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Abstract In modern large-scale distributed systems,
analytics jobs submitted by various users often share
similar work, for example scanning and processing the
same subset of data. Instead of optimizing jobs inde-
pendently, which may result in redundant and wasteful
processing, multi-query optimization techniques can be
employed to save a considerable amount of cluster re-
sources.

In this work, we introduce a novel method combin-
ing in-memory cache primitives and multi-query opti-
mization, to improve the efficiency of data-intensive,
scalable computing frameworks. By careful selection and
exploitation of common (sub)expressions, while satisfy-
ing memory constraints, our method transforms a batch
of queries into a new, more efficient one which avoids
unnecessary recomputations. To find feasible and ef-
ficient execution plans, our method uses a cost-based
optimization formulation akin to the multiple-choice
knapsack problem. Extensive experiments on a proto-
type implementation of our system show significant ben-
efits of worksharing for both TPC-DS workloads and
detailed micro-benchmarks.

1 Introduction

Modern technologies to analyze large amounts of data
have flourished in the past decade, starting with general-
purpose cluster processing frameworks such as MapRe-
duce [12], Dryad [23] and Spark [43]. More recently, a lot
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of effort has been put in raising the level of abstraction,
and allow users to interact with such systems with a re-
lational API, in addition to a procedural one. SQL-like
querying capabilities are not only interesting to users
for their simplicity, but also bring additional benefits
from a wide range of automatic query optimizations,
aiming at efficiency and performance.

Currently, such large-scale analytics systems are de-
ployed in shared environments, whereby multiple users
submit queries concurrently. In this context, concurrent
queries often perform similar work, such as scanning
and processing the same set of input data. The research
in [21] on 25 production clusters, estimated that over
35,000 hours of redundant computation could be elim-
inated per day by simply reusing intermediate query
results (approximately equivalent to shutting off 1500
machines daily). It is thus truly desirable to study query
optimization techniques that go beyond optimizing the
performance of a single query, but instead consider mul-
tiple queries, for a more efficient resource utilization,
and better aggregate performance.

Multi-query optimization (MQO) amounts to find
similarities among a set of queries and uses a variety of
techniques to avoid redundant work during query exe-
cution. For traditional database systems, MQO trades
some small optimization overheads for increased query
performance, using techniques such as sharing sub-exp-
ressions [36,37,45], materialized views selection [20,31],
and pipelining [10]. Recently, work sharing optimiza-
tions operating at query runtime, for staged databases,
have also been extensively studied [4, 19, 22, 35]. The
idea of reusing intermediate data across queries or jobs
running in a distributed environment has also received
significant attention: for MapReduce [33,41], for SCOPE
operating on top of Cosmos [39] and for Massive Par-
allel Processing (MPP) frameworks [15].
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In this paper, we study MQO in the context of
distributed computing engines such as Apache Spark
[43], with analytics jobs written in SparkSQL [3], in
which relational operators are mapped to stages of com-
putation and I/O. Following the tradition of RDBM-
Ses, queries are first represented as (optimized) logical
plans, which are transformed into (optimized) physical
plans, and finally run as execution plans. Additionally,
modern parallel processing systems, such as Spark, in-
clude an operator to materialize in RAM the content
of a (distributed) relation, which we use extensively.
Our approach to MQO is that of traditional database
systems, as it operates on a batch of queries. How-
ever, unlike traditional approaches, it blends pipelining
and global query planning with shared operators, using
in-memory caching to support worksharing. Our prob-
lem formulation amounts to a cache admission problem,
which we cast as a cost-based, constrained combinato-
rial optimization task, setting it apart from previous
works in the literature.

We present the design of a MQO component that,
given a set of concurrent queries, proceeds as follows.
First, it analyzes query plans to find sharing oppor-
tunities, using logical plan fingerprinting and an effi-
cient lookup procedure. Then it builds multiple shar-
ing plans, using shared relational operators and scans,
which subsume common work across the given query
set. Sharing plans materialize their output relation in
RAM. A cost-based optimization selects best sharing
plans with dynamic programming, using cardinality es-
timation and a knapsack formulation of the problem,
that takes into account a memory budget given to the
MQO problem. The final step is a global query plan
rewrite, including sharing plans which pipeline their
output to modified consumer queries of the original in-
put set.

We present a prototype of our system built for Spark-
SQL, and validate it through a series of experiments.
First, using the standard TPC-DS benchmark, we pro-
vide an overview of query runtime distributions across
a variety of different queries which are optimized using
our method: overall, our method achieves up to 80%
reduction in query runtime, when compared to a setup
with no worksharing. Then, we proceed with a synthetic
evaluation of individual operators, to clarify which ones
benefit most from our technique, including when data
is materialized on disk according to different formats.
Our main contributions are as follows:

– We propose a general approach to MQO for dis-
tributed computing frameworks that support a re-
lational API. Our approach produces sharing plans,
that are materialized in RAM, aiming at eliminating
redundant work and I/O in a given set of queries.

– We cast the optimization problem of selecting the
best sharing plans as a Multiple-choice Knapsack
problem, and solve it efficiently through dynamic
programming.

– Our ideas materialize into a system prototype, which
extends the SparkSQL Catalyst optimizer, and that
we evaluated extensively, using macro and micro
benchmarks. Our results indicate tangible improve-
ments in terms of aggregate query execution times,
while fulfilling the memory budget given to the MQO
problem.

The rest of the paper is structured as follows. Sec-
tion 2 covers related work on multi-query optimization.
We introduce and formalize our optimization problem
in Section 3, and present our methodology in Section 4.
In Section 5, we provide the implementation details of
our prototype based on SparkSQL. We evaluate the
performance of our approach in Section 6. Finally, we
conclude the paper in Section 7.

This article extends the work presented in [30] in
several aspects: (i) we revise and clarify different parts
of the paper that have been previously described in a
concise way due to space constraints; (ii) we discuss the
details of our prototype implementation in Section 5;
(iii) we evaluate our approach with a new set of ex-
periments focused on micro-benchmarks (Section 6.3),
in order to assess the impact of each operator on the
sharing opportunities.

2 Related Work

We now review previous work on MQO, both for tradi-
tional RDBMSes and for distributed computing frame-
works.

MQO in RDBMSes. Multi-query optimization
has been extensively studied [10, 17, 36–38]. More re-
cently, similar subexpressions sharing has been revisited
by Zhou et al. in [45], who show that reusable com-
mon subexpressions can improve query performance.
Their approach avoids some limitations of earlier work
[17, 36] by (i) considering all generated plans as shar-
ing opportunities to avoid leading to suboptimal plans
and (ii) also considering multiple competing covering
expressions. More recently, work sharing at the level
of the execution engine has been extensively studied
[4,19,22,35]. The MQO problem is considered at query
runtime, and requires a staged database system. Tech-
niques such as pipelining [22] and multiple query plans
[8,9] have proven extremely beneficial for OLAP work-
loads.

Our work is rooted on such previous literature, al-
beit the peculiarities of the distributed execution engine
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(which we also take into account in our cost model), and
the availability of an efficient mechanism for distributed
caching steer our problem statement apart from the
typical optimization objectives and constraints in the
literature.

Materialized views can be used in conjunction with
MQO to reduce query response times [20,31,42], whereby
the contents of materialized views are precomputed and
stored to provide alternative, faster ways of computing
a query. Nevertheless, due to the nature of RDBMSes,
base relations change frequently, leading to view incon-
sistency and view maintenance costs. For this reason, a
broad range of works addressed the problem of materi-
alized view selection and maintenance, including both
deterministic [2,6,36] and randomized [13,25,44] strate-
gies. Finally, the work in [46], addresses the problem
of progressive queries and proposes to use materialized
views to help their computation, based on previous par-
tial results from related queries.

