffic management. An example of the “flow-aware”
traffic management is the Alcatel-Lucent framework “Semantic Network-
ing.” In the framework “Semantic Networking”, short-lived and long-
lived TCP flows are treated differently. Short-lived flows are processed
with high priority and long-lived flows are controlled in a “flow-aware”
fashion. To control efficiently the long-lived flows, one needs to know
an estimation of the Round Trip Time (RTT). In the present work, we
provide an online RTT estimation algorithm which is passive and can
deal with a one-way traffic. The one-way traffic requirement is essential
for the application of the algorithm for “flow-aware” traffic management
inside the network. To the best of our knowledge, there was no online
one-way traffic RTT estimators. Tests on the Internet demonstrate high
accuracy of the proposed estimator. The results show that, 75% (resp.
99%) of the time, the RTT estimation is within 10% (resp. 20%) of the
RTT at the source.

1 Introduction

Customers’ increasing demand for better quality of service (QoS) and quality
of experience (QoE) [1] have increased the interest in techniques for actively
managing and controlling the traffic inside the network. With the introduction
of the new generation high speed routers, it becomes possible to treat individually
a significant number of flows. An example of “flow-aware” traffic management
is Alcatel-Lucent’s framework of “Semantic Networking” [2].

Let us outline several building blocks of “Semantic Networking”. An inter-
ested reader can find a more detailed description of the framework in [2]. First,

⋆ This work was done in the framework of the INRIA and Alcatel-Lucent Bell Labs
Joint Research Lab on Self Organized Networks.



the framework “Semantic Networking” takes advantage of the mice-elephants

phenomenon. Many measurement studies have observed that the traffic is ap-
proximately composed of two types of connections: short-lived and long-lived
flows, also known as mice and elephants. It has been observed that the number
of flows of each type and the actual traffic they generate can be summarized
by the 80-20 rule: mice account for the majority of the flows (80%), but the
volume of the traffic associated to them represents 20% of the total traffic, while
elephants (20% of the flows) convey 80% of the total traffic. Recent measure-
ments [1] show that this proportion is shifting to a 90-10 rule. Therefore, in the
“Semantic Networking” framework, the short-lived flows are served with high
priority. The efficiency of such approach has been validated by [3, 4]. For the
long-lived flows, it has been observed that the instantaneous number of ele-
phants present in the router is small, actually only few hundreds [5]. This means
that it is possible to manage long-lived flows on per flow basis. Such an approach
can give to an ISP a greater flexibility in managing its network, potentially in-
creasing its performance and its efficiency and providing customers with high
QoS and QoE [2].

One of the most important notions for a TCP flow is its aggressiveness or how
fast a TCP connection increases its sending rate. Most deployed TCP versions
are based on congestion window which limits a number of packets that can be
sent during one Round Trip Time (RTT). This implies that the RTT is one
of the principal parameters which determine the aggressiveness of a TCP flow,
and it needs to be taken into account for the design of new “flow-aware” traffic
management schemes.

In this paper, we present an algorithm for the online estimation of the RTT
by passively monitoring, in real-time, only one direction of a TCP flow. Specifi-
cally, our algorithm satisfies different constraints. The estimation is passive, as
the measuring point (e.g., the router) does not inject packets into an existing
flow, nor does it alter their flow. The estimation is done in real-time, since the
growth rate of a flow should be instantaneously available at the measuring point.
This constraint implies that the used algorithms must be both computationally
efficient and working incrementally as new packets arrive. In other words, we
need to find efficient online algorithms that provide sufficiently accurate results.
The last constraint imposes the use of information on only one direction of a
TCP flow. One cannot assume that the monitoring point sees packets in both di-
rections as forward and reverse paths may be different. Furthermore, even when
forward and reverse traffic do flow through the monitoring point, collecting and
real-time processing of two-way traffic may impose excessive load and complexity
on the network cards.

As we will discuss in detail in the ensuing section on related work, none
of the existing methods for RTT estimation satisfies simultaneously the above
mentioned criteria.

Our work makes the following important contributions. We design a method
for RTT estimation based on the traffic observed only in one direction. The
method relies on spectral analysis of the signal built considering the inter-packet



times. The self-clocking mechanism of TCP introduces periodic components into
the arrival times of packets. We use spectral analysis to extract such periodic
components. There are different tools available for spectrum estimation, mainly
for regularly sampled data. The samples collected at the router are irregularly
spaced, thus the choice is essentially limited, for either technical or computa-
tional reasons, to the Lomb periodogram. The traditional implementation of any
spectral analysis tool considers an offline approach. Our main contribution is
the development of an online version of the Lomb periodogram. At each packet
arrival, the estimation of the spectrum is updated with O(N) operations, where
N is the length of the initial sequence collected (the number of frequencies in
the spectrum is 2N).

Another contribution lies in the fundamental frequency extraction algorithm:
once the estimation of the spectrum is done, we need to extract the fundamental
frequency that corresponds to the inverse of the RTT. This is done using a
pattern matching technique that looks for the greatest common divisor of a
subset of frequencies.

We tested our estimation algorithm both on a controlled testbed and on the
Internet. The results show that our solution is able to accurately estimate the
RTT, the estimation error being within ±10% (resp. ±20%) of the true value
with probability equal to 75% (resp. 99%). The results given by our methodology
show a higher accuracy with respect to the results obtained in previous studies
(see Sect. 2 for a review of the literature), using less information, i.e., packets of
only one direction instead of both directions.

2 Related Work

The RTT estimation has been the subject of many studies. The aim of such
studies is to understand the characteristics of the TCP connections in the In-
ternet, in order to study different aspects, such as the rate-limiting factors or
the non-conforming TCP senders. These works consider methods that can be ap-
plied offline, since they are generally computationally intensive. For instance, the
work in [7] is based on the reconstruction of the TCP congestion window values,
which requires to maintain a “replica” of the TCP sender’s state. The paper [8]
extends the work in [7], thus it maintains similar computational complexity.

Another example is the work in [9], which proposes a method based on time
correlation of samples: while the computational complexity is similar to our
approach, the main problem is related to robustness, since the results are strongly
affected by noise, which impacts the accuracy of the RTT estimation.

The paper [10] makes use of spectral analysis—the basic mechanism used by
our solution—as one of the possible steps for off-line estimation of the RTT. In
particular, the authors apply the spectral analysis to a set of samples, but they
do not consider the continuous, real-time update of the spectrum as new samples
arrive. Moreover, the post processing of the spectrum for the extraction of the
RTT is based on a simple evaluation of the frequency with the maximum power,
which not always corresponds to the fundamental frequency.



In [11], a method based on the TCP timestamp option is proposed. Our
method does not rely on information provided by the protocols, but it is based
only on the inter-arrival times of the packets. In [12], the RTT is estimated
using the first packets of a connection, thus it is not generally applicable to the
continuous monitoring of a connection.

In [13], the authors propose a method for Bayesian spectrum estimation
based on Kalman filtering. Nevertheless, this method is not applied to RTT
estimation. The main issue is its complexity from a computational point of view:
the filter gain computation requires a matrix multiplication, whose complexity is
approximately O(N2.8) (N is the number of samples used); there exist algorithms
with O(N2.376), but with much higher constants, which makes them practically
unusable. Our methodology has a complexity of O(N) at each sample arrival,
since 2N is the number of frequencies in the spectrum (see Sect. 5), thus, if we
consider N consecutive samples, the complexity becomes O(N2).

In summary, all the previous works have some limitations that make them
not applicable to the context we are considering: Since we are looking for real-
time (online) estimation of the RTT inside a router (see Sect. 3 for details), the
proposed methods cannot be used for their computational complexity or the low
accuracy. Note also that some methodologies (works in [7,8,11]) use traffic cap-
tured in both directions, and correlate packets with their acknowledgments. Our
methodology uses packets of only one direction (thus we use less information)
yet obtaining a more accurate estimation of the RTT.