In this paper, we focus on analytics queries for sys-
tems in which data can be assumed to be static. Such
systems are built to support workloads consisting mostly
of ad-hoc, long running, scan-heavy queries over data
that is periodically loaded in a distributed file system.
As such, problems related to view maintenance do not
manifest in our setup. Moreover, while materialized views
are generally stored permanently (to disk), our approach
considers storing intermediate relations in RAM.

MQO in Cloud and Massively Parallel Pro-
cessing (MPP). Building upon MQO techniques in
RDBMSes, Silva et al. [39] proposed an extension to the
SCOPE query optimizer which optimizes cloud scripts
containing common expressions while reconciling phys-
ical requirements.

In the context of MPP databases, the work in [15]
presents a comprehensive framework for the optimiza-
tion of Common Table Expressions (CTEs) implemented
for Orca. Compared to our method, we consider not
only CTEs but also similar subexpressions to augment
sharing opportunities.

MQO in MapReduce. The idea of avoiding re-
dundant processing by batching concurrent MapReduce
jobs and make them share some intermediate results
was widely studied in [1, 7, 16, 27, 28, 33, 39, 41]. The
common denominator of such previous work is that they
operate at a lower level of abstraction than we currently
do in this paper: they analyze low-level programs that
use the procedural API to describe an analytical job.
For instance, MRShare [33], is a sharing framework for
MapReduce that first identifies different jobs sharing
portions of identical work. These jobs are then trans-
formed into a compound job such that scan sharing,

Map Output sharing and Map Functions Sharing can
be achieved.

Caching to recycle work. Finally, we consider
previous works [5, 14, 18, 24, 32] that address the prob-
lem of reusing intermediate query results, which is cast
as a general caching problem. Our work substantially
differs from those approaches in that they mainly focus
on cache eviction, where past queries are used to decide
what to keep in memory, in an on-line fashion. Instead,
in this work we focus on the off-line constrained opti-
mization problem of cache admission: the goal is to de-
cide the best content to store in the cache, rather than
selecting which to evict if space is needed. The only
work that considers the reuse of intermediate results
when analyzing the overall execution plan of multiple
queries is [14]. Nevertheless, they focus on small prob-
lem instances which do not require the general, cost-
based approach we present in this work.

3 Problem Statement

This section frames our problem statement and defines
a running example that we use in the following sections.

In this paper we focus on the MQO problem only; we
gloss over systems aspects that a full-fledged solution
should consider as well. In particular, the assumption
that a set of concurrent queries is given as an input
to the MQO problem hides some complexity and re-
quires careful engineering. This amounts to the design
and management of a queue of pending queries, to de-
termine the queue size, and when (given a sufficient
number of queued queries) to trigger the MQO. In ad-
dition, given a batch of concurrent queries, in case of
low concurrency and sufficient available resources, the
system should be able to discern whether to execute
such queries in parallel, as in a traditional query-centric
model, or to apply MQO, as done for example in [35].
Finally, given an optimized query set, produced by our
MQO strategy, the system should determine in which
order to schedule the new batch of queries, given a per-
formance objective.

We now introduce a simple running example, that
is rich enough to illustrate the MQO problem. Consider
the following three concurrent queries:
QUERY 1:
SELECT name, dept_name, salary
FROM employees, departments, salaries
WHERE dep = dept_id

AND id = emp_id
AND gender = ’F’
AND location = ’us’
AND salary > 20000

ORDER BY salary DESC

QUERY 2:
SELECT name, dept_name, title,

to as title_expired_on
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employees departments salaries 

Filter 
[gender = F] 

Project 
[id, name, dep] 

Filter 
[location= us] 

Project 
[dept_id, dept_name] 

Join 
[dep = dept_id] 

Project 
[id, name, dept_name] 

Filter 
[salary > 20000] 

Project 
[emp_id, salary] 

Join 
[id = emp_id] 

Project 
[name, dept_name, salary] 

Sort 
[salary, DESC] 

Query 1 

ψ4 

ψ1 

ψ2 ψ3 

employees departments titles 

Filter 
[gender = F] 

Project 
[id, name, dep] 

Filter 
[location= us] 

Project 
[dept_id, dept_name] 

Join 
[dep = dept_id] 

Project 
[id, name, dept_name] 

Filter 
[from>= 2010] 

Project 
[emp_id, title, to] 

Join 
[id = emp_id] 

Project 
[name, dept_name, title, to] 

Query 2 

ψ1 

ψ2 ψ3 

employees salaries 

Filter 
[age > 30] 

Project 
[id, name, age] 

Filter 
[salary > 30000] 

Project 
[emp_id, salary, 

from_date 

Join 
[id= emp_id] 

Project 
[id, name, salary, 

from_date] 

Query 3 

ψ2 ψ4 

ψ1	

ψ2	

ψ3	

ψ4	

Fig. 1: Logical plans for the queries in our running example. Each operator tree has been optimized for query
individually. Similar subexpressions (SE) inside logical plans are emphasized by dashed boxes surrounding the
corresponding sub-tree of each query logical plan. Boxes with the same border color denotes the same SE.

FROM departments, employees, titles
WHERE dep = dept_id

AND id = emp_id
AND gender = ’F’
AND location = ’us’
AND from >= 2010

QUERY 3:
SELECT id, name, salary, from_date
FROM employees, salaries
WHERE id = emp_id

AND age > 30
AND SALARY > 30000

We use Figure 1 to illustrate the optimized oper-
ator trees (logical plans) of the queries in the above
example. The leaf nodes represent the base relations.
Each intermediate node is a relational algebra operator
(Selection, Projection, Join, etc.). The arrows between
nodes indicate data flow. Our MQO strategy uses such
optimized logical plans to produce new plans – whose
aim is to exploit sharing opportunities by caching in
RAM distributed relations – which are then translated
into physical plans for execution.

First, we see that the three queries can share the
scan of the employees, departments and salaries
relations. Hence, a simple approach to work sharing
would be to inject a cache operator in Query 1, which
would steer the system to serve input relations from
RAM instead of reading them from disk, when execut-
ing Query 2 and 3. A more refined approach could be to
find common work (not only common I/O), in the form
of similar subexpressions (SE) among the queries from

the example, such as filtering and projecting records,
joining tables, etc, and materialize intermediate results
in RAM, to speed-up query runtime by re-using such
intermediate relations.

Figure 1 illustrates four examples of similar SEs,
which are labelled as ψi, i = 1, 2, 3, 4 (we explain the
meaning of this label in the next section). For exam-
ple, consider the subexpression labelled as ψ2: all three
queries share the same sub-tree structure, in the form
Projectp(Filterf (employees)), but use different filter-
ing predicates and projections. In principle, it is thus
possible to save reading, parsing, filtering and project-
ing costs on the employees relation: by caching the
intermediate output of a general form of subexpres-
sion, which subsumes the three similar sub-trees in each
query. Such costs would be payed only once, and the
cached intermediate relation could serve three consumer
queries. To achieve that, we need to build a covering
expression (CE) that combines the different variants of
the predicates appearing in the operators, for instance
considering ψ2 the corresponding CE could be:

Project id, name, dep, age(Filtergender=F∨ age>30(employees))

In a similar vein, the SEs labelled as ψ3 and ψ4

share the projection and filtering on department and
salaries relations, respectively.

We anticipate that, in the context of our work, it
is possible to rank some SEs according to the benefits
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they bring, in terms of reducing redundant work. For
instance, the SE Projectp(Filterf (employees)) leads
to additional savings when compared to the SE Fil-
terf (employees), and caching the intermediate rela-
tion of the corresponding CE results in a smaller mem-
ory footprint because of its selectivity. More to the
point, we now consider the SE labelled as ψ1 in Figure 1:
Query 1 and 2 share a common sub-tree in their respec-
tive logical plans, that involves selections, projections
and joins. In this case, selecting this SE as a candidate
to build a CE between Query 1 and 2 contributes to
decreased scanning, computation and communication
costs. However, since caching a relation in RAM bears
its own costs and must satisfy capacity constraints, ma-
terializing in RAM the output of the CE might reveal
not beneficial after all. For example, a join operator
could potentially produce an intermediate relation too
big to fit in RAM.

Overall, given an input query set, our problem amo-
unts to explore a potentially very large search space, to
identify SEs, to build the corresponding CEs – which
we also call sharing plans, and to decide which CEs to
include in the optimized output plan. Our MQO strat-
egy aims at reducing the search space to build CEs by
appropriately pruning SEs according to their rank. Fur-
thermore, a cost-based selection of candidate CEs must
ensure memory budget constraints to be met. In the
following Section, we delve into the detail of our MQO
approach.

4 Cache-based work sharing

This section describes our approach to MQO, using a
caching operator to materialize in RAM intermediate
(distributed) relations that belong to a sharing plan.
We assume a set of concurrent queries submitted by
multiple users to be parsed, analyzed and individually
optimized by a query optimizer. Our MQO method op-
erates on a set of optimized logical plans corresponding
to the set of input queries, that we call the input set.

We approach the MQO problem with the following
steps:

1. Similar subexpressions identification. The goal
of this phase is to identify all common and similar
subexpressions in the input set, as discussed in Sec-
tion 4.1. In short, we compute an operator finger-
print for each operator in the logical plan of every
query and store it in a fingerprint table. Two (or
more) operators sharing the same fingerprint consti-
tute a SE. Identified SEs are candidates for building
covering expressions (CEs) in the next step.

2. Building Covering subexpressions, a.k.a. shar-
ing plans. Given all SEs identified in an input set,
the goal of this phase is to construct one or more
groups of CEs representing candidate sharing plans,
as discussed in Section 4.2. Since the search space
for building CEs and for their subsequent selection
can be very large, in this phase our approach prunes
bad SEs, in an attempt to produce few, good CEs
candidates.

3. Sharing plan selection. The goal of this phase is
to select the best combination of CEs, using esti-
mated costs and memory constraints, as shown in
Section 4.3. The output of this phase is a series
of sharing plans which use shared operators (cov-
ering those of the underlying SEs) and materialize
their output relation in RAM using a cache opera-
tor. For this reason, we sometimes refer to such CEs
as caching plans. We model this step as a Multiple-
Choice Knapsack problem, and use dynamic pro-
gramming to solve it.

4. Query rewriting. The last step to achieve MQO is
to rewrite the input query set such as to use selected
sharing plans, as shown in Section 4.4. Essentially,
cached relations pertaining to a CE are pipelined to
those queries that can be rewritten using that CE.
The output of this phase is a new set of rewritten
queries, that subsume the input set, although their
execution is not guaranteed to be in the original
ordering.

4.1 Similar Subexpression Identification

Finding similar subexpressions, given an input set of
logical plans, has received considerable attention in the
literature. What sets our approach apart from previous
works lies behind the very nature of the resource we
use to achieve work sharing: memory is limited, and the
overall MQO process we present is seen as a constrained
optimization problem, which strives to use caching with
parsimony. Thus, we use a general rule of thumb that
prefers a large number of CEs (built from the corre-
sponding SEs) with small memory footprints instead
of a small number of CEs with large memory require-
ments. This rule of thumb is also in line with low-level
systems considerations: data materialization in RAM
is not cost-free, and current parallel processing frame-
works are sometimes fragile, when it comes to memory
management under pressure.

Armed with the above considerations, we first con-
sider the input to our task: we search SEs given a set of
“locally optimized” query plans, which are represented
in a tree form. Such input plans have been optimized
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by applying common rules such as early filtering, pred-
icate push-down, plan simplification and collapsing [3].
The natural hierarchy of an optimized logical plan, in
general, implies that the higher in the tree an opera-
tor is, the less the data flowing from its edges. Hence,
similar subexpressions that are found higher in the plan
hierarchy are preferred because they potentially exhibit
smaller memory footprints, should their output relation
be cached.

Additional considerations are in order. Some opera-
tors produce output relations that are not easy to ma-
terialize in RAM: for example, binary operators such
as join, generally produce large outputs that would de-
plete memory resources if cached. Thus, when search-
ing for SEs, we recognize “cache unfriendly” operators
and preempt them for being considered as valid candi-
dates, either by selecting SEs that appear lower in the
logical plan hierarchy (e.g., which could imply caching
the input relations of a join), or by selecting SEs that
subsume them (e.g., which could imply caching a rela-
tion resulting from filtering a join output). Currently,
we treat the join, Cartesian product and union as “cache
unfriendly” operators. This means that our method does
not produce SEs rooted at cache unfriendly operators;
moreover, cache unfriendly operators can be shared in-
side a common SE only when they are syntactically
equal.1 In the following, we provide the necessary defi-
nitions that are then used to describe the identification
of SEs.

Definition 1 (Sub-tree) Given a logical plan of a
query Q, represented as a tree τQ where leaf nodes are
base relations and each intermediate node is a relational
algebra operator, a sub-tree τQs of τQ is a continuous
portion of the logical plan of Q containing an interme-
diate node of τQ and all its descendant in τQ. In other
words, a sub-tree includes all the base relations and
operators that are necessary to build its root.

In the following, if the context is clear, we denote
a sub-trees simply as τ , without indicating from which
query it has been derived.

Given any two sub-trees, we need to determine if
they have the same structure in terms of base relations
and operators. To this aim, we define a similarity func-
tion based on a modified Merkle Tree (also known as
hash tree) [29], whereby each internal node identifier
is the combination of identifiers of its children. More

1 Our method can be easily extended for sharing simi-
lar join operators, for example by applying the “equivalence
classes” approach used in [45]. Despite technical simplicity,
our current optimization problem formulation would end-up
discarding such potential SEs, due to their large memory foot-
prints. Hence, we currently preempt such SEs from being con-
sidered.

specifically, given an operator u, its identifier, denoted
by ID(u), is given by:

ID(u) =


(u.label) u ∈ {filter, project,

input relation}
(u.label, u.attributes) otherwise.

Notice that this definition makes a distinction between
loose and strict identifier. A loose identifier, such that
used for projections and selections, allows the construc-
tion of a shared operator that subsumes the individual
attributes with more general ones, which allows shar-
ing computation among SEs. Instead, a strict identifier,
such that used for all other operators (including joins
and unions), imposes strict equality for two sub-graphs
to be considered SEs. In principle, this restricts the
applicability of a shared operator. However, given the
above considerations about cache unfriendly operators,
our approach still shares both I/O and computation.

Definition 2 (Fingerprint) Given a sub-tree τ , its
fingerprint is computed as

F(τ) =


h(ID(τroot)) τroot = leaf

h(ID(τroot)|F(τchild)) τroot = unary

h(ID(τroot)|F(τl.child)|F(τr.child)) τroot = binary

where h() is a robust cryptographic hash function, and
the operation | indicates concatenation.