3 Motivations

The methods proposed so far for estimating the RTT have focused on the evalu-
ation of the characteristics of the TCP connections for monitoring purposes: the
interior monitoring point collects packets from a router interface (e.g. from both
directions of a network card) and the traces are analyzed offline. In this paper,
we have a completely different point of view. We consider the estimation of the
RTT as a building block for actively controlling the traffic inside the network.
We start considering a flow-aware networking approach, where routers are able
to manage flows rather than simply packets. This in turn opens the possibil-
ity of exploring novel Active Queue Management (AQM) techniques in order to
efficiently manage the router resources.

3.1 Flow-Aware Networking

Customers’ increasing demand for better quality of service (QoS) and quality of
experience (QoE) have increased the interest in techniques for actively manag-
ing and controlling the traffic inside the network. One such approach calls for
treating each flow individually, where by flow we mean a connection identified
by the classical five-tuple of protocol ID, source and destination addresses and
ports. Considering a flow as the basic entity to deal with, rather than single



packets, has a beneficial impact on scalability, flexibility and operational com-
plexity. For a detailed view of the flow-aware networking approach the interested
reader is referred to [2]. Here we consider the practical implementation of such
an approach, and in particular the structure of a flow-aware router.

The basic architecture can be summarized as follows. There is a single phys-
ical buffer that is divided into a number of virtual queues, one of which has
high priority and the others have low priority. Flows are sorted into two classes,
whether they are short-lived or long-lived flows. The basic idea is to put all the
short-lived flows in the high priority queue, and to assign a low priority queue
to each of the long-lived flows. When a new flow arrives, it is initially treated as
short-lived. If the cumulative number of packets of a given flow reaches a thresh-
old, this flow is then considered as an elephant, i.e., its packets are enqueued in
a low priority queue associated to this flow.4 Low priority queues are served in
a round robin fashion or a similar scheduling policy.

It has been observed in [5] that the number of concurrent long-lived flows
at a router is of the order of hundreds. This means that it is possible, with
the current technology, to individually manage these flows. Moreover, since they
carry 90% of the total traffic, by controlling elephants, it is possible to manage
accurately the available resources.

3.2 Novel AQM Policies

Flows for large data transfers use TCP to compete for bandwidth. More specif-
ically, they use window based congestion control, where each flow increases its
sending rate until a packet loss is detected (or an explicit congestion notification
is received). Conventional routers that are not flow-aware cannot insure fair-
ness under high traffic loads, especially when the competing flows have different
RTTs [14, 15].

With flow-aware routers, where each elephant uses a different queue, there
is the possibility of new flow-aware queue management algorithms capable of
proactively controlling each flow. Being able to predict the behavior of a flow can
be very useful in order to achieve this goal. In the case of a TCP connection, its
future behavior (in the absence of a packet drop or congestion signal) is dictated
by the increase of the congestion window. The rate of the increase depends on
the RTT, as the congestion window is incremented by one or more packets each
RTT. Therefore, tracking in real time this parameter is a fundamental step in
predicting the evolution of a flow. While the RTT is available at the sender,
current TCP versions do not propagate this information to the routers; only
experimental protocols like XCP convey this information explicitly.

Furthermore, if the RTT is known, it is possible to better estimate the flow
rates: by averaging the number of packets received within an interval equal to

4 There exist a number of different mechanisms to “promote” a flow to elephant,
mainly probabilistic methods. For instance, each arriving packet is compared with
one or more packets randomly picked from the buffer: if the packets belong to the
same flow, then this flow can be considered with high probability an elephant.



RTT it is possible to correctly estimate the TCP throughput. A smaller value
of the averaging interval results in a fluctuation of the estimate, while a bigger
value does not allow for a prompt detection of rate changes (e.g. due to dropped
packets).

If the information about the rate and its growth is made available at the
router, it is then possible to design novel AQM policies that take into account
this information. For instance, consider the scenario with two competing flows
that are saturating the available bandwidth, i.e., the buffer occupation starts
increasing. Assume that both flows have, at a given point in time, the same in-
stantaneous rate, but different RTTs (which means the instantaneous flow rates
have different growth rates). The router may decide to mark/drop in advance
packets belonging to one or both flows, before the buffer becomes full. By know-
ing the RTT, it is possible to choose, for instance, the more aggressive flow, i.e.,
the flow with the smaller RTT.

While the study of novel AQM policies is not the focus of this paper, we
highlight that the estimation of the RTT represents an important building block
for such policies. Note that previously proposed schemes (e.g. [7, 8]) cannot be
used in such a context, since they assume to have access to the traffic in both di-
rections. Such solutions would be technologically and computationally infeasible
inside a router, since they require the router itself not only to correlate packets
with their acknowledgments, but also to do so in real-time, in order to make the
information available, in real-time, for correctly applying the AQM policy.

In summary, while the RTT estimation is a well covered area of research, no
techniques are available for the continuous, real-time and passive estimation of
the RTT, using the traffic of one direction.

4 A methodology Based on Spectral Analysis

The self-clocking mechanism of TCP introduces periodic components into the
arrival times of packets. The basic idea of the RTT estimation is to use spec-
tral analysis to extract such periodic components. With spectral analysis, it is
possible to build an estimation of the spectrum of a signal starting from a finite
sequence of samples. There is a large set of useful methods suitable for differ-
ent scenarios [16]. In order to choose the best method, the first step in spectral
analysis is to identify the characteristics of the signal whose spectrum is to be
estimated.

In our case, the signal is the packet inter-arrival time of the flow at hand.
This signal is sampled at each packet arrival. More precisely, at the arrival of
the kth packet of the flow at hand, a new sample of the signal is computed,
namely hk := tk − tk−1, with k ≥ 1 where tk is the arrival instant of the kth
packet and t0 := 0. Since samples are taken at packet arrivals, the sequence hk

is unevenly spaced. The signal is said to be irregularly sampled (also unevenly
sampled or nonuniformly sampled). While the literature on regularly sampled
data proposes many efficient methods to estimate the signal’s spectrum, the
solutions for irregularly sampled data have been found to be impractical [17]:



The choice of spectral analysis for irregularly sampled data is essentially limited,
for either technical or computational reasons, to the periodogram.

The periodogram is simply the Discrete Fourier Transform (DFT) of the
finite sequence. In case of irregularly sampled data, the periodogram is com-
puted using the Lomb-Scargle method [18] and it is generally referred to as
the Lomb periodogram. The periodogram has well-known limitations [16]: (i)
it is not possible to distinguish two sinusoidal components which are too close
(low resolution), and (ii) the variance of the estimation error at a given fre-
quency does not decrease as the number of samples used in the computation
increases (non-consistent estimator). Despite these limitations, the periodogram
remains an efficient solution in case of well-separated sinusoids in white noise
and medium to large dynamic range [17]. The dynamic range is defined as the
ratio between the maximum and the minimum power values, usually measured
in decibel. A dynamic range between 20 dB and 30 dB (i.e., between two to three
orders of magnitude between the maximum and the minimum power) is said to
be “medium”; if it is greater than 30 dB, then it is said to be “large.”

In our case, the signal hk, the inter-arrival times of the packets, either con-
tains a single strong sinusoidal component, with large dynamic range, due to the
RTT, or it does not contain any periodicity (consider the case of a flow that has
reached the bandwidth-delay product, where packets form a continuous stream).
In the latter case, no method based on spectral analysis is able to extract the
RTT: only methods based on the analysis of the traffic in both directions would
work—a case that we cannot consider since a flow-aware router has access in
real-time only to one direction. Thanks to the characteristics of the signal hk,
the periodogram does represent a good estimator.

A problem common to all the methods for spectral analysis (for either reg-
ularly or irregularly sampled data, including the periodogram) is that they are
based on offline algorithms: they consider a sequence of N samples and they
build an estimation of the spectrum. If the signal is composed of more than N
samples, it is divided into subsequences of N samples and the methodology is
applied to each subsequence separately. While this approach can be suitable for
traditional analysis of signals, it cannot be applied in case of RTT estimation
by a flow-aware router. It may take several RTTs before being able to collect N
samples (typical values of N are 256, 512 or 1024). If the RTT varies, the router
is not able to correctly follow these variations, leading to a wrong estimation of
the flow rates, with negative consequences on the efficiency of the AQM policies.