The fingerprint F(τ) is computed recursively start-
ing from the root of the sub-tree (τroot), down to the
leaves (that is, input relations). If the root is a unary
operator, we compute the fingerprint of its child sub-
tree (τchild), conversely in case of a binary operator, we
consider the left and right sub-trees (τl.child and τr.child).
For the sake of an uncluttered notation, we omit an ad-
ditional sorting which ensures the isomorphic property
for binary operators: for example, TableA join TableB
and TableB join TableA are two isomorphic expressions,
and have the same fingerprint.

We are now ready to define what a similar subex-
pression (denoted as ω) is.

Definition 3 (Similar subexpression) A similar
subexpression (SE) ω is a set of sub-trees that have the
same fingerprint ψ, i.e. ω = {τi | F(τi) = ψ}.

Algorithm1 provides a pseudo-code of our proce-
dure to find, given a set of input queries, the SEs ac-
cording to Definition 3 that will be the input of the next
phase, the search for covering expressions. The underly-
ing idea is to avoid a brute-force search of fingerprints,
which would produce a large number of SEs. Instead,
by proceeding in a top-down manner when exploring
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Algorithm 1 Similar subexpressions identification
Input: Array of logical plans (trees), threshold k
Output: Set S of SEs ωi

1: procedure IdentifySEs([τQ1 , τQ2 , ...τQN ], k)
2: FT ← ∅
3: foreach τ ∈ [τQ1 , τQ2 , ...τQN ] do
4: nodeToVisit ← Add(τ)
5: while nodeToVisit not empty do
6: τcurr ← Pop(nodeToVisit)
7: ψ ← F(τcurr)
8: if CacheFriendly(τcurr

root ) then
9: FT.AddValueSet(ψ, τcurr)
10: end if
11: if (!CacheFriendly(τcurr

root ) ∨
12: ContainsUnfriendly(τcurr)) then
13: nodeToVisit ← Add(τcurr

children)
14: end if
15: end while
16: end for
17: S ← ∅
18: foreach ψ ∈ FT.Keys do
19: if |FT.GetValue(ψ)| ≥ k then
20: S ← S ∪ FT.GetValue(ψ)
21: end if
22: end for
23: return S
24: end procedure

logical plans, we produce fewer SEs candidates, by in-
terrupting the lookup procedure as early and as “high”
as possible.

The procedure uses a fingerprint table FT (line 2)
to track SEs: this is a HashMap, where the key is a
fingerprint ψ, and the value is a set of subtrees. Each
logical plan from the input set of queries is examined in
a depth-first manner. We first consider the whole query
tree (line 4) and check if its root is a cache-friendly oper-
ator: in this case, we add the tree to the SEs identified
by its fingerprint. The method AddValueSet(ψ, τ)
retrieves the value (which is a set) from the HashMap
FT given the key ψ (line 9), and adds the subtree τ to
such a set – if the key does not exists, it adds it and
create a value with a set containing the subtree τ . If
the root is not a cache-friendly operator, or the logi-
cal plan contains a cache-unfriendly operator, then we
need to explore the subtrees (line 13), i.e. we consider
the root’s child (if the the operator at the root is unary)
or children (otherwise).

At the end, we extract the set of SEs from the
HashMap FT: we consider the SEs bigger than a thresh-
old k (e.g. with at least two subtrees from two queries)
in order to focus on SEs that offer potential work shar-
ing opportunities.

Going back to our running example, Algorithm1
outputs a set of SEs as follows {ω1, ω2, ω3, ω4} – in
Fig. 1 the sub-trees corresponding to them are labelled
ψ1, ψ2, ψ3 and ψ4, where ψi is the fingerprint of SE

ωi. For instance, ω1 contains two sub-trees (one from
Query 1, and one from Query 2), while ω2 contains three
sub-trees, one from each query.

4.2 Building Sharing Plans

Given a list of candidate SEs, the goal of this phase is to
build covering subexpressions (CEs) corresponding to
identified SEs, and generate a set of candidate groups
of CEs for their final selection.

Covering subexpressions. For each similar sub-query
in the same SE ωi, the goal is to produce a new plan to
“cover” all operations of each individual sub-query.

Recall that all sub-trees τj within a SE ωi share
the same sub-query plan fingerprint: that is, they oper-
ate on the same input relation(s) and apply the same
relational operators to generate intermediate output re-
lations. If the operator attributes are exactly the same
across all τj , then the CE will be identical to any of the
τj . In general, however, operators can have different at-
tributes or predicates. In his case, the CE construction
is slightly more involved.

First, we note that, by construction, the only shared
operators we consider are projections and selections. In-
deed, for cache unfriendly operators, the SE identifica-
tion phase omits their fingerprint from the lookup pro-
cedure (see Algorithm1, lines 8-9). Nevertheless, they
could be included within a subtree, but they are in any
case “surrounded” by cache-friendly operators (see for
instance in Fig. 1, the SE labeled as ψ1). As a conse-
quence, a CE can be constructed in a top-down man-
ner, by “OR-ing” the filtering predicates and by “union-
ing” the projection columns of the corresponding oper-
ators in the SE. The CE thus produces and material-
izes all output records that are needed for its consumer
queries2. Fig. 2 illustrates an example of CE for a simple
SE of two sub-queries taken from the running example
shown in Fig. 1. In particular, we consider the SE la-
beled as ψ2.

The resulting CE contains the same operators as
the subtrees τj ∈ ωi, but with modified predicates or
attribute lists.

In general, we can build a CE, which we denote with
Ωi, from a SE ωi, by applying a transformation function
f(), [τ1, ...τm]

f()−−→ τ∗i , which trasforms a collection of
similar sub-trees to a single, covering sub-tree τ∗i . Note
that the resulting covering sub-tree has the fingerprint
of the sub-trees in ωi.

2 For the sake of readability, we omit the description of
several other optimizations – such as the removal of duplicate
predicates – that we have implemented.
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employees 

Filter 
[gender = F] 

Project 
[id, name, dep] 

employees 

Filter 
[age > 30] 

Project 
[id, name, age] 

… … 

employees 

Filter 
[gender = F   OR  age > 30] 

Project 
[id, name, dep, age] 

… 

ψ2 ψ2 

Query 1 and 2 Query 3 

Fig. 2: Building covering expression example. The first
and second trees are two similar subexpressions. The
third tree is the covering subexpression.

Definition 4 (Covering subexpression) A Cover-
ing subexpression (CE) Ωi = f(ωi) is a sub-tree τ∗i
derived from the SE ωi by applying the transformation
f(), with F(τ∗i ) = F(τj)∀τj ∈ ωi, such that all τj ∈ ωi
can be derived from τ∗i .

In summary, the query plan τ∗i that composes Ωi
contains the same nodes as any subtree τj ∈ ωi, chang-
ing the predicates of the selections (OR of all the predi-
cates in τj) and projections (union of all the predicates
in τj).

Once the set of CEs, Ω = {Ω1, Ω2, . . . }, has been
derived from the corresponding set of SEs, ω = {ω1, ω2,

. . . }, we need to face the problem of CE selection. The
main question we need to answer is: among the CEs
contained in the set Ω, which ones should be cached?
Each CE covers different portions of the query logical
plans, therefore a CE may include another CE. Looking
at the running example shown in Fig. 1, we have that
Ω1 (derived from ω1, in the figure labeled with ψ1) con-
tains Ω3 (derived from ω3 and labeled in the figure with
ψ3). If we decide to store Ω1 in the cache, it becomes
questionable to store Ω3 as well.

The next step of our process is then to identify the
potential combinations of mutually exclusive CEs that
will be the input of the optimization problem: each com-
bination will have a value and weight, where the value
provides a measure of the work sharing opportunities,
and the weight indicates the amount of space required
to cache the CE in RAM. We start considering how to
compute such values and weights, and we proceed with
the algorithm to identify the potential combination of
CEs.