It is extremely important to have a spectrum estimation methodology that
works in real time, i.e., that is able to update the estimations at each packet
arrival. The solution should also be computationally efficient. The simplicity of
the periodogram helps in designing an online version of the method. All the
other methods (even the more advanced ones recently proposed for irregular
sampled data, see [17]) are based on complex optimized algorithms, and cannot
be translated into corresponding online versions.

In summary, among the different methods for spectral analysis, the peri-
odogram represents the only choice for two reasons:
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Fig. 1. The RTT estimation process: after the update of the spectrum estimation, the
fundamental frequency is extracted. The estimation of the RTT is the inverse of the
fundamental frequency f0.

– the structure of the signal hk (with a single strong sinusoidal component)
makes the periodogram a sufficiently good estimator, overcoming its limita-
tions;

– the periodogram allows for the creation of an efficient online version of the
algorithm, something not possible in the case of irregularly sampled data
with other proposed spectral analysis approaches.

The spectral analysis represents the basic building block of our RTT estima-
tion method: the whole estimation process is composed of different steps that
we describe in detail in the following section.

5 Estimation Process

At each packet arrival a new sample is added to the sequence hk. The estimation
process takes as input the new packet arrival time and updates the current
estimation of the RTT. Figure 1 shows the functional blocks of the estimation
process.

Given a periodic discrete signal, with period T0 and frequency f0 = 1/T0, the
periodogram of the signal presents peaks at frequencies f0, 2f0, 3f0, . . ., where
f0 is called the fundamental frequency. In general, the highest peak in the peri-
odogram is not necessarily at f0, but it can be at any multiple of f0; therefore,
it is not sufficient to look for the largest peak in the spectrum to find f0. For
this reason, we need another module to extract the fundamental frequency. This
module takes as input a list of the spectrum peaks and the average of the previous
estimations. The fundamental frequency is extracted with a pattern-matching
technique. Basically, after smoothing the periodogram through a low-pass filter,
we take the largest W peaks and iteratively search for the frequency in the list
that is the least common divisor for other frequencies in the list.

5.1 Online Lomb Periodogram

The Lomb-Scargle periodogram [18] is built using N samples. Once the initial
N samples are collected and the Lomb periodogram is built, every time a new



packet arrives, the oldest sample is removed and the new sample is used to
update the Lomb periodogram.

The offline version of the Lomb periodogram takes O(N log N) operations.
To the best of our knowledge, no online implementation (i.e., update of the
periodogram as the samples arrive) exists, so we had to devise one. For the
online computation, we start from the definition of the Lomb periodogram. The
power spectrum (Lomb periodogram), at angular frequency ω := 2πf , and at
the kth sample with k ≥ N , is

P
N
k (ω):=

1

2σ2

k
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(1)

where h̄k and σ2
k are the mean and variance of the N last samples of hk:

h̄k :=
1

N
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hk−i = h̄k−1 +
hk − hk−N

N
; (2)
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)

(3)

and where τk is the solution of

tan(2ωτk) =

∑N−1
i=0 sin 2ωtk−i

∑N−1
i=0 cos 2ωtk−i

. (4)

The summations in (2) and (3) can be efficiently updated at each packet arrival.
The periodogram (1) is evaluated for a number of frequencies equal to 2N . In

particular, we compute the minimum frequency at arrival of packet k, fmin
k , con-

sidering the interval of time of the N current samples, i.e., fmin
k = 1/ (tk − tk−N+1).

The maximum frequency, fmax
k , is derived from the Nyquist theorem: since we

have N samples, we obtain fmax
k = N

2 fmin
k . The interval [fmin

k , fmax
k ] is divided

into 2N values, obtaining ∆ω = 2π
fmax

k
−fmin

k

2N
. Thus, we compute PN

k (ωi) for
every ωi = 2πfmin

k + i∆ω, i = 0, . . . , 2N − 1.
The power spectrum is to be updated at each packet arrival. Since the values

of τk and h̄k change at each packet arrival, the summations in (1) must be always
recomputed. This can be avoided by decomposing (1) using basic trigonometric
properties. We define

Φk :=

N−1
∑

j=0

hk−j cos(ωtk−j) − h̄k

N−1
∑

j=0

cos(ωtk−j);

Γk :=

N−1
∑

j=0

hk−j sin(ωtk−j) − h̄k

N−1
∑

j=0

sin(ωtk−j);

Φ∗

k :=
N−1
∑

j=0

cos(2ωtk−j); Γ ∗

k :=
N−1
∑

j=0

sin(2ωtk−j).



Note that Φk, Γk, Φ∗

k and Γ ∗

k are simple summations that can be updated at
each packet arrival in a similar way as done for (2)-(3). We can then rewrite the
Lomb periodogram as follows:

P
N
k (ω)=

1

σ2

k

{

[Φk cos(ωτk) + Γk sin(ωτk)]2

N+Φ∗

k cos(2ωτk)+Γ ∗

k sin(2ωτk)
+

[Γk cos(ωτk)− Φk sin(ωτk)]2

N−Φ∗

k cos(2ωτk)−Γ ∗

k sin(2ωτk)

}

. (5)

When a new packet k arrives, the values of h̄k, τk, σ2
k, Φk, Γk, Φ∗

k and Γ ∗

k

are immediately updated, and the periodogram is recomputed accordingly. The
number of operations done at each packet arrival is O(N), since updating h̄k,
τk, σ2

k, Φk, Γk, Φ∗

k and Γ ∗

k takes O(1) and we have 2N angular frequencies ω.

5.2 Fundamental Frequency Extraction

The outcome of the computation of the Lomb periodogram is usually noisy,
with many local maxima and a global maximum that not always corresponds
to the fundamental frequency f0: sometimes the global maximum corresponds
to a frequency multiple of the fundamental one. The operations performed at

each packet arrival by the Fundamental Frequency Extraction module on the
updated periodogram are summarized in the following.

Periodogram smoothing. A basic low-pass FIR filter is applied to the se-
quence that composes the Lomb Periodogram: in particular, the filter is a mov-
ing average filter of order three. We have tested different orders for the filter
obtaining similar results, as long as the order is not too high (e.g., greater than
8), since the smoothing effect decreases the dynamic range.

Peak detection. We consider the value at frequency fk to be a peak if it is
greater than the values at frequencies fk+1 and fk−1; the detected peaks are put
in a “peak list.”

Peak pruning and ordering. We remove from the list the entries whose values
are not the top W largest peaks, with W = 10. The parameter W is configurable:
in all our experiments, the number of peaks in the spectrum was between 15 and
25, but only a subset of them was sufficiently strong (one order of magnitude
greater than the white noise). By considering the average characteristics of the
TCP flows observed in [7], we can conclude that this value can be applied in
general. From the peak list, we remove also some frequency values considering
the following boundary conditions: the RTT should be greater than 2 ms and
less than 500 ms. In [7], it has been observed that 70% of the flows have RTT
smaller than 500 ms. The list is then ordered by frequency, smallest first.

Multiple frequency search. Starting from the smallest frequency in the list,
we evaluate if the other frequencies in the list can be a multiple of the considered
frequency. If we find at least two multiples, this step ends and returns the esti-
mated fundamental frequency f0. Otherwise it goes on with the following value
in the list. If no fundamental frequency is found, this step returns a NULL value.

Comparison. We compare the output with the average of the previous estima-
tions, f0. If the current estimation is not NULL, we consider the ratio between



the current estimation and the average of the previous estimations, r = f0/f0.
In [7], the authors show that, in 95% of the flows, the ratio between the max-
imum and the minimum RTT is less than 3/2. Thus, if 2/3 < r < 3/2, the
algorithm returns f0 and terminates. Otherwise, it returns f0.

The output of this module is then the estimated fundamental frequency from
which it is possible to derive the estimated RTT.

6 Numerical Results

We validated our methodology with experiments both in a controlled environ-
ment and over the Internet. We focus on a single long-lived scp transfer between
a source and a destination and we collect traces with tcpdumb at two points:
(i) at the source, where we capture the traffic in both directions, in order to
have the packets and their acknowledgments; (ii) at a measuring point between
the source and the destination, where we record the packets in one direction.
In addition to the observed long-lived scp transfer, there are different flows on
the path between the source and the destination: In the controlled testbed, the
cross-traffic flows are generated by scp transfers.