CE value and weight: a cost-based model. As in
traditional database systems, we use cardinality esti-
mation and cost modeling to reason about the benefit
of using CEs. The objective is to estimate if a given CE,
that could serve multiple consumer queries, yields lower

costs than executing individually the original queries it
subsumes.

The cardinality estimator component analyzes re-
lational operators to estimate their output size. To do
so, it first produces statistics about input relations and
their columns. At relation level, it obtains the number
of records and average record size. At column level, it
collects the min and max values, approximates column
cardinality and produces an equi-width histogram for
each column.

The cost estimator component uses the results from
cardinality estimation to approximate a (sub) query ex-
ecution cost. We model the total execution cost of a
(sub) query as a combination of CPU, disk and net-
work I/O costs. Hence, given a sub-tree τj , we denote
by CE(τj) the execution cost of sub-tree τj . This com-
ponent recursively analyzes, starting from the root of
sub-tree τj , relational operators to determine their cost
(and their selectivity), which is the multiplication be-
tween predefined constants (representative of the com-
pute cluster running the parallel processing framework)
and the estimated number of input and output records.
Given a SE ω = {τ1, τ2, . . . , τm}, the total execution
cost C(ωi) related to the execution of all similar sub-
trees τj ∈ ωi without the work-sharing optimization is
given by

C(ωi) =
m∑
j=1

CE(τj). (1)

Instead, the cost of using the corresponding CEΩi must
account for both the execution cost of the common sub-
tree τ∗i , and materialization (CW ) and retrieving (CR)
costs associated to the cache operator we use in our
approach, which accounts for write and read operations:

C(Ωi) = CE(τ∗i ) + CW (|τ∗i |) +m · CR(|τ∗i |), (2)

where both CW (|τ∗i |) and CR(|τ∗i |) are functions of the
cardinality |τ∗i | of the intermediate output relation ob-
tained by executing τ∗i . Eq. 2 indicates that retrieving
costs are “payed” by each of the m consumer queries
from the SE ωi that can use the corresponding CE Ωi.3

Given the above costs, we can derive the value of
a CE Ωi, denoted by v(Ωi), as the difference between

3 In light of the end-to-end MQO process, the last phase
amounts to rewrite the queries in the input set to use selected
CEs. Such rewrite can introduce additional work, which we
currently neglect in our modeling approach: indeed, query
rewriting involves highly selective operations, with low cost.
This means we assume the dominating cost to be that of read-
ing from RAM, which we found experimentally to be true.
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the cost of an unoptimized set of sub-trees (execution
of ωi) and the cost of the corresponding CE Ωi:

v(Ωi) = C(ωi)− C(Ωi). (3)

From Equations 1 and 2, we note that v(Ωi) is an in-
creasing function in m. Indeed, the more similar sub-
queries a CE can serve, the higher its value.

Along with the value, we need to associate to a CE
also a weight, since the memory is limited and we need
to take into account if a CE can fit in the cache. The
weight, denoted by w(Ωi) is the size required to cache
in RAM the output of Ωi, i.e. w(Ωi) = |τ∗i |

∆
= |Ωi|.

In practice, the weight is a measure of how much se-
lective are the operators in the CE. If a CE contains a
highly selective filtering predicate, then its weight will
be small.

Having defined the CE value and weight, we de-
scribe next the algorithm to identify the potential com-
bination of CE.
Generating the candidate set of CEs. Next, we fo-
cus on the problem of generating a combinatorial set of
CEs, with their associated value and weight, to be given
as an input to the multi-query optimization solver we
have designed. Given the complexity of the optimiza-
tion task, our goal is to produce a small set of valuable
alternative options, which we call the candidate set of
CEs. We present an algorithm to produce such a candi-
date set, but first illustrate the challenges it addresses
using the example shown in Figure 1.

Let’s focus on CE Ω1 (corresponding to the sub-
trees labeled as ψ1). A naive enumeration of all possible
choices of candidate CE to be cached leads to the fol-
lowing, mutually exclusive options: (i) Ω1, (ii) Ω2, (iii)
Ω3, (iv) both (Ω2,Ω3), (v) both (Ω1,Ω2), and (vi) both
(Ω1,Ω3). Intuitively, however, it is easy to discern valu-
able from wasteful options. For example, the compound
CE (Ω1, Ω2) could be a good choice, since Ω2 can be
cached to serve query 1 and 2 – and of course used
to build Ω1 – and for query 3. Conversely, caching the
compound (Ω1, Ω3) brings less value, since it only ben-
efits query 1 and query 2, but costs more than simply
caching Ω1, which also serves both query 1 and 2.

It is thus important to define how to compute the
value and weight of compound CE. In this work we only
consider compound CEs for which value and weight are
additive in the values and weights of their components.
This property is achieved by considering compounds of
disjoint CEs, i.e., those that have no common sub-trees.

For example, consider the two CEs Ω1 and Ω2, and
the sub-trees used to build them. The CE Ω2 is included
in Ω1, but only some of the originating sub-trees of Ω2

are included in the originating sub-trees of Ω1 (in par-
ticular, the ones in query 1 and 2, but not in query 3).

Algorithm 2 Algorithm to generate CE candidates.
Input: Set Ω of CEs
Output: Set of Knapsack items (potential CEs)
1: procedure GenerateKPitems(Ω = {Ω1, Ω2, . . . })
2: Ωexp ← ∅
3: while Ω not empty do
4: Ωi ← PopLargest(Ω)
5: DescSet ← FindDescendant(Ωi, Ω)
6: Groupi ← [Ωi]∪Expand(DescSet)
7: Ωexp ← Ωexp ∪ {Groupi}
8: Remove(DescSet, Ω)
9: end while
10: return Ωexp

11: end procedure

Given our definition of the value and the weight of CEs,
the value and the weight of the compound (Ω1, Ω2)may
not be equal to the sums of the values and of the weights
of each individual CE, since part of the CE need to be
reused to compute different sub-trees. Thus, we discard
this option from the candidate set.

Note that, if two CEs share a sub-tree, then such
sub-tree is a CE itself, whose value is bigger or equal
to each individual value of the CEs in which it is con-
tained. In practical settings, the case where some CE
share a sub-tree is not frequent, so not considering them
do not have a significant impact. For instance, in the
standard dataset we use in the experiments (Sect. 6)
such a case does not occur.

Algorithm2 generates the candidate input for the
optimization solver as a set of non-overlapping groups
of CEs; then, the optimization algorithm selects a single
candidate for each group in order to determine the best
set of CEs to store in memory. Given the full set of Ω of
CEs as input, we consider CE Ωi starting from the root
of the logical plan and remove it from the set (line 4).
We then look for its descendants from the input set Ω,
i.e. all the CEs contained in Ωi (line 5). With a CE and
its descendant, we build a list of options that contains
(i) the CE itself and its individual descendants, and (ii)
all the compounds of disjoint descendant CEs (line 6
and 7). We then remove the descendant from Ω and
continue the search for other groups.

Considering our running example, we start fromΩ =

{Ω1, Ω2, Ω3, Ω4}. The “largest” CE is Ω1, and its de-
scendants are Ω2 and Ω3, therefore the list of mutually
exclusive options for this group would be [Ω1, Ω2, Ω3, (Ω2, Ω3)].
The final output of Algorithm2 then is:

{[Ω1, Ω2, Ω3, (Ω2, Ω3)] , [Ω4]} , (4)

where the notation (·, ·) indicates a compound CE, and
[·, ·] indicates a group of related CEs.

Note that a CE may be part of more than one larger
CE: to keep the algorithm simple, we consider only the
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largest ancestor for each CE. To each option, we asso-
ciate the value and the weight (in case of a compound,
the sum of each component), that will be used by the
optimization solver.

4.3 Sharing Plan Selection

Next, we delve into our MQO problem formulation. In
this work, we model the process that selects which shar-
ing plan to use as a Multiple-choice Knapsack problem
(MCKP) [40]. Essentially, the knapsack contains items
(that is, sharing plans or CEs) that have a weight and
a value. The knapsack capacity is constrained by a con-
stant c: this is representative of the memory constraints
given to the work sharing optimizer. Hence, the sum of
the weights of all items placed in the knapsack cannot
exceed its capacity c.

Our problem is thus to select which set of CEs (sin-
gle, or compound) to include in the knapsack. The out-
put of the previous phase (and in particular, the out-
put of Algorithm2) is a set containing m groups of
mutually exclusive options, or items. Each group Gi,
i = 1, 2, . . . , g, contains |Gi| items, which can be single
CE or compounds of CEs. For instance, looking at our
running example, the output shown in Eq. (4) contains
g = 2 groups: the first group has 4 items, the second
group just one item. Given a group i, each item j has
a value vi,j and a weight wi,j computed as described in
Sect. 4.2.

The MCKP solver needs to choose at most one item
from each group such that the total value is maximized,
while the corresponding total weight must not exceed
the capacity c. More formally, the problem can be cast
as following:

Maximize
g∑
i=1

|Gi|∑
j=1

vi,jxi,j

subject to
g∑
i=1

|Gi|∑
j=1

wi,jxi,j ≤ c

|Gi|∑
j=1

xi,j ≤ 1,∀i = 1 . . . g

xi,j ∈ {0, 1},∀i = 1 . . . g, j = 1 . . . |Gi|

(5)

where the variable xi,j indicates if item j from group i
has been selected or not. Note that the weights of a CE
indicates how much selective are the predicates it con-
tains. Nevertheless, this is paired with the value of the
CE, since we are interested in CE that are potentially
saving a lot of works.

The MCKP is a well-known NP-Hard problem: in
this work, we implement a dynamic programming tech-
nique to solve it [26]. Note that alternative formulations
exist, for which a provably optimal greedy algorithm
can be constructed: for example, we could consider a
fractional formulation of the knapsack problem. This
approach, however, would be feasible only if the un-
derlying query execution engine could support partial
caching of a relation. As it turns out, the system we
target in our work does support hierarchical storage
levels for cached relations: what does not fit in RAM, is
automatically stored on disk. Although this represents
an interesting direction for future work (as it implies a
linear-time greedy heuristic can be used), in this paper
we limit our attention to the 0/1 problem formulation.

4.4 Query Rewriting

The last step is to transform the original input queries
to benefit from the selected combination of cache plans.

Recall that the output of a cache plan is material-
ized in RAM after its execution. Then, for each input
query that is a consumer for a given cache plan, we
build an extraction plan which manipulates the cached
data to produce the output relation, as it would be ob-
tained by the original input query. In other words, in the
general case, we apply the original input query to the
cached relation instead of using the original input rela-
tion. In the case of a CE subsuming identical SEs, the
extraction plan is an identity: the original query simply
replaces the sub-tree containing the CE by its cached
intermediate relation. Instead, if shared operators are
used – because of SEs having the same fingerprint but
different attributes – we build an extraction plan that
applies the original filter and projection predicates or
attributes to “extract” relevant tuples from the cached
relation produced from the CE.

Considering our running example, assume that the
output of the MCKP solver is to store Ω2 and Ω3 in
cache. Ω3 derives from ω3, where the composing sub-
trees (one from query 1, and one from query 2) are
the same, therefore the extraction plan will be Ω3 it-
self. Instead, ω2 (from which Ω2 derives) contains sub-
trees with different filtering and projection predicates:
when Ω2 is materialized in the cache, we need to apply
the correct filtering (e.g., “gender = F”) and projection
predicates to extract the actual result when considering
the different queries.
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5 Implementation details

In this work, we adopt the Apache Spark [43] process-
ing system and its extension called SparkSQL [3]. As
anticipated in Section 3, our prototype implementation
glosses over some system aspects that we discuss next.
Queries written in Spark SQL take an abstract form,
called a DataFrame. A DataFrame object represents the
logical plan associated to a query, to produce a given
output relation. A logical plan is a tree composed of
operators (nodes): thus, each node contains informa-
tion about the operator type and its attributes (filtering
predicates, join columns, etc.).

In Apache Spark, each query issued by a client “lives”
within an instance of an individual session. The session
implements all the machinery necessary to parse and
optimize logical plans, build physical plans and sched-
ule low-level tasks that implement the computation re-
quired by a given query. As a consequence, each query
runs in “isolation” and sharing work between queries is
thus hindered by the very nature of the Apache Spark
architecture. To enable worksharing across multiple cli-
ent queries, it is thus necessary to build a centralized
component that can accumulate multiple client queries,
optimize them, and schedule their execution. We call
this component the SparkSQL Server. Additionally, it
is necessary to modify the typical Apache Spark work-
flow to submit an application: individual clients should
submit their applications to the SparkSQL Server, by
passing the logical plans associated to each query.

In this paper, we focus on the implementation of
the algorithmic aspects of worksharing in the Spark-
SQL Server, because our goal is to validate and assess
the benefits of the proposed methodology. Hence, we
assume the (locally optimized) logical plans associated
to each individual client query to be available in the
SparkSQL Server, taking the form of a collection (e.g.,
a list) of DataFrames. Hence, our prototype implemen-
tation materializes as an extension to the existing sin-
gle query optimizer designed for SparkSQL, namely the
Catalyst module [3]. To do so, we follow the optimiza-
tion process of 4 phases discussed in Sect. 4. Operator
fingerprints are computed to identify all similar subex-
pressions in the first phase. Phase 2 and phase 4 re-
quire query transformations, which we achieve using the
Scala’s pattern matching and the TreeNode library of
Catalyst in SparkSQL. Transforming rules are passed
as a function to specify how to transform the logical
plan trees. In our prototype, cardinality estimation is
achieved by a pre-processing phase, that produces the
statistics needed in phase 3.

Finally, once the worksharing optimization process
has produced the caching plans according to the solu-

tion to the multiple-choice knapsack problem, the Spark-
SQL Server behaves as a regular Apache Spark client
and submits (sequentially) each rewritten client query
to the compute cluster.

6 Experimental Evaluation

We now present experimental results to evaluate the ef-
fectiveness of our methodology, which we implement for
the Apache Spark and SparkSQL systems.4 First, we
focus on a general overview of the performance gains
achieved by our MQO approach, using the standard
TPC-DS benchmarking; we then proceed with a de-
tailed analysis of caching efficiency for individual oper-
ators and simple queries.

6.1 Experimental setup

We run our experiments on a cluster consisting of 8
server-grade worker nodes, with 8 cores each and a 1
Gbps commodity interconnect.

For the macro-benchmark, each worker is granted 30
GB of RAM each, of which half is dedicated to caching.
We use the queries in the TPC-DS benchmark library
for Spark SQL developed by Databricks [11], and gen-
erate a CSV dataset with scaling factor of 50.