The traces collected at the source are post-processed computing the instan-
taneous RTT and the smoothed RTT (SRTT) using a moving average, without
considering retransmitted packets. The parameter α for the exponential weighted
moving average (EWMA) algorithm (see RFC 2988) is set to 1/8. Note that the
RTT is updated for every packet.

The traces collected at the measuring point are analyzed using our solution.
For the spectral analysis, the length of the sequence considered is N = 256. The
spectral analysis, along with the fundamental frequency extraction, gives the
estimation of the instantaneous RTT. Similarly to TCP, we compute a smoothed
RTT through an EWMA algorithm with parameter α = 1/8. Hereinafter, we will
take as reference the values of the SRTTs (at the source and estimated), using
the general term “RTT.”

The file size used for the testbed and for the Internet experiments is 120
MBytes. From the samples of the RTTs we create the empirical Cumulative
Distribution Function (CDF). From this empirical distribution we can derive
any performance index of interest, such as the mean RTT and the variance of
the RTT.

In order to evaluate the accuracy of the estimation process over time, we
consider the error between the estimation and the real RTT. To overcome the
issues highlighted in Sect. ??, we consider the means of the RTTs (estimated
and at the source) taken over short, non overlapped, intervals. In practice, we
compute the mean RTTs every 5 seconds and we compute the error of the
estimate defined as

error =
mean estimated RTT − mean RTT at the source

mean RTT at the source
.

From the error, we build the corresponding empirical CDF.



6.1 Controlled Environment

We first considered a testbed set up at INRIA using Dell Precision 380 worksta-
tions running Fedora Linux version 10 (kernel 2.6.27). The topology is shown in
Fig. 2: all machines are directly connected as shown (using Ethernet cables) and
there is no outside traffic. Given that the propagation and processing delay are
very small, we introduce random delays between the machines. The link between
the source of the traffic and the machine cross has a delay uniformly distributed
on [50−d1, 50+d1] ms, where d1 is set to either 5 or 40 ms. The link between the
machines cross and btlnk has a delay uniformly distributed on [25− d2, 25 + d2]
ms, where d2 is set to either 5 or 20 ms.

dest

cross

bw: 100 Mbps
delay (in ms):

[25 − d2, 25 + d2]
btlnk

bw:
10 Mbps

source

bw: 100 Mbps
delay (in ms):

[50 − d1, 50 + d1]

Fig. 2. Scheme of the testbed: the con-
tinuous line represents the observed flow,
dashed lines represent the cross traffic.

experim. # cross flows # cross flows d1 d2

ID source → dest cross → dest

exp1 0 12 5 5

exp2 2 6 5 5

exp3 3 9 5 5

exp4 3 9 40 20

Fig. 3. Configuration of the testbed exper-
iments, with the dirrefent cross flows and
delays.

All the links have a capacity of 100 Mbps (fast Ethernet) except the link
between the machines btlnk and dest which is capped to 10 Mbps in order to
act as the bottleneck link. The random delays and the capacity limitations are
implemented using the Netem kernel module. Throughout the experiments we
explicitly configured the sender to use Reno TCP and not Cubic (the default
option for kernel 2.6.27).

The main flow we consider is between machines source and dest. We add
additional cross traffic directed to dest, starting from source and from cross. We
have a measuring point of the packets’ arrivals at the machine btlnk. Table 3
summarizes the experiments done.

Figure 4 shows an example of the output of one experiment (exp2). For each
packet, we compute the RTT at the source and its estimation at the measuring
point. We have found that the estimated RTT is of the same order of magnitude
as the real RTT, even though it seems to be less variable than the RTT at the
source. As explained in Sect. ??, this is due to the averaging effect of the spectral
analysis that uses the last observed 256 packets (which include 5-8 flights) for
the spectrum estimation.

While this representation shows that the estimation and the real RTT are
close, we need to characterize in detail the performance of the algorithm.