For the micro-benchmark, each worker is granted
6 GB of RAM each, of which half is used for caching
data. The synthetic dataset used for the experiments
is stored in HDFS using Parquet and CSV formats.
The dataset is a table of 30 columns. The first ten
columns ni, i = 1, 2, ..10 are of integer data type, ran-
domly and uniformly generated in the range [1, 10i+2].
The next ten columns di, i = 1, 2, ..10 and the succes-
sive ten si, i = 1, 2, ..10 are of double (in range [0, 1])
and string (of length 20) data types, respectively. We
also vary the input sizes from 10 millions (10M) records
(of size 3GB on disk) to 100M records (of size 30GB on
disk). Note that, for clarity of exposition, when we dis-
play the query plans and input relations for the micro-
benchmark we only show a subset of 5 out of the 30 at-
tributes, and label such attributes with names. Hence,
for our examples, we call our input relation “people”,
where attribute n1 becomes “age”, and attribute s1 be-
comes “name”, and so forth.

In both benchmarks, we use Apache Spark 2.0. Be-
fore running any test, we clear the operating system’s
buffer cache in all workers and master to obtain more

4 Source code of our prototype is available as an open
source contribution, available here: https://github.com/
DistributedSystemsGroup/spark-sql-worksharing

https://github.com/DistributedSystemsGroup/spark-sql-worksharing
https://github.com/DistributedSystemsGroup/spark-sql-worksharing
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Fig. 3: CDF of the performance gains of worksharing for
a TCP-DS workload consisting of 50 selected queries.

accurate results. We also disable the “compression on
caching data" feature of Spark.

6.2 Macro-benchmarks

We begin with a full-fledged performance benchmark,
where we use the standard TPC-DS benchmark adapted
to the Apache Spark SQL system [11] to evaluate the
benefits of our MQO approach. In particular, we se-
lect a subset of all queries available in the TPC-DS
benchmark, and focus on the 50 queries that can be
successfully executed without failures or parsing errors.

Next, we present results for a setup in which we
consider all the 50 queries and execute them in the or-
der of their identifiers, as established by the TPC-DS
benchmark. In other words, this experiment identifies
all sharing opportunities in a workload consisting of
50 queries, and applies our worksharing optimization
to all of them. Figure 3 shows the empirical Cumula-
tive Distribution Function (CDF) of the runtime ratios
between a system absorbing the workload with MQO
enabled and disabled. Overall, we note that, for 60% of
the queries, we obtain a 80% decrease of the runtime.
In total, our approach reduces the runtime for 82% of
the queries. On the other hand, 18% of the queries ex-
perience a larger runtime, which is explained by the
overheads associated to caching, as we discuss in Sec-
tion 6.3. Overall, our optimizer has identified 60 SEs,
and it has built 45 CEs. The cache used to store the
output of the optimization process is approximately 26
GB (out of 120 GB available). The optimization pro-
cess took less than 2 seconds, while the query runtime
are in the order of tens of minutes (individually) and
hours (all together).

Next, we consider an experimental setup in which
we emulate the presence of a queuing component that
triggers the execution of our worksharing optimization,
as anticipated in Sections 3 and 5. In particular, since

TPC-DS queries have no associated submission times-
tamp, we take a randomized approach (without replace-
ment) to select which queries are submitted to the queu-
ing component, and parametrize the latter with the
number of queries – we call this parameter the win-
dow size – to accumulate before triggering our MQO
mechanism. For a given window size, we repeat the ex-
periment, i.e., we randomly select queries from the full
TPC-DS workload, 20 times, and we build the corre-
sponding empirical CDF of the runtime ratio, as defined
above. We also measure the number of SEs identified
within the window size, and show the corresponding
empirical CDF. Given this experimental setup, we con-
sider all possible combinations of queries to assess the
benefits of worksharing.

Figure 4 shows the boxplots of the runtime ratio
(top) and number of similar subexpression identified
(bottom) for different window sizes. The boxplots indi-
cate the main percentiles (5%, 25%, 50%, 75%, 95%) of
the empirical CDF, along with the average (red lines).
The Figure shows a clear pattern: as the size of the win-
dow increases, there are more chances of finding a high
number of SE, thus better sharing opportunities, which
translates into reduced aggregate runtime. We observe
a 20% decrease of the aggregate runtime (median) with
a window size of only five queries, which ramps up to
45% when the window size is set to 20 queries.

As anticipated in Section 3, a queuing mechanism
can introduce an additional delay for the execution of
a query, because the system needs to accumulate a suf-
ficient number of queries in the window before trigger-
ing their optimization and execution. Investigating the
trade-off between efficiency and delay, as well as study-
ing scheduling policies to steer system behavior is part
of our future research agenda.

6.3 Micro-benchmarks

Next, we evaluate our system through a series of ex-
periments based on simple workloads composed by two
queries, reading the same synthetic input table, from
which we display 5 heterogeneous (numerical and cate-
gorical) attributes, for the sake of conciseness. In each
experiment, the two queries are run sequentially. We
measure and compare the runtime of the Spark jobs as-
sociated to each query, according to three strategies: i)
without worksharing, ii) by having the full input rela-
tions cached by the system (FC), iii) with our workshar-
ing technique (WS). In the latter case, the optimization
produces a single CE: hence, the first query triggers
the evaluation of the CE, which is cached, whereas the
second query benefits the most from worksharing. Each
experiment is run three times, and results are averaged.
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Fig. 4: Execution time ratio and number of similar
subexpression within a group of queries (given by the
size of the window) as the window size increases.

Overall, our results indicate:

– Roughly 50% and 30% improvement in aggregate
query latencies for CSV and Parquet files, respec-
tively.

– Our worksharing technique outperforms the naive
caching of full input relations.

– Between 25% and 40% less space used by our method
with respect to the full cache technique.

In this work we present queries that use filter and project
operators because they appear very frequently in data
analysis, where such operators are usually pushed as
close as possible to the input tables by traditional query
optimization techniques. We also consider the join op-
erator that involves shuffling data across the network,
but defer discussion to the end of the Section.

Filter-based queries

We consider two simple queries whose logical plan is
depicted in Figure 5 (top). Both queries read data from
the same input relation, and apply a filter operator with
two different predicates on the same attribute. The log-
ical plan displayed at the bottom of the Figure is the
output of our multi-query optimizer, that is, a single CE
covering both input queries. In this case, the optimized
CE can be manually verified: it reads data from the in-
put relation, applies a filter operator with a combined
predicate (using the OR logical operator), and caches

Fig. 5: Query (top) and Cache (bottom) plans for Filter-
based queries. The input relation is derived from the
synthetic dataset, with a labelled schema used for illus-
tration.
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Fig. 6: Micro-benchmark for filter-based queries: in-
dividual query latencies, comparing baseline, naive
caching and our worksharing as a function of input size.

the intermediate result.5 The output of each query can
be obtained by applying the filter specific predicate on
the cached result.

Next, in Figure 6, we show the individual query run-
time, without any optimization (Qi), using the caching
option (QiFC) and with our optimization (QiWS) for
CSV input files. In the baseline case, without caching
nor worksharing, both queries have similar execution
times, that grows linearly with the input size. Instead,
when naive caching is used (QiFC), individual query
runtime change: it increases quite dramatically forQ1FC,
because this query incurs the overheads associated with
a cache operation on the entire input relation, and it
decreases for Q2FC, because this query benefits from a
cached input. For large input sizes, however, the system

5 Note that the cache() operator in Apache Spark is a
transformation. As a consequence, it takes effect only upon
the first call to an action, with the first (rewritten) query.
Thus, the first query effectively “pays the price” for caching.
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Fig. 7: Micro-benchmark for filter-based queries: aggre-
gate query latencies and memory utilization with CSV
input format (top) and Parquet input format (bottom).

spills cached data on disk, with reduced benefits on exe-
cution times. Our MQO approach, instead, achieves su-
perior performance:Q1WS pays a small price for caching
just what is needed to produce the output relations,
whereasQ2WS runtime becomes negligible and is marginally
affected by the input relation size.

The aggregate latency of the workload is shown in
Figure 7 (for both CSV and Parquet input format). Our
worksharing strategy consistently obtain 40%-50% ag-
gregate latency improvement with respect to the base-
line. Figure 7 shows also the system memory utilization
dedicated to caching. A naive caching strategy that
stores the entire input relation suffers from capacity
constraints: once the available RAM is depleted, data is
spilled to disk, as visible when the input size increases.
Instead, with our worksharing approach, we only cache
the output of the combined filtering operation defined
by the CE, while satisfying capacity constraints: the
RAM is wisely used and spilling to disk is not required.
Overall, the cache size is roughly 25% of the size of in-
put data size, for both the Parquet and CSV case. Our
multi-query optimizer uses only 2/3 of the caching ca-
pacity (25% of 200M records costs 16GB of cache size,

Fig. 8: Query (top) and Cache (bottom) plans for
Projection-based queries, using synthetic data.

which totals 24GB in our system, that is half of 6GB
times 8 workers).

Projection-based queries

Next, we consider simple queries that only perform pro-
jection operations, as shown in Figure 8. Both queries
read data from the same input relation, and apply a
project operator on a set of different attributes (top of
the Figure). The logical plan displayed at the bottom
of the Figure is the optimized CE covering both in-
put queries. The CE can be manually verified: it reads
data from the input relation, applies a project operator
with the union of each individual query attributes, and
caches the intermediate result.

Note that projection-based queries can benefit from
advanced data representations such as Parquet. In par-
ticular, Parquet is geared toward columnar storage: thus,
we expect projection queries to execute efficiently, be-
cause they only read from disk the data pertaining to
selected attributes. It is thus interesting to verify the
benefits of caching, if any, for such workloads. In the
next series of results, we focus on the Parquet input
data types, as shown in Figure 9.

Overall, our results share similar qualitative consid-
erations as for filter-based queries: the price to pay to
cache data affects the latency of Q1FC and, to a lesser
extent, of Q1WS. However, the benefits from caching
in Q2FC and Q2WS are less pronounced than for filter-
based queries. This is due to the efficiency (for pro-
jections) of the Parquet data format. Also, our MQO
method is superior in its use of the RAM, when com-
pared to a naive caching strategy.6

6 The attentive reader might have noticed that also our
method eventually spills some contents of the cached data
to disk. This is explained by two effects: i) Apache Spark
dynamically adjusts at runtime the amount of memory dedi-
cated to store cached data, and thus overrides the 50% setting
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Fig. 9: Micro-benchmark for Projection-based queries
using Parquet input format: individual query latencies
(top), aggregate query latencies and memory utilization
(bottom).

As shown in Figure 9 (bottom), the aggregate per-
formance for a simple projection-based workload is in
favor of our approach, when compared to naive caching.
Nevertheless, we measure no tangible benefit when com-
pared to the baseline: the execution time “lost” by query
1 to invest in caching does not pay enough benefits for
query 2. Obviously, results obtained with CSV data files
are largely in favor of our approach, which outperforms
the others in all metrics. Indeed, the parsing costs re-
quired for projections translate in non-negligible CPU
costs, in addition to increased disk I/O costs due to the
requirement to read all data in the input relation.

Discussion: other types of queries

We have conducted an extensive experimental campaign
considering queries that combine projection, filtering,
as well as join operators. In fact, the generation of syn-
thetic queries to emphasize different aspects related to

we use in our experiments; ii) our methodology is based on
cardinality estimation to compute the weight of a CE: as a
consequence, estimation errors might induce the system to
spill some records on disk.

system performance and the impact of our optimization
mechanism, can yield a combinatorial amount of results
that we summarize below.

In general, when using the CSV input format, the
benefit of worksharing is remarkable: indeed, this wide-
spread input data format stresses underlying parallel
processing frameworks quite heavily, especially when it
comes to parsing, tokenization and type casting costs,
as for example discussed in [34]. Thus, caching achieves
consistent gains in query execution time, because it can
also save over the “hidden” costs related to a specific
data format. Conversely, using the Parquet data for-
mat can attenuate the benefits of caching, and this is
true mainly for simple queries with projections, as dis-
cussed above. Instead, when queries involve operators
such as joins, for example, other quantities (such as
network I/O) are predominant over the savings in data
access times, and the effects of caching become tangible
again.7

Another way to judge our micro-benchmark results,
is to view the query variants we propose as ways to as-
sess different aspects of the cost model defined in this
work, and consequently the suitability of the knapsack
formulation of the optimization problem. We remark
that our results are very robust with respect to the
constants we use in our cost model, which is truly de-
sirable as it implies that little to no tuning is required
to use our method.

Finally, we remark that the benefits of our approach
can vary depending on the query selectivity. In the ex-
tremely adverse situation, where all queries to be ex-
ectued select essentially all data from the input rela-
tions, it is clear that the advantages of our approach
compared to a “full caching” baseline will shrink. This
is to be expected, as it is not possible to do better
than caching the full input relation, provided it fits into
memory.

7 Conclusion

Complex queries for analyzing massive amounts of data
have become commonplace today: such trend has been
fueled by several efforts to support SQL capabilities
on top of large-scale distributed processing frameworks.
Similarly to what happens in traditional relational data-
base management systems, users share access to data-
intensive processing frameworks and induce workloads
with a high degree of redundancy in terms of queries
containing similar (sub)expressions. As a consequence,
the traditional problem ofmulti-query optimization that

7 Data compression techniques can be helpful in this case,
but we defer their analysis to future work.
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has been largely studied for RDBMSes, also apply to
recent data processing frameworks.

In this paper, we presented a new approach to multi-
query optimization that uses in-memory caching prim-
itives to improve the efficiency of data-intensive, scal-
able computing frameworks, such as Apache Spark. Our
methodology takes as an input a batch of queries writ-
ten with the SparkSQL API, and analyzes them to find
common (sub)expressions, leading to the construction
of an alternative execution plan based on covering ex-
pressions, that subsumes the individual work required
by each query. To make the search problem tractable
and efficient, we have used several techniques includ-
ing: modified hash trees to quickly identify common
sub-graphs, and an algorithm to enumerate (and prune)
feasible common expressions. We then cast the multi-
query optimization problem as a multiple-choice knap-
sack problem: each feasible common expression is asso-
ciated with a value (representative of how much work
could be shared among queries) and a weight (represen-
tative of the memory pressure imposed by caching the
common data), and the goal is to fill a knapsack of a
given capacity (representative of memory constraints)
optimally.

To quantify the benefit of the proposed method-
ologies, we implemented a prototype of our method
for Apache Spark SQL, and we designed two families
of experiments. First, we used the well-known TPC-
DS workload to design a macro-benchmark on realistic
queries and data. Our results indicated that workshar-
ing opportunities are frequent, and that our proposed
methodology brings substantial benefits in terms of re-
duced query runtime, with up to an 80% reduction for
a large fraction of the submitted queries. Then, using
micro-benchmarks, we studied the benefits (and costs)
of worksharing for a workload of simple queries, focus-
ing on individual relational operators, including filter-
based and projection-based queries.

In our research agenda, we will consider system as-
pects related to the management of a queuing mecha-
nism to accumulate submitted queries in a batch win-
dow, and analyze the trade-off that exist between query
runtime and execution delay. In this paper, we have ob-
tained promising preliminary results, showing that even
small window sizes (that would mitigate execution de-
lays) are sufficient to reap the benefits from workshar-
ing.
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