In order to minimize the effects of the lag time between the RTT samples
collected at the source and at the measuring point, we consider the empirical
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Table 1. Mean and variance of the RTT (real and estimated).

exp. RTT at the source (s) estimated RTT (s)

ID mean variance mean variance

exp1 0.2795 1.8476 10−3 0.2814 9.4612 10−5

exp2 0.2760 1.8431 10−3 0.2706 1.4061 10−4

exp3 0.2782 1.6236 10−3 0.2792 3.5682 10−6

exp4 0.2752 2.6997 10−3 0.2875 5.4265 10−4

cumulative distribution function (CDF) of the RTTs built from the samples.
Figure 5 compares the two empirical CDFs (exp2): both CDFs share approxi-
mately the same support, i.e., the estimation lies in the same interval of the real
RTT.

In Table 1 we report the mean and the variance obtained from the empirical
CDFs of the RTTs (real and estimated). While the real RTT has more variability,
the estimated RTT is more stable, due to the averaging effect of the spectral
analysis.

Another performance index we are interested in is the error in the estimation:
as Fig. 6 shows, in experiments exp1–exp3, the estimation lies within 10% of the
estimated value with probability 95%. In the worst case, our solution is able to
accurately estimate the RTT with an error within [−10%, 10%] with probability
equal to 75%, and with an error within [−20%, 20%] with probability equal to
99%.

The results given by our methodology show a higher accuracy with respect to
the results obtained in previous studies (e.g. [7]): our results have been obtained
observing the traffic of one direction, unlike the results of [7] which require to
collect traffic in both directions. In summary, we are able to find an accurate
estimation of the RTT using less information w.r.t. previous works, and most
noticeably, our method works online.
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Fig. 8. Scheme of the Internet tests.

6.2 Internet Experiments

In this section, we show the results of experiments using three machines con-
nected through Internet (Fig. 8). The source is at INRIA Sophia Antipolis
(France), the intermediate machine (hop1 ) is at University of Trento (Italy)
while the destination is at Eurecom (France). We created two SSH tunnels, one
between source and hop1, and one between hop1 and the destination dest. The
traffic generated from the source passes through the tunnel at hop1, where pack-
ets interarrivals are measured, and reaches the destination.

Table 2 shows the mean and the variance of the RTTs (real and estimated)
for two different experiments: the first, during a peak hour (Monday, May 4th,
2009, 10 AM, CEST) and the second, during an off-peak hour (Sunday, May
3rd, 2009, 12 PM, CEST). The high variability of the peak hour results in a
higher error, that is not smoothed by considering the overall mean. The reason
can be understood looking at Fig. 4: the estimation algorithm often does not
detect sudden decreases of the RTT. When the drops in the RTT occur, we
obtain large positive error values, while there are not large negative error values
to compensate for the large positive ones.



Table 2. Mean and variance of the RTT (real and estimated): Internet experiments.

exp. RTT at the source (s) estimated RTT (s)

ID mean variance mean variance

peak 0.0389 1.7194 10−5 0.0422 2.4034 10−6

off 0.0448 2.4014 10−6 0.0446 2.9448 10−6

Figure 7 shows the whole empirical CDFs of the error. As for the testbed ex-
periments, the estimation lies within 10% of the estimated value with probability
equal to 99%.

7 Open Issues and Conclusions

In this paper we have presented a methodology, based on spectrum analysis,
for the passive online estimation of the RTT of a long-lived TCP connection,
using one-way traffic. The estimation of the RTT represents a basic building
block in the framework of “Semantic Networking,” where flow-aware routers can
implement novel AQM techniques in order to control the traffic.

We validate our solution through measurements in a controlled testbed and
over the Internet showing a good accuracy. Since we considered only a limited set
of scenarios, we plan to extend the evaluation on different scenarios: for instance,
it is interesting to understand the variation in estimation accuracy as the RTT
changes due to changes in the number of connections sharing a link or in the
routing.

Since the method is based only on the arrival pattern, it is clear that if
the arrival pattern is strongly modified inside the network, the method may
not be accurate. For instance, if we observe a flow after it has passed through
a bottleneck, the arrival pattern may become a continuous stream of packets.
Should this happen, the method may not be applicable, however one would still
be able to estimate the rate of a connection through a moving average estimator
for instance. In future evaluations, we plan to investigate in detail the scenarios
where the methodology may not be accurate, in order to provide a comprehensive
view of the benefits of our solution.
